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A Note on Density Model Size Testing
Gérard Biau and Luc Devroye

Abstract— Let
���������	��


be a nested family of parametric
classes of densities with finite Vapnik-Chervonenkis dimension.
Let � be a probability density belonging to

����
, where ���

is the unknown smallest integer such that ��� ��� . Given a
random sample � 
���������� ��� drawn from � , an integer �����! 
and a real number "#� �%$ �  � , we introduce a new, simple,
explicit " -level consistent testing procedure of the null hypothesis&(' ��)*�+�-,.���	/ versus the alternative

&(' 
 )����10,2���	/ .
Our method is inspired by the combinatorial tools developed in
Devroye and Lugosi [1] and it includes a wide range of density
models, such as mixture models, neural networks or exponential
families.

Index Terms— Hypothesis testing, mixture densities, nonpara-
metric estimation, penalization, Vapnik-Chervonenkis dimension.

I. INTRODUCTION

LET 3 be an unknown density on 465 belonging to a
prespecified class of densities, 7�8 , where 9 is unknown,

but 7 8;: 7 8�<>= for all 9 . Define7@?BA8DCE= 7F8HG
In the union above, 7 8 denotes, for each fixed 9#IKJ , a
given class of densities–often parameterized by one or more
parameters–and considered from a topological point of view
as a closed metric subspace of the space of all densities on4L5 endowed with the M = metric. Note that the requirement
that 7F8 is closed for the M�= metric is not restrictive, since any
metric subspace of MF= can be extended into a closed one by
the principle of extension by continuity (Dunford and Schwartz
[2]). For example, 7N8 might be the class of all mixtures of9 Gaussians on 4O5 . Since 3QPR7 , it is natural to define the
index of the economical representation of 3 (James, Priebe,
and Marchette [3]) as9TS�?VUXWZYE[�9\I-J^]_3`Pa7F8+b�G
Naturally, as it is assumed that 3KPc7 , one has 9 Sedf . Roughly speaking, 9 S represents the index of the most
parsimonious model for 3 . Now, given a random sampleg =�h	G�G	G	h g*i drawn from 3 , an integer 9Tj�IKJ and a real
number k-PVlnmoh�Jqp , the purpose of this paper is to introduce
a new, simple, explicit k -level consistent testing procedure
of the null hypothesis [qr j ]T9 S ?s9 j b versus the alternative[qr = ]_9 SXt?V9 j b . The problem of testing hypotheses on 9 S has
received some attention in the literature, essentially for mixture
classes, such as mixtures of Gaussians. Due to a lack of
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identifiability, the limiting distribution for the likelihood ratio
test statistic was until recently unavailable, and so bootstrap
testing methodologies have been developed (see, e.g., McLach-
lan [4]). This lack of identifiability leads to the degeneracy of
the Fisher information of the model, so that the classical chi-
square theory does not apply. Dacunha-Castelle and Gassiat
[5], [6] proposed a theory of reparametrization to solve such
problems, that they called “locally conic parametrization”.
Roughly speaking, the idea is to approach the null hypothesis
using directional submodels in which the Fisher information
is normalized to be uniformly equal to one.

In the present manuscript, we propose a new testing method-
ology, which is close in spirit to Biau and Devroye [7],
where we show how to pick automatically, and without extra
restrictions on 3 , a density estimate 3 ivuZw8 in 7 with the property
that x\y�z|{ 3 i�u�w86} 3 {�~ ? O � J� ��� G
Our approach is inspired by the combinatorial tools developed
in Devroye and Lugosi [1] and recently extended to the
problem of robust hypothesis testing in Devroye, Györfi, and
Lugosi [8]. As we explain it in [7], our methodology is not
proper to mixtures, and it includes a wide range of models,
such as neural networks or exponential families. We refer
the reader to [7] for a detailed discussion, examples and
references. In fact, by taking the more classical statistical view,
and concentrating on identification of the parameters, one is
doomed to run into problems of identifiability and unstable or
non-converging estimation algorithms. Rather than focusing
on the parameters, we will look directly at the performance
of the estimate without worrying about the consistency in the
space of all unknown parameters.

The paper is organized as follows. In Section II, we present
our testing procedure as well as some useful related tools. The
main results, level and consistency of the testing methodology,
are stated in Section III. Proofs are gathered in Section IV.

II. THE TESTING PROCEDURE

A. Presentation

In [1], Devroye and Lugosi explore a new paradigm for
the data-based or automatic selection of the free parameters
of density estimates in general, so that the expected error is
within a given constant multiple of the best possible error.
To summarize in the present context, fix 9QI�J , and define
a density estimate 3 ivu 8 in 7 8 as follows. First introduce the
class of sets�

8 ?!�T[���]_3Lln��pHI���ln��p�b�]_3�h��\P�7 8o�
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(

�
8 is the so-called Yatracos class associated with 7 8 ) and

the goodness criterion for a density � P�7 8 :� 8ol��opO?�������	��
� ���� z � � }�� i l�� p ���� h
where � i l�� p ?sl�J�� � p�� i� � =	��� �� ����� is the empirical measure
associated with the sample

g =�h	G	G�G	h g�i . For each 9�I J ,
the minimum distance estimate 3 i�u 8 is defined as any density
estimate selected from among those densities 3 P�7;8 with� 8vl 3Ep d WZY! " �$# � � 8vl%�vp&% J� G
Note that the J'� � term here is added to ensure the existence
of such a density estimate.

Having disposed of this preliminary step, we let ( 8 be
the Vapnik-Chervonenkis dimension of the class of sets

�
8

(Vapnik and Chervonenkis [9]). Recall that ( 8 is defined as
the largest integer ) such that* 
 � l+)�p ?-,/.vh
where

* 
 � l0)�p is the Vapnik-Chervonenkis shatter coefficient,
defined by* 
	� l+)�p ? U21$34�5 u767676 u 498 ��:<; Card �T[q� = h�G	G�G	h � . b>=?� ]��!P � 8T� G
If
* 
 � l0)�pX?@, . for all ) , then we say that A ? f . Using

combinatorial arguments, one can show (see Devroye and
Lugosi [1], Chapter 4, and the references therein) that if

�
8

has Vapnik-Chervonenkis dimension (8 , thenx � � 8vl 3Ep �2BDC E ( 8� h (1)

where C is a universal positive constant. Now, denoting by kRPlnmoh�Jqp the required testing level, the proposed testing procedure
is as follows: accept the null hypothesis r j if

9 j P argmin 8qC = y ������	��
 � ���� z � 3 ivu 8 }F� i l�� p ���� % pen
i l 9op ~ G (2)

Here, the term pen
i l 9op denotes a penalty function defined by

pen
i l 9op ?�GHI HJ

} �K =MLON } J�� � for 9�?!J h	G�G	G(h�9 j } Jm for 9�?-9_j4 � <<P � Q �SRT i % J'� � for 9\I 9 j % J h
where the letter C stands for the universal constant of in-
equality (1) and ln� 8 p 8qC�8 R <>= is a sequence of nonnegative real
numbers satisfying the condition,VU8DC�8 R <>=!W K�X 4/Y� B k��,G
Note that pen

i l 9op tends to infinity with 9 . This, together with
the fact that the right-hand term of (2) is at most JZ% pen

i l�Jqp ,
shows that we need only do the computations for those 9 for
which pen

i l 9op B J[% pen
i l�JDp . Therefore, a good choice for

the sequence ln� 8 p 8qC�8 R <>= is one for which this sequence has
a fast rate of divergence. For example, the choice, W K�X 4/Y� ? k, 8�<>=

is preferable to the choice, W K\X 4 Y � ? k, 9El 9]% JDp G
Note however that there is a price of letting � 8 grow rapidly,
see Remark 2 in Section III.

B. Some useful results

For each minimum distance estimate 3 i�u 8 , we have (De-
vroye and Lugosi [1], Theorem 6.4)z|{ 3 i�u 8 } 3 { B_^ W Y� " �$# � z�{ 3 } � { %a` � 8�l 3EpZ% ^� G (3)

Since 3`Pa768 � , this inequality reduces toz|{ 3 i�u 8 } 3 { B ` � 8�l 3EpZ% ^�
as soon as 9QI@9 S . Note that if not all members of 7N8 are
densities (just take for 7�8 the class of all neural networks
with 9 hidden nodes or the class of series estimates with 9
basis functions) then, as shown in Exercise 6.2 of Devroye
and Lugosi [1], (3) can be replaced byz|{ 3 i�u 8 } 3 { Bcb W Y� " �$# � z�{ 3 } � { %a` � 8�l 3EpZ% b� G
The only impact of this is that ^ � � has to be replaced by b � � .
The effect is so slight that the reader can easily carry through
the necessary adjustments in the sections that follow. Thus,
we will assume in the sequel that all members in all classes7 8 are densities.

With respect to the term
� 8vl 3Ep in (3), a simple consequence

of the well-known bounded difference inequality (McDiarmid
[10]) tells us thatdfe �� � 8vl 3Ep } x � � 8ol 3Ep � ��!gchji B , W K\X i'k Y (4)

for any
� IsJ and hlg m . This shows that for any class

�
8 ,

the maximal deviation is sharply concentrated around its mean.
Combining (1) and (4) leads to the following useful inequality:dnm � 8ol 3Ep g h� � % C E ( 8�po B , W K\X k Y G (5)

Finally, we will also use the following result, due to Talagrand
[11], which states that there exists a universal positive constantq

such that for all
� I-J and r g m ,d � � 8 l 3Ep g r � B q� � rts q � r X( 8vu Q � W K�X i'w Y h (6)

whenever (L8 is finite.

III. RESULTS

Here and below, x denotes the class of all Borel sets of4 5 . Recall that a class

�
of subsets of x is a y -system if it is

closed under the formation of finite intersections: � , z P
�

implies �t=>z P
�

. See Billingsley [12] for details. We remind
the reader that 9 S , the index of the economical representation
of 3 , is defined by 9 S ?eUXWZYE[�9 I�J ] 3 P-7 8 b . Our first
result insures that the testing procedure defined in Section II
is of level k .
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Theorem 1: Let l
�
8 p 8qC = be the sequence of Yatracos

classes associated with the models l%7 8 p 8DCE= . Let 9 j I#J be
an integer and k a real number in lnmoh�Jqp . Assume that the
Vapnik-Chervonenkis dimension ( 8 R of

�
8 R is finite. Then,

provided

�
= contains a y -system that generates x , the testing

procedure of [qr j ] 9 S ? 9 j b vs [qr = ] 9 Sat?!9 j b as defined
in (2) satisfies, for all

�
large enough,d j � rejecting r j�� B k\h

where
d j stands for the probability under the null hypothesis.

Remark 1: Theorem 1 holds for all
�

large enough, de-
pending on the unknown 3 . From the proof it is easy to get
estimates for the value of

�
necessary for the theorem to hold

in terms of how well 3 can be approximated by densities in7 8 R .
The next theorem deals with the consistency of the proposed
test.

Theorem 2: Under the notations and assumptions of The-
orem 1, with the additional condition that ( 8 � d f , there
exists a positive constant � (depending on 3 ) such that, for
all
� I-J ,d = l rejecting r j � I J } � � K =�L X < Q � � W K�X i 5���� h

where
d = stands for the probability under the alternative

hypothesis.
Remark 2: It is seen from the proof that the value of

the constant � increases with the value of the particular
weight ��8 � whenever 9 S g 9 j . Since 9 S is unknown, a good
choice for the sequence l%�L8 p 8DC�8 R <>= is thus one for which this
sequence has a slow rate of divergence. This, together with
the discussion at the end of Subsection II-A, shows that the
sequence ln�E8_p 8qCE8 R < = should increase reasonably fast towards
infinity.

As an illustration, just consider the classes 7�8 of all
mixtures of 9 normal densities over 4 , that is, the classes
of all densities of form

3Ll%��p ? 8U � � = ) �� ,'y
	 X� W K 5Y�� 4 K� ��� Y L�� Y� h (7)

where l+) =�h�G	G	G	h�)�8 p is a probability vector, 	>=Dh�G	G�G	h�	�8 are
positive real numbers, and � = h	G	G�G(h�� 8 are arbitrary elements
of 4 . An enormous body of literature exists regarding the
application, computational issues and theoretical aspects of
mixture models when the number of components is known,
but estimating and testing the unknown number of components
remains an area of intense research. The scope of application
is vast, as mixture models are routinely employed across
the entire diverse application range of statistics, including
nearly all of the social and experimental sciences. For early
references, see Everitt and Hand [13], Titterington, Smith, and
Makov [14], McLachlan and Basford [15], and McLachlan
and Peel [16]. The commonly used method for estimating the
parameters of a mixture is the EM (expectation-maximization)
algorithm (see Redner and Walker [17]). While originally
designed for fixed mixture classes, such as mixtures of 9
Gaussians, the problem of the unknown 9 has received some
attention in the Bayesian literature (Diebolt and Robert [18],

Richardson and Green [19], Roeder and Wasserman [20],
Celeux, Hurn, and Robert [21], and Hurn, Justel, and Robert
[22]). The statistical learning community has also looked in
depth at the problem (Bishop [23], Jordan and Jacobs [24],
Zeevi and Meir [25], Figueiredo and Jain [26]). In clustering,
or unsupervised learning, one often makes an assumption
about the number of clusters and the distribution within each
cluster. Estimating the distributions in the clusters and the
weights of the clusters then leads to a natural way of cluster-
ing. Likelihood ratios have been used for this in most works,
from Hartigan [27] to Fukumizu [28]. Dacunha-Castelle and
Gassiat [5], [29], [6] on the other hand use the moment method
for identification and estimation of the number of components.
The most recent attempts at estimating the mixture density
parameters and the number of mixture densities jointly are by
Priebe [30], James, Priebe, and Marchette [3], and Rogers,
Marchette, and Priebe [31].

We draw attention on the fact that the conditions required in
Theorem 1 and 2 are in no way restrictive and are in particular
satisfied by a large choice of models. The requirement that
�
= –and thus each

�
8 –contains a y -system generating the

Borel sets x is essentially of technical nature and in no way
restrictive. Observe for example that it is satisfied for � ? J
as soon as the Yatracos class contains the y -system of all
intervals, and more generally for �eI J the y -system of
all � -dimensional rectangles. In particular, it is satisfied by
example (7). Moreover, it can be shown (see Devroye and
Lugosi [1], Chapter 8) that ( 8 ? O l 9��qp , what ensures here
that ( 8 d f for all 9 I J . For more details and examples,
we refer the reader to Biau and Devroye [7], where we
use a close penalized combinatorial criterion to automatically
pick a mixture complexity and a density from the given
mixture, and still guarantee an O l�J�� � � p rate of convergence
for the expected MF= error, just as if we had been given the
mixture complexity beforehand. Observe, however, that the
role played by the penalty in the present testing problem is
slightly different from the role played by the penalty in the
density selection problem studied in [7]. Roughly speaking,
the penalty function allows here to control the level of the
testing procedure, whereas in [7], it guarantees a good rate
of convergence by limiting the number of selected mixture
components.

Note that the idea of using the additional � 8 ’s in the
definition of the penalty is due to Barron, Birgé, and Massart
[32], who study performance bounds for model selection based
on an empirical loss or contrast function with an added penalty
term motivated by empirical process theory, and roughly
proportional to the number of parameters needed to describe
the model divided by the number of observations. See also
Castellan [33] and Massart [34]. Rissanen [35], [36] and
Rissanen, Speed, and Yu [37] proposed model selection based
on minimal stochastic complexity or description length. The
focus there was principally on rate of convergence. It is not
directly obvious how to modify these methods for hypothesis
testing.

Finally, we draw attention on the fact that we can surely
use the test for testing 9 B 9 j versus 9 g 9 j . Just apply the
test 9 j times for 9 ?�� versus 9 t?�� , �X? J h�G	G�G(h 9 j . If it is
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successful in one of these 9 j tests, then we say that 9 B 9 j is
successful. The details can easily be worked out by the reader.

IV. PROOFS

A. Proof of Theorem 1

Before proving Theorem 1, we state a technical proposition.
Proposition 1: Let 9 I J and

�
8 be the Yatracos class

associated with 7 8 . Assume that 7 8 is closed for the M = metric
on densities and that

�
8 contains a y -system that generatesx . Then 7 8 is closed for the

q 8 metric on densities, defined
by q 8 l 3�h��opO?�������	��
 � ���� z � 3 } z � � ���� G

Proof: First observe that the fact that

�
8 contains a y -

system generating x forces
q 8 to be a metric on densities

(see, for example, Billingsley [12]). Note also that, according
to Scheffé’s identity (Devroye [38], page 2), for two densities3 and � , q 8ol 3�h��op B J, z|{ 3 } � { (8)

and, whenever 3�h��\P�7 8 ,q 8vl 3�h �vpO? J, z�{ 3 } � { G (9)

Now, let l 3 i p i C = be a Cauchy sequence in 7�8 for the
q 8

metric. Clearly, according to (9), l 3 i p i CE= is also a Cauchy
sequence for the M6= metric. By assumption, 7^8 is closed for
the M= metric on densities. Since the subspace of densities is
closed in the complete space M = , 768 is also complete as a
subspace of densities. Therefore, one deduces that there exists3RP 7 8 such that

� { 3 i } 3 {�� m as
� � f . According to

(8), this implies that
q 8 l 3 i h�3Ep � m as

� � f . Thus the set7 8 is complete, and therefore closed, for the
q 8 metric.

Proof of Theorem 1 The following chain of inequalities is
valid.d j [ rejecting r j b? d j y UXWZY8��� 8 R y ������	��
� ���� z � 3 i�u 8 }�� i l��6p ���� % pen

i l 9op ~
d ������	��
 � R ���� z � 3 i�u 8 R } � i l �6p ���� ~B U ��� 5���	 �SR d j
y ������	��
 � ���� z � 3 ivu 8 }�� i l�� p ���� % pen

i l 9op
d �M����	��
 �SR ���� z � 3 i�u 8 R } � i l��6p ���� ~B U ��� 5���	 � R d j

y ������	��
 � ���� z � 3 ivu 8 }�� i l�� p ���� % pen
i l 9op } J�

d � 8 R l 3Ep ~ h
(since, under r j , 3 P�768 R and by definition of 3 i�u 8 R )

where we recall that� 8 R l 3EpO? ������	��
 � R ���� z � 3 } � i l �6p ���� G

Therefore, we obtain thatd j [ rejecting r j bB U ��� 5�
�	 � R d j
y �M����	��
 � ���� z � 3 i�u 8 } � i l �6p ���� % pen

i l 9op } J�
d � 8 R l 3Ep ~

? 8 R K =U8 � = d j
y �M����	��
 � ���� z � 3 i�u 8 } � i l �6p ���� % pen

i l 9op } J�
d � 8 R l 3Ep ~% U8DC�8 R <>= d j
y ������	��
 � ���� z � 3 i�u 8 } � i l��6p ���� % pen

i l 9op } J�
d � 8 R l 3Ep ~ G (10)

We shall first examine the first of the two terms in the above
expression (10) (which makes sense only if 9�j g J ). For 9*?J h�G	G�G(h 9 j } J , write

������	��
 � ���� z � 3 i�u 8 }�� i l��6p ����
I ������	��
 � ���� z � 3 i�u 8 } z � 3 ���� } ������	��
 � ���� z � 3 }�� i l �6p ����l by the triangle inequality pI U�W Y=���8�E8 R K = WZY! " �$#\� ������	��
 � ���� z � 3 } z � � ���� } � 8 R l 3Epl since

�
8 :

�
8 R p] ? � } � 8 R l 3Ep�G

By assumption,

�
= –and thus each

�
8 –contains a y -system

generating x . Since the 7^8 ’s are closed for the MF= metric on
densities, we know from Proposition 1 that they are also closed
for the

q 8 metric. Therefore, the definition of 9�j (recall that9 S ? 9 j under r j ) implies � g m . Thus we are led to

8 R K =U8 � = d j
y ������	��
 � ���� z � 3 i�u 8 }�� i l��6p ���� % pen

i l 9op } J�
d � 8 R l 3Ep ~

B 8 R K =U8 � = d j
y , � 8 R l 3Ep g � % pen

i l 9op } J� ~
B l 9 j } Jqp d j y � 8 R l 3Ep g � ` ~ for all

�
large enoughB k �$, for all

�
large enough h

where, in the last inequality, we used the finiteness of ( 8 R
together with inequality (5).
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Let us now turn to the analysis of the second term in
expression (10). We haveU8qCE8 R < = d j

y �M����	��
 � ���� z � 3 i�u 8 } � i l �6p ���� % pen
i l 9op } J�

d � 8 R l 3Ep ~B U8qCE8 R < = d j
y

pen
i l 9Tp } J� d � 8 R l 3Ep ~

? U8qCE8 R < = d j
y � 8 R l 3Ep g � 8 % C � ( 8 R� � ~

l by definition of the penalty function for 9aIQ9 j % JDpB , U8DC�8 R < =!W K�X 4jY� �
by inequality (5) �B k �$, l by definition of the � 8 ’s p�G

Putting all pieces together leads to the desired result.

B. Proof of Theorem 2

To prove Theorem 2, we show that
d =�[ accepting r j b goes

to m as
�

grows. We haved = [ accepting r j b? d = y ������	��
 �SR ���� z � 3 i�u 8 R } � i l �6p ����
? U�WZY8qC =

y ������	��
 � ���� z � 3 i�u 8 }�� i l��6p ���� % pen
i l 9op ~6~B d = y ������	��
 � R ���� z � 3 i�u 8 R } � i l �6p ����B ������	��
 � � ���� z � 3 ivu 8 � }�� i l�� p ���� % pen
i l 9TS	p ~B d = y ������	��
�SR ���� z � 3 i�u 8 R } � i l �6p ���� } pen

i l 9TS�p } J�
d � 8 � l 3Ep ~ h

where, in the last inequality, we use the definition of 3 i�u 8 �
and the fact that 3�P 7�8 � .

Again, we distinguish the case 9vj d 9 S from the case 9+j g9 S (recall that 9 S t?V9 j under r = ). In the first situation (which
makes sense only if 9 S g J ), we have, acting as in the proof
of Theorem 1,�M����	��
 � R ���� z � 3 i�u 8 R }�� i l�� p ���� I � } �M����	��
 � R ���� z � 3 }�� i l�� p ����I � } � 8 � l 3Ep�h
where � is a positive constant. Therefore,d = [ accepting r j b B d = y � 8 � l 3Ep g � ` ~
for all

�
large enough (depending on 3 ), and this last term

is bounded above by � = �K =�L X < Q � � W K i  Y L � , according to
Talagrand’s inequality (6), where � = is a positive constant

depending on 9 S . Finally, if 9 j meets the condition 9 j g 9 S
(which makes sense only if 9 j g J ), thend =D[ accepting r`j b B d = y } pen

i l 9 S p } J� d � 8 � l 3Ep ~B d = y � 8 � l 3Ep g J� =�LON ~ h
by definition of the penalty function for 9 ? J h	G�G	G(h�9Ej } J .
We deduce again from Talagrand’s inequality that the last term
is bounded above by � X � K =ML�� < Q � � LON W K�X i 5 � � for all

� IeJ ,
where � X is a positive constant depending on 9 S .
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