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Abstract. In this paper, we discuss efficient exact random variate generation for the Bessel distribution.

The expected time of the algorithm is uniformly bounded over all choices of the parameters, and the

algorithm avoids any computation of Bessel functions or Bessel ratios.
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Introduction

A random variable X on the non-negative integers is said to be a Bessel random variable with

parameters ν > −1 and a > 0 if

pn
def
= P{X = n} =

(a/2)2n+ν

Iν(a)n!Γ(n+ ν + 1)
, n ≥ 0 ,

where

Iν(x) =
∞∑

n=0

(x/2)2n+ν

n!Γ(n+ ν + 1)

is the first type of modified Bessel function. It arises in a natural way in the theory of stochastic

processes (Pitman and Yor, 1982), and is related to many other distributions, including multivariate and

randomized gamma distributions and the von Mises-Fisher distribution (Yuan and Kalbfleisch, 2000).

Yuan and Kalbfleisch (2000) describe a number of properties of this distribution but note that simulating

a Bessel distribution is generally difficult. They suggest a truncated normal approximation when the

mean is large and table sampling when the mean is small. The purpose of this note is to derive a simple

exact algorithm with expected time uniformly bounded over the entire parameter space.

Main properties

In this section we review the main properties that will be useful for us. We define the Bessel

quotient

Rν(x) =
Iν+1(x)

Iν(x)
.

We begin with bounds for the Bessel quotient, as taken from Amos (1974) and Yuan and Kalbfleisch

(2000).

Lemma 1 (inequalities for the bessel quotient). For all ν > −1 and x > 0,

x

ν + 1 +
√
x2 + (ν + 1)2

≤ Rν(x) ≤ x

ν +
√
x2 + ν2

.

For fixed x, Rν(x) is nonincreasing in ν.

Lemma 2 (yuan and kalbfleisch, 2000). If X is Bessel (ν, a), then

µ
def
= E{X} =

aRν(a)

2
,

and

χ2 def
= V{X} = µ+

1

4
a2Rν(a)(Rν+1(a)−Rν(a)) .





Furthermore, the distribution is unimodal and has a unique mode or two modes at consecutive integers,

and one mode is always located at

m
def
=

⌊√
a2 + ν2 − ν

2

⌋
.

Lemma 3. The Bessel distribution is log concave, that is, pn+1/pn is decreasing in n.

Proof. Note that for n ≥ 0, pn+1/pn = (a/2)2/(n+ 1)(n+ ν+ 1), and that this is a decreasing function

of n.

Lemma 4 (special cases). The Bessel (1/2, a) distribution is given by

pn =
(a/2)2n+ν√πa√

2 sinh(a)n!Γ(n+ ν + 1)
, n ≥ 0 .

The Bessel (3/2, a) distribution is given by

pn =
(a/2)2n+ν

√
πa3

√
2(a cosh(a)− sinh(a))n!Γ(n+ ν + 1)

, n ≥ 0 .

Lemma 5. Let pn describe a unimodal distribution on the integers with mode at m, and let σ2 be the

second moment centered at the mode,
∑
n(n−m)2pn. Then, if pm ≤ 1/3, we have

σ2p2
m ≥ 1/648 .

Proof. Assume without loss of generality that m = 0. Define p =
∑
n>0 pn, q =

∑
n<0 pn, r = p0. It is

clear that

σ2 =
∑

n>0

n2pn +
∑

n<0

n2pn ≥ r
∑

s≥n>0

n2 + r
∑

−t≤n<0

n2

where s = bp/rc and t = bq/rc. Thus, because
∑s
n=1 n

2 = s3/3 + s2/2 + s/6, we have

σ2 ≥ r(s3/3 + s2/2 + s/6) + r(t3/3 + t2/2 + t/6) ≥ r(s3/3 + t3/3) .





If p ≥ r, then s ≥ p/2r. If q ≥ r, then t ≥ q/2r. Thus,

σ2 ≥ 1[p≥r]

(
p3

24r2

)
+ 1[q≥r]

(
q3

24r2

)

≥ 1[max(p,q)≥r]
max(p, q)3

24r2

≥ 1[(1−r)/2≥r]
(1− r)3

192r2

≥ 1[r≤1/3]
1

648r2 .

Lemma 6. For all discrete log-concave distributions with mode at m, we have, for all n,

pn ≤ pm min (1, exp (1− pm|n−m|)) .

Furthermore,

pn ≤ pm min (1, exp (1− q|n−m|)) ,

where q = min
(

1
σ
√

648
, 1

3

)
.

Proof. Devroye (1987) derived a general inequality for all discrete log-concave distributions with mode

at m:

pn ≤ pm min (1, exp (1− pm|n−m|)) , all n.

Assume pm ≤ 1/3. Then by Lemma 5, pm ≥ 1/σ
√

648, which shows that pm ≥ q. This concludes the

proof.

Lemma 7. For all log-concave density functions, pmσ ≤
√

28 + 4e.





Proof. Note that, by Lemma 6,

σ2 ≤
∑

k

k2pm min
(

1, e1−pm|k|
)

= 2
∑

k>0

k2pm min
(

1, e1−pmk
)

≤ 2
∑

3/pm>k>0

k2pm + 2
∑

k≥3/pm

k2epme
−pmk

≤ 2pm
(

(1/3)(3/pm)3 + (1/2)(3/pm)2 + (1/6)(3/pm)
)

+ 2
∑

k≥3/pm

k2epme
−pmk

= 18/p2
m + 9/pm + 1 + 2

∫

x≥3/pm−1
x2epme

−pmx dx

≤ 28

p2
m

+
4e

p2
m

∫

t≥0

t2e−t

2
dt .

Thus, p2
mσ

2 ≤ 28 + 4e.

Lemma 8. For the Bessel (ν, a) distribution, if we set A =
√
a2 + ν2, B =

√
a2 + (ν + 1)2, then

σ2 ≤ Q def
=

a2

2(ν +A)
+

(
1 +

a2(1 +B −A)

2(ν +A)(ν + 1 +B)

)2

.

Proof. Note that

σ2 = χ2 + (m− µ)2

= µ+
1

4
a2Rν(a)(Rν+1(a)−Rν(a)) +

(
b
√
a2 + ν2 − ν

2
c − aRν(a)

2

)2

≤ µ+

(√
a2 + ν2 − ν

2
+ θ − a2

2(ν + ζ +
√
a2 + (ν + ζ)2)

)2

def
= I + II ,

by Lemmas 1 and 2, where ζ ∈ {0, 1}, θ ∈ [0, 1]. Consider each term separately. Clearly,

I = µ = aRν(a)/2 ≤ a2

2(ν +
√
a2 + ν2)

.

Also, rewrite II as

II =

(
θ +

a2

2(ν +
√
a2 + ν2)

− a2

2(ν + ζ +
√
a2 + (ν + ζ)2)

)2

.





For ζ = 0, we have II ≤ θ2 ≤ 1. For ζ = 1, by Lemma 1, the last term in the brackets is smaller than

the middle term, so that we may bound as follows:

II ≤

1 +

a2
(

1 +
√
a2 + (ν + 1)2 −

√
a2 + ν2

)

2(ν +
√
a2 + ν2)(ν + 1 +

√
a2 + (ν + 1)2)




2

and combining these bounds proves the Lemma.

Random variate generation

Random variate generators can be designed based upon which functions are available. In our

case, three non-standard functions are involved, Γ (in the computation of pn), Iν(a) (in the computation

of pn), and Rν(a) (in the computation of µ and σ2). The gamma function is in most standard libraries,

so we assume that it is available at unit cost. See pages 489–493 of Devroye (1986) on how to avoid

computing the gamma function in rejection algorithms. So, we will present three rejection algorithms,

one in which all three functions above are available, one in which only Γ and Rν are available, and one

in which only Γ is available.

We begin with rejection based on the bound of Lemma 6. Suppose that pm+k ≤ g(x) for all

k − 1/2 ≤ x ≤ k + 1/2 and all x ∈ R, where g is a nonnegative integrable function (hence, proportional

to a density). Then, a random variate with probability vector {pn} can be generated as follows:

repeat

generate a uniform [0, 1] random variate U.

generate Y with density proportional to g.

X ← round(Y ).

until Ug(Y ) ≤ pm+X.

return m+X.

This algorithm will be used here with

g(x)
def
= min

(
pm , pme

1−pm(|x|−1/2)
)
.

The validity of g as a dominating function follows from Lemma 6. Observe that g is a mixture of a

rectangular function on [−w/pm, w/pm] (of integral 2w where w = 1 + pm/2) and two antisymmetric

exponential tails outside [−w/pm, w/pm] (of integral 2). When g is used in the rejection algorithm, the

rejection constant (or, expected number of iterations before halting) is 2w+ 2 = 4 + pm Devroye, 1987).

We summarize as follows:





w ← 1 + pm/2 (computed once)

repeat

generate iid uniform [0, 1] random variates U,W and a random sign S.

if U ≤ w/(1 + w) then Y ← V w/pm (where V is uniform [0, 1])

else Y ← (w +E)/pm (where E is exponential)

X ← S round(Y ).

until W min(1, ew−pmY ) ≤ pm+X/pm.

return m+X.

Note that pm is needed once, and that pm+X/pm does not require the evaluation of any Bessel

function. Only the Γ function is needed.

The Bessel function Iν(a) can be computed in various ways, but none is efficient. It could be

based on a numerical approximation of this integral, given in Abramowitz and Stegun (1965, p. 376):

Iν(a) =
(a/2)ν√

πΓ(ν + 1/2)

∫ 1

−1
(1− t2)ν−1/2eat dt .

It could also be based on the defining series. However, none is satisfactory. Luckily, the computation

of Iν(a) can be avoided altogether. Based on the last inequality of Lemma 6, we obtain the following

rejection algorithm, with

g(x)
def
= min

(
pm , pme

1−q(|x|−1/2)
)
,

where

q = min

(
1

σ
√

648
,

1

3

)

and σ2 = χ2 + (m − µ)2 is as in Lemma 2. Note that σ and q can be computed using the function Rν

only. That function can be written as a continued fraction (Amos, 1974):

Rν(a) =
1

2(ν + 1)/a+

1

2(ν + 2)/a+

1

2(ν + 3)/a+ · · ·
which is a fast convergent and stable way of computation. Observe that g is a mixture of a rectangular

function on [−(1/2 + 1/q), (1/2 + 1/q)] (of integral pm + 2pm/q) and two antisymmetric exponential tails

outside [−(1/2 + 1/q), (1/2 + 1/q)] (of integral pm/q each). When g is used in the rejection algorithm,

the rejection constant (or, expected number of iterations before halting) is pm + 4pm/q. We summarize

as follows:





q ← min
(

1
σ
√

648
, 1

3

)

repeat

generate iid uniform [0, 1] random variates U,W and a random sign S.

if U ≤ (1 + 2/q)/(1 + 4/q) then Y ← V (1/2 + 1/q) (where V is uniform [0, 1])

else Y ← 1/2 + 1/q +E/q (where E is exponential)

X ← S round(Y ).

until W min(1, e1+q/2−qY ) ≤ pm+X/pm.

return m+X.

That this algorithm takes uniformly bounded time (if Rν is computable at unit cost uniformly

over all parameter values and arguments) follows from the fact that pm + 4pm/q is uniformly bounded.

This in turn follows from the fact that pmσ ≤
√

28 + 4e for all discrete log-concave distributions (Lemma

7).

We finally turn to an algorithm that avoids even Rν . Using Lemma 8, we see that

q ≥ q∗ def
= min

(
1

Q
√

648
,

1

3

)

where Q is as in Lemma 8. The computation of Q involves only addition, multiplication, division, and

square root. It is clear then that we may use rejection with

g(x)
def
= min

(
pm , pme

1−q∗(|x|−1/2)
)
.

The last algorithm shown above, with q replaced by q∗, is valid too. The expected number of iterations

before halting is pm + 4pm/q
∗.

The double Poisson algorithm

Consider ν integer. We may generate independent pairs (X,Y ) of Poisson (a/2) random variates

until for the first time X − Y = ν. At that point, the random variate Y is distributed as a Bessel (ν, a)

random variate (Yuan and Kalbfleisch, 2000, p. 439). We will refer to this method as the double Poisson

algorithm. Poisson variates can be generated in expected time uniformly bounded in the parameters

(see Devroye (1986), Hörmann (1993, 1994), Stadlober (1990), and Ahrens and Dieter (1991)). If we set

ρn = P{X = n} = e−a/2(a/2)n/n!, then the expected number of iterations before halting is

1

P{X − Y = ν} =
1∑∞

n=0 ρnρn+ν
=

1

e−aIν(a)
.

This is only acceptable for moderate values of a and ν. On the other hand, given a fast Poisson source,

the method may be surprisingly efficient in practice as long as ν is of the order of or smaller than
√
a.





Generator for the von Mises distribution

The von Mises distribution has density function

eκ cos θ

2πI0(κ)
, |θ| ≤ π ,

where κ > 0 is a parameter. A uniformly fast algorithm for this distribution was derived by Best and

Fisher (1979), with alternate methods proposed later by Dagpunar (1990), Barabesi (1993) and Wood

(1994). However, Yuan and Kalbfleisch (2000) point out that a von Mises random variable can be

generated in yet another way:

generate X ← Bessel (0, κ).

generate B ← beta (X + 1/2, 1/2).

generate S, a random sign.

generate U uniform on [0, 1].

if U < 1/(1 + exp(−2κ
√
B))

then return θ = S arccos
(√

B
)

else return θ = S arccos
(
−
√
B
)

The only difficulty with this algorithm is that it requires a Bessel and a beta random variate.

Note however that for a ≥ 1/2, a beta (a, 1/2) random variate can be obtained in one line of code as

1−
(

1− U
2

2a−1
1

)
cos2(2πU2)

where U1, U2 are independent uniform [0, 1] random variables (Devroye, 1996, based in part upon a

formula of Ulrich, 1984).

Generator for the randomized gamma distribution

A randomized gamma distribution of the second type has three positive parameters, a, c, s. It is

the distribution of sGa+X+2Y where X is Poisson (c/2s), and Y is Bessel (a− 1, c/2s) and independent

of X , and Gu denotes a gamma random variate with parameter u, i.e., a random variate with density

xu−1e−x/Γ(u) on the positive halfline. The density of the randomized gamma distribution is proportional

to

e−sx
(
Ia−1(

√
cx)
)2

, x > 0

(Yuan and Kalbfleisch, 2000). Clearly, we can generate this in constant average time by using uniformly

fast Poisson, gamma and Bessel generators. Uniformly fast gamma generators are described in Cheng

and Feast (1980) and Devroye (1996) and the references found there. For more recent work, see also the

methods in Ahrens (1995), Leydold (2000), Hörmann and Leydold (2000), or Evans and Swartz (1996).





Generator for the standard squared Bessel bridge process

This process on [0, 1], denoted by ξ(t), conditional on ξ(0) = a, ξ(1) = b, and with parameter

ν > −1, is studied by Pitman and Yor (1982). If we know that ξ(s) = x, then ξ(t) for 0 ≤ s < t ≤ 1

can be obtained as follows (Yuan and Kalbfleisch, 2000): let Y be Bessel (ν,
√
bx/(1− s)), and let Z be

independent of Y and Poisson (λ) where

λ =
1

2(1− s)

(
(1− t)x
(t− s) +

(t− s)b
1− t

)
.

Then return

ξ(t) =
1− s

2(t− s)(1− t)Gν+Y+2Z+1 .

By using recursively finer and finer partitions, one can fill the entire interval [0, 1] with realizations. The

expected cost is linear in the number of points generated provided that uniformly fast gamma and Bessel

generators are available.
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