SIMULATING BESSEL RANDOM VARIABLES

Luc Devroye
School of Computer Science
McGill University
Montreal, Canada H3A 2K6
luc@cs.mcgill.ca
June 13, 2001

Abstract

In this paper, we discuss efficient exact random variate generation for the Bessel distribution. The expected time of the algorithm is uniformly bounded over all choices of the parameters, and the algorithm avoids any computation of Bessel functions or Bessel ratios.

Keywords and phrases. Random variate generation. Bessel distribution. Rejection method. Simulation. Monte Carlo method. Expected time analysis. Probability inequalities.

1991 Mathematics Subject Classifications: Primary 65C10. Secondary 65C05, 11K45, 68U20.

Authors' address: School of Computer Science, McGill University, 3480 University Street, Montreal, Canada H3A 2K6. The authors' research was sponsored by NSERC Grant A3456 and FCAR Grant 90-ER-0291.

Introduction

A random variable X on the non-negative integers is said to be a Bessel random variable with parameters $\nu>-1$ and $a>0$ if

$$
p_{n} \stackrel{\text { def }}{=} \mathrm{P}\{X=n\}=\frac{(a / 2)^{2 n+\nu}}{I_{\nu}(a) n!\Gamma(n+\nu+1)}, n \geq 0
$$

where

$$
I_{\nu}(x)=\sum_{n=0}^{\infty} \frac{(x / 2)^{2 n+\nu}}{n!\Gamma(n+\nu+1)}
$$

is the first type of modified Bessel function. It arises in a natural way in the theory of stochastic processes (Pitman and Yor, 1982), and is related to many other distributions, including multivariate and randomized gamma distributions and the von Mises-Fisher distribution (Yuan and Kalbfleisch, 2000). Yuan and Kalbfleisch (2000) describe a number of properties of this distribution but note that simulating a Bessel distribution is generally difficult. They suggest a truncated normal approximation when the mean is large and table sampling when the mean is small. The purpose of this note is to derive a simple exact algorithm with expected time uniformly bounded over the entire parameter space.

Main properties

In this section we review the main properties that will be useful for us. We define the Bessel quotient

$$
R_{\nu}(x)=\frac{I_{\nu+1}(x)}{I_{\nu}(x)}
$$

We begin with bounds for the Bessel quotient, as taken from Amos (1974) and Yuan and Kalbfleisch (2000).

Lemma 1 (inequalities for the bessel quotient). For all $\nu>-1$ and $x>0$,

$$
\frac{x}{\nu+1+\sqrt{x^{2}+(\nu+1)^{2}}} \leq R_{\nu}(x) \leq \frac{x}{\nu+\sqrt{x^{2}+\nu^{2}}} .
$$

For fixed $x, R_{\nu}(x)$ is nonincreasing in ν.

Lemma 2 (yuan and Kalbfleisch, 2000). If X is $\operatorname{Bessel}(\nu, a)$, then

$$
\mu \stackrel{\text { def }}{=} \mathrm{E}\{X\}=\frac{a R_{\nu}(a)}{2}
$$

and

$$
\chi^{2} \stackrel{\text { def }}{=} \mathrm{V}\{X\}=\mu+\frac{1}{4} a^{2} R_{\nu}(a)\left(R_{\nu+1}(a)-R_{\nu}(a)\right)
$$

Furthermore, the distribution is unimodal and has a unique mode or two modes at consecutive integers, and one mode is always located at

$$
m \stackrel{\text { def }}{=}\left\lfloor\frac{\sqrt{a^{2}+\nu^{2}}-\nu}{2}\right\rfloor
$$

Lemma 3. The Bessel distribution is \log concave, that is, p_{n+1} / p_{n} is decreasing in n.

Proof. Note that for $n \geq 0, p_{n+1} / p_{n}=(a / 2)^{2} /(n+1)(n+\nu+1)$, and that this is a decreasing function of n.

Lemma 4 (Special cases). The Bessel $(1 / 2, a)$ distribution is given by

$$
p_{n}=\frac{(a / 2)^{2 n+\nu} \sqrt{\pi a}}{\sqrt{2} \sinh (a) n!\Gamma(n+\nu+1)}, n \geq 0
$$

The Bessel $(3 / 2, a)$ distribution is given by

$$
p_{n}=\frac{(a / 2)^{2 n+\nu} \sqrt{\pi a^{3}}}{\sqrt{2}(a \cosh (a)-\sinh (a)) n!\Gamma(n+\nu+1)}, n \geq 0 .
$$

Lemma 5. Let p_{n} describe a unimodal distribution on the integers with mode at m, and let σ^{2} be the second moment centered at the mode, $\sum_{n}(n-m)^{2} p_{n}$. Then, if $p_{m} \leq 1 / 3$, we have

$$
\sigma^{2} p_{m}^{2} \geq 1 / 648
$$

Proof. Assume without loss of generality that $m=0$. Define $p=\sum_{n>0} p_{n}, q=\sum_{n<0} p_{n}, r=p_{0}$. It is clear that

$$
\sigma^{2}=\sum_{n>0} n^{2} p_{n}+\sum_{n<0} n^{2} p_{n} \geq r \sum_{s \geq n>0} n^{2}+r \sum_{-t \leq n<0} n^{2}
$$

where $s=\lfloor p / r\rfloor$ and $t=\lfloor q / r\rfloor$. Thus, because $\sum_{n=1}^{s} n^{2}=s^{3} / 3+s^{2} / 2+s / 6$, we have

$$
\sigma^{2} \geq r\left(s^{3} / 3+s^{2} / 2+s / 6\right)+r\left(t^{3} / 3+t^{2} / 2+t / 6\right) \geq r\left(s^{3} / 3+t^{3} / 3\right)
$$

If $p \geq r$, then $s \geq p / 2 r$. If $q \geq r$, then $t \geq q / 2 r$. Thus,

$$
\begin{aligned}
\sigma^{2} & \geq 1_{[p \geq r]}\left(\frac{p^{3}}{24 r^{2}}\right)+1_{[q \geq r]}\left(\frac{q^{3}}{24 r^{2}}\right) \\
& \geq 1_{[\max (p, q) \geq r]} \frac{\max (p, q)^{3}}{24 r^{2}} \\
& \geq 1_{[(1-r) / 2 \geq r]} \frac{(1-r)^{3}}{192 r^{2}} \\
& \geq 1_{[r \leq 1 / 3]} \frac{1}{648 r^{2}} \cdot \square
\end{aligned}
$$

Lemma 6. For all discrete log-concave distributions with mode at m, we have, for all n,

$$
p_{n} \leq p_{m} \min \left(1, \exp \left(1-p_{m}|n-m|\right)\right)
$$

Furthermore,

$$
p_{n} \leq p_{m} \min (1, \exp (1-q|n-m|))
$$

where $q=\min \left(\frac{1}{\sigma \sqrt{648}}, \frac{1}{3}\right)$.

Proof. Devroye (1987) derived a general inequality for all discrete log-concave distributions with mode at m :

$$
p_{n} \leq p_{m} \min \left(1, \exp \left(1-p_{m}|n-m|\right)\right), \text { all } n
$$

Assume $p_{m} \leq 1 / 3$. Then by Lemma $5, p_{m} \geq 1 / \sigma \sqrt{648}$, which shows that $p_{m} \geq q$. This concludes the proof.

Lemma 7. For all log-concave density functions, $p_{m} \sigma \leq \sqrt{28+4 e}$.

Proof. Note that, by Lemma 6,

$$
\begin{aligned}
\sigma^{2} & \leq \sum_{k} k^{2} p_{m} \min \left(1, e^{1-p_{m}|k|}\right) \\
& =2 \sum_{k>0} k^{2} p_{m} \min \left(1, e^{1-p_{m} k}\right) \\
& \leq 2 \sum_{3 / p_{m}>k>0} k^{2} p_{m}+2 \sum_{k \geq 3 / p_{m}} k^{2} e p_{m} e^{-p_{m} k} \\
& \leq 2 p_{m}\left((1 / 3)\left(3 / p_{m}\right)^{3}+(1 / 2)\left(3 / p_{m}\right)^{2}+(1 / 6)\left(3 / p_{m}\right)\right)+2 \sum_{k \geq 3 / p_{m}} k^{2} e p_{m} e^{-p_{m} k} \\
& =18 / p_{m}^{2}+9 / p_{m}+1+2 \int_{x \geq 3 / p_{m}-1} x^{2} e p_{m} e^{-p_{m} x} d x \\
& \leq \frac{28}{p_{m}^{2}}+\frac{4 e}{p_{m}^{2}} \int_{t \geq 0} \frac{t^{2} e^{-t}}{2} d t
\end{aligned}
$$

Thus, $p_{m}^{2} \sigma^{2} \leq 28+4 e$.

Lemma 8. For the $\operatorname{Bessel}(\nu, a)$ distribution, if we set $A=\sqrt{a^{2}+\nu^{2}}, B=\sqrt{a^{2}+(\nu+1)^{2}}$, then

$$
\sigma^{2} \leq Q \stackrel{\text { def }}{=} \frac{a^{2}}{2(\nu+A)}+\left(1+\frac{a^{2}(1+B-A)}{2(\nu+A)(\nu+1+B)}\right)^{2}
$$

Proof. Note that

$$
\begin{aligned}
\sigma^{2} & =\chi^{2}+(m-\mu)^{2} \\
& =\mu+\frac{1}{4} a^{2} R_{\nu}(a)\left(R_{\nu+1}(a)-R_{\nu}(a)\right)+\left(\left\lfloor\frac{\sqrt{a^{2}+\nu^{2}}-\nu}{2}\right\rfloor-\frac{a R_{\nu}(a)}{2}\right)^{2} \\
& \leq \mu+\left(\frac{\sqrt{a^{2}+\nu^{2}}-\nu}{2}+\theta-\frac{a^{2}}{2\left(\nu+\zeta+\sqrt{a^{2}+(\nu+\zeta)^{2}}\right)}\right)^{2} \\
& \stackrel{\text { def }}{=} I+I I
\end{aligned}
$$

by Lemmas 1 and 2 , where $\zeta \in\{0,1\}, \theta \in[0,1]$. Consider each term separately. Clearly,

$$
I=\mu=a R_{\nu}(a) / 2 \leq \frac{a^{2}}{2\left(\nu+\sqrt{a^{2}+\nu^{2}}\right)} .
$$

Also, rewrite $I I$ as

$$
I I=\left(\theta+\frac{a^{2}}{2\left(\nu+\sqrt{a^{2}+\nu^{2}}\right)}-\frac{a^{2}}{2\left(\nu+\zeta+\sqrt{a^{2}+(\nu+\zeta)^{2}}\right)}\right)^{2} .
$$

For $\zeta=0$, we have $I I \leq \theta^{2} \leq 1$. For $\zeta=1$, by Lemma 1 , the last term in the brackets is smaller than the middle term, so that we may bound as follows:

$$
I I \leq\left(1+\frac{a^{2}\left(1+\sqrt{a^{2}+(\nu+1)^{2}}-\sqrt{a^{2}+\nu^{2}}\right)}{2\left(\nu+\sqrt{a^{2}+\nu^{2}}\right)\left(\nu+1+\sqrt{a^{2}+(\nu+1)^{2}}\right)}\right)^{2}
$$

and combining these bounds proves the Lemma.

Random variate generation

Random variate generators can be designed based upon which functions are available. In our case, three non-standard functions are involved, Γ (in the computation of p_{n}), $I_{\nu}(a)$ (in the computation of p_{n}), and $R_{\nu}(a)$ (in the computation of μ and σ^{2}). The gamma function is in most standard libraries, so we assume that it is available at unit cost. See pages 489-493 of Devroye (1986) on how to avoid computing the gamma function in rejection algorithms. So, we will present three rejection algorithms, one in which all three functions above are available, one in which only Γ and R_{ν} are available, and one in which only Γ is available.

We begin with rejection based on the bound of Lemma 6. Suppose that $p_{m+k} \leq g(x)$ for all $k-1 / 2 \leq x \leq k+1 / 2$ and all $x \in \mathrm{R}$, where g is a nonnegative integrable function (hence, proportional to a density). Then, a random variate with probability vector $\left\{p_{n}\right\}$ can be generated as follows:

```
repeat
    generate a uniform [0,1] random variate U.
    generate Y with density proportional to g.
    X\leftarrow\operatorname{round}(Y).
until }Ug(Y)\leq\mp@subsup{p}{m+X}{}
return m+X.
```

This algorithm will be used here with

$$
g(x) \stackrel{\text { def }}{=} \min \left(p_{m}, p_{m} e^{1-p_{m}(|x|-1 / 2)}\right) .
$$

The validity of g as a dominating function follows from Lemma 6. Observe that g is a mixture of a rectangular function on $\left[-w / p_{m}, w / p_{m}\right]$ (of integral $2 w$ where $w=1+p_{m} / 2$) and two antisymmetric exponential tails outside $\left[-w / p_{m}, w / p_{m}\right]$ (of integral 2). When g is used in the rejection algorithm, the rejection constant (or, expected number of iterations before halting) is $2 w+2=4+p_{m}$ Devroye, 1987). We summarize as follows:

```
w\leftarrow1+\mp@subsup{p}{m}{}/2 (computed once)
repeat
    generate iid uniform [0,1] random variates U,W and a random sign S.
    if U\leqw/(1+w) then }Y\leftarrowVw/\mp@subsup{p}{m}{}\mathrm{ (where }V\mathrm{ is uniform [0,1])
        else }Y\leftarrow(w+E)/\mp@subsup{p}{m}{}\mathrm{ (where E is exponential)
    X\leftarrowS round(Y).
until W min}(1,\mp@subsup{e}{}{w-pmY})\leq\mp@subsup{p}{m+X}{}/\mp@subsup{p}{m}{}
return m+X.
```

Note that p_{m} is needed once, and that p_{m+X} / p_{m} does not require the evaluation of any Bessel function. Only the Γ function is needed.

The Bessel function $I_{\nu}(a)$ can be computed in various ways, but none is efficient. It could be based on a numerical approximation of this integral, given in Abramowitz and Stegun (1965, p. 376):

$$
I_{\nu}(a)=\frac{(a / 2)^{\nu}}{\sqrt{\pi} \Gamma(\nu+1 / 2)} \int_{-1}^{1}\left(1-t^{2}\right)^{\nu-1 / 2} e^{a t} d t
$$

It could also be based on the defining series. However, none is satisfactory. Luckily, the computation of $I_{\nu}(a)$ can be avoided altogether. Based on the last inequality of Lemma 6, we obtain the following rejection algorithm, with

$$
g(x) \stackrel{\text { def }}{=} \min \left(p_{m}, p_{m} e^{1-q(|x|-1 / 2)}\right)
$$

where

$$
q=\min \left(\frac{1}{\sigma \sqrt{648}}, \frac{1}{3}\right)
$$

and $\sigma^{2}=\chi^{2}+(m-\mu)^{2}$ is as in Lemma 2. Note that σ and q can be computed using the function R_{ν} only. That function can be written as a continued fraction (Amos, 1974):

$$
R_{\nu}(a)=\frac{1}{2(\nu+1) / a+} \frac{1}{2(\nu+2) / a+} \frac{1}{2(\nu+3) / a+\cdots}
$$

which is a fast convergent and stable way of computation. Observe that g is a mixture of a rectangular function on $[-(1 / 2+1 / q),(1 / 2+1 / q)]$ (of integral $p_{m}+2 p_{m} / q$) and two antisymmetric exponential tails outside $[-(1 / 2+1 / q),(1 / 2+1 / q)]$ (of integral p_{m} / q each). When g is used in the rejection algorithm, the rejection constant (or, expected number of iterations before halting) is $p_{m}+4 p_{m} / q$. We summarize as follows:

$$
\begin{aligned}
& q \leftarrow \min \left(\frac{1}{\sigma \sqrt{648}}, \frac{1}{3}\right) \\
& \text { repeat } \\
& \quad \text { generate iid uniform }[0,1] \text { random variates } U, W \text { and a random sign } S . \\
& \quad \text { if } U \leq(1+2 / q) /(1+4 / q) \text { then } Y \leftarrow V(1 / 2+1 / q) \text { (where } V \text { is uniform }[0,1] \text {) } \\
& \quad \text { else } Y \leftarrow 1 / 2+1 / q+E / q \text { (where } E \text { is exponential) } \\
& \text { until } W \min \left(1, e^{1+q / 2-q Y}\right) \leq p_{m+X} / p_{m} . \\
& \text { return } m+X .
\end{aligned}
$$

That this algorithm takes uniformly bounded time (if R_{ν} is computable at unit cost uniformly over all parameter values and arguments) follows from the fact that $p_{m}+4 p_{m} / q$ is uniformly bounded. This in turn follows from the fact that $p_{m} \sigma \leq \sqrt{28+4 e}$ for all discrete log-concave distributions (Lemma 7).

We finally turn to an algorithm that avoids even R_{ν}. Using Lemma 8, we see that

$$
q \geq q^{*} \stackrel{\text { def }}{=} \min \left(\frac{1}{Q \sqrt{648}}, \frac{1}{3}\right)
$$

where Q is as in Lemma 8. The computation of Q involves only addition, multiplication, division, and square root. It is clear then that we may use rejection with

$$
g(x) \stackrel{\text { def }}{=} \min \left(p_{m}, p_{m} e^{1-q^{*}(|x|-1 / 2)}\right)
$$

The last algorithm shown above, with q replaced by q^{*}, is valid too. The expected number of iterations before halting is $p_{m}+4 p_{m} / q^{*}$.

The double Poisson algorithm

Consider ν integer. We may generate independent pairs (X, Y) of Poisson ($a / 2$) random variates until for the first time $X-Y=\nu$. At that point, the random variate Y is distributed as a Bessel (ν, a) random variate (Yuan and Kalbfleisch, 2000, p. 439). We will refer to this method as the double Poisson algorithm. Poisson variates can be generated in expected time uniformly bounded in the parameters (see Devroye (1986), Hörmann (1993, 1994), Stadlober (1990), and Ahrens and Dieter (1991)). If we set $\rho_{n}=\mathrm{P}\{X=n\}=e^{-a / 2}(a / 2)^{n} / n!$, then the expected number of iterations before halting is

$$
\frac{1}{\mathrm{P}\{X-Y=\nu\}}=\frac{1}{\sum_{n=0}^{\infty} \rho_{n} \rho_{n+\nu}}=\frac{1}{e^{-a} I_{\nu}(a)}
$$

This is only acceptable for moderate values of a and ν. On the other hand, given a fast Poisson source, the method may be surprisingly efficient in practice as long as ν is of the order of or smaller than \sqrt{a}.

Generator for the von Mises distribution

The von Mises distribution has density function

$$
\frac{e^{\kappa \cos \theta}}{2 \pi I_{0}(\kappa)},|\theta| \leq \pi
$$

where $\kappa>0$ is a parameter. A uniformly fast algorithm for this distribution was derived by Best and Fisher (1979), with alternate methods proposed later by Dagpunar (1990), Barabesi (1993) and Wood (1994). However, Yuan and Kalbfleisch (2000) point out that a von Mises random variable can be generated in yet another way:

```
generate }X\leftarrow\operatorname{Bessel}(0,\kappa)
generate }B\leftarrow\mathrm{ beta ( }X+1/2,1/2)\mathrm{ .
generate S, a random sign.
generate U uniform on [0,1].
if }U<1/(1+\operatorname{exp}(-2\kappa\sqrt{}{B})
    then return }0=S\operatorname{arccos}(\sqrt{}{B}
    else return }0=S\operatorname{arccos}(-\sqrt{}{B}
```

The only difficulty with this algorithm is that it requires a Bessel and a beta random variate. Note however that for $a \geq 1 / 2$, a beta ($a, 1 / 2$) random variate can be obtained in one line of code as

$$
1-\left(1-U_{1}^{\frac{2}{2 a-1}}\right) \cos ^{2}\left(2 \pi U_{2}\right)
$$

where U_{1}, U_{2} are independent uniform $[0,1]$ random variables (Devroye, 1996, based in part upon a formula of Ulrich, 1984).

Generator for the randomized gamma distribution

A randomized gamma distribution of the second type has three positive parameters, a, c, s. It is the distribution of $s G_{a+X+2 Y}$ where X is Poisson $(c / 2 s)$, and Y is Bessel $(a-1, c / 2 s)$ and independent of X, and G_{u} denotes a gamma random variate with parameter u, i.e., a random variate with density $x^{u-1} e^{-x} / \Gamma(u)$ on the positive halfline. The density of the randomized gamma distribution is proportional to

$$
e^{-s x}\left(I_{a-1}(\sqrt{c x})\right)^{2}, x>0
$$

(Yuan and Kalbfleisch, 2000). Clearly, we can generate this in constant average time by using uniformly fast Poisson, gamma and Bessel generators. Uniformly fast gamma generators are described in Cheng and Feast (1980) and Devroye (1996) and the references found there. For more recent work, see also the methods in Ahrens (1995), Leydold (2000), Hörmann and Leydold (2000), or Evans and Swartz (1996).

Generator for the standard squared Bessel bridge process

This process on $[0,1]$, denoted by $\xi(t)$, conditional on $\xi(0)=a, \xi(1)=b$, and with parameter $\nu>-1$, is studied by Pitman and Yor (1982). If we know that $\xi(s)=x$, then $\xi(t)$ for $0 \leq s<t \leq 1$ can be obtained as follows (Yuan and Kalbfleisch, 2000): let Y be Bessel $(\nu, \sqrt{b x} /(1-s))$, and let Z be independent of Y and Poisson (λ) where

$$
\lambda=\frac{1}{2(1-s)}\left(\frac{(1-t) x}{(t-s)}+\frac{(t-s) b}{1-t}\right)
$$

Then return

$$
\xi(t)=\frac{1-s}{2(t-s)(1-t)} G_{\nu+Y+2 Z+1}
$$

By using recursively finer and finer partitions, one can fill the entire interval $[0,1]$ with realizations. The expected cost is linear in the number of points generated provided that uniformly fast gamma and Bessel generators are available.

Acknowledgment

I would like to thank the eagle-eyed referee.

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Tables, Dover Publications, New York, N.Y., 1970.
J. H. Ahrens and U. Dieter, "A convenient sampling method with bounded computation times for Poisson distributions," in: The Frontiers of Statistical Computation, Simulation and Modeling, (edited by P. R. Nelson, E. J. Dudewicz, A. Öztürk, and E. C. van der Meulen), pp. 137-149, American Sciences Press, Columbus, OH, 1991.
J. H. Ahrens, "A one-table method for sampling from continuous and discrete distributions," Computing, vol. 54, pp. 127-146, 1995.
D. E. Amos, "Computation of modified Bessel functions and their ratios," Mathematics of Computation, vol. 28, pp. 239-251, 1974.
L. Barabesi, "Random Variate Generation by Using the Ratio-of-Uniforms Method," vol. 1, Serie Ricerca-Monografie, Università degli Studi di Siena Dipartimento di Metodi Quantitativi Collana di Pubblicazioni, 1993.
D. J. Best and N. I. Fisher, "Efficient simulation of the von Mises distribution," Applied Statistics, vol. 28, pp. 152-157, 1979.
R. C. H. Cheng and G. M. Feast, "Gamma variate generators with increased shape parameter range," Communications of the ACM, vol. 23, pp. 389-393, 1980.
J. S. Dagpunar, "Sampling from the von Mises distribution via a comparison of random numbers," Journal of Applied Statistics, vol. 17, pp. 165-168, 1990.
L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986b.
L. Devroye, "A simple generator for discrete log-concave distributions," Computing, vol. 39, pp. 8791, 1987.
L. Devroye, "Random variate generation in one line of code," in: 1996 Winter Simulation Conference Proceedings, (edited by J. M. Charnes, D. J. Morrice, D. T. Brunner and J. J. Swain), pp. 265272, ACM, San Diego, CA, 1996.
M. Evans and T. Swartz, "Random variable generation using concavity properties of transformed densities," Journal of Computational and Graphical Statistics, vol. 7, pp. 514-528, 1996.
W. Hörmann, "The transformed rejection method for generating Poisson random variables," Insurance: Mathematics and Economics, vol. 12, pp. 39-45, 1993.
W. Hörmann, "A universal generator for discrete log-concave distributions," Computing, vol. 52, pp. 8996, 1994.
W. Hörmann and G. Derflinger, "An automatic generator for a large class of unimodal discrete distributions," in: ESM 97, (edited by A. R. Kaylan and A. Lehmann), pp. 139-144, 1997.
W. Hörmann and J. Leydold, "Automatic random variate generation for simulation input," in: Proceedings of the 2000 Winter Simulation Conference, (edited by J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick), pp. 675-682, IEEE Press, Pistacaway, NJ, 2000.
J. Leydold, "Automatic sampling with the ratio-of-uniforms method," ACM Transactions on Mathematical Software, 2000. To appear.
J. Pitman and M. Yor, "A decomposition of Bessel bridges," Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 59, pp. 425-457, 1982.
E. Stadlober, "The ratio of uniforms approach for generating discrete random variates," Journal of Computational and Applied Mathematics, vol. 31, pp. 181-189, 1990.
G. Ulrich, "Computer generation of distributions on the m-sphere," Applied Statistics, vol. 33, pp. 158163, 1984.
A. T. A. Wood, "Simulation of the von Mises-Fisher distribution," Communications in Statistics, Series Simulation, vol. 23, pp. 157-164, 1994.
L. Yuan and J. D. Kalbfleisch, "On the Bessel distribution and related problems," Annals of the Institute of Statistical Mathematics, vol. 52, pp. 438-447, 2000.

