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Summary. Let f ,  be a histogram estimate constructed from a sample of i.i.d. real-valued random variables 
with common continuously differentiable density f .  In this paper we prove a central limit theorem for the L, 
error il f,, - f I I .  We determine a positive constant 0 < c2 < 1 - 2/n in order that, under the usual conditions 
of consistency, the law of 

Jh / I f n  -f I1 - E i1.f" - f l i  )/a 
be asymptotically Gaussian. 1 '(0,l). 
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I. INTRODUCTION 

Although density estimates have been extensively studied during the last thirty years, 
many results were only obtained under superfluous assumptions. For example, this is 
the case in asymptotic normality studies for the global measures of deviation. Either the 
error between the estimate f ,  and its expectation E f ,  is considered instead of the real 
error f ,  - f or strong assumptions are made on the density j.. In this paper we consider 
the asymptotic behavior of the L, error / I f ,  - f 1 1  where . f ,  is an histogram constructed 
from a sample of i.i.d. real-valued random variables with common continuously 
differentiable density . f .  Results about histograms still present practical interest, as 
histograms are more adapted to on-line high data speed signal processing. Also, averaging 
histograms circumvents the problem of their variability (Scott 1985, Hardle 1991). 

Let N* denote the set of positive integers and let (X i ) , , ,  be a sequence of i.i.d. real 
valued random variables with common unknown density f with respect to the 
Lebesgue measure A on R. We denote by p the measure with density f. For each n e  N*, 
let h, be a positive number and let ,Yn be a partition of R into intervals A,, j eN* ,  with 
equal measure h,: 

VneN*,  VjeN*,  I (A, )=h, .  
For nE N*, let f ,  be the standard histogram estimate o f f  constructed from X , ,  . . . , X ,  
and the partition .Y,, that is 
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330 A. BERLINET rr a/ .  

where the empirical measure p, is defined, for any set A in .J,, the Bore1 a-algebra of [W, 
by 

We show that the L, error //,f, -,f / /  = 1, (,f, -,f 1, suitably standardized, is asymptoti- 
cally Gaussian. I ( 0 , l )  under the usual conditions ofconsistency on (h , ) .  Our technique 
relies on a Poissonization argument originating from the fact that a multinomial 
distribution can be written as a conditional distribution of a set of independent Poisson 
random variables given their sum. From this, Bartlett's idea of partial inversion for 
obtaining characteristic functions of conditional distributions can be applied. Using 
this idea Beirlant, Gyorfi and Lugosi ( 1  994) proved the following results: if nh, 4 K and 
h,-+O as n + a ,  then 

where a: = 1 - 2/77. Beirlant and Mason (1992) extended this to the L, norm 
D,(p) = !! (l)~'p!~,, - F.T,,) !!ij where rr), is a weight function and r,, is either a histogram or 
a kernel estimate or a regressogram. Note that these results are limit laws on (,f;, - E f,) 
and not on ( f ,  -1'). Obviously this limit law can be extended to the L,  error if the 
variation term I j  f ,  - Ef, / /  dominates the bias j /  E f ,  - f I / .  If  one wants to have small 
expected L, error then the variation and the bias terms should be of the same order, so 
in this case the asymptotic normality does not follow. Csorgo and Horvath (1988) and 
Horvhth (1991) proved for the kernel estimate that if J' belongs to a subset of twice 
differentiable densities and the variation term dominates the bias, then the asymptotics 
of 1 1  J, - fI/is independent off. Under the additional conditions, they obtained a limit 
law when the variation term and the bias term are of the same order. Devroye (1988, 
1991) proved that i f f ,  is the histogram or the kernel estimate, then 

and 

for all f ,  n, h,, r; and nonnegative kernel. (2), ( 3 )  and (4) suggested the conjecture that we 
have asymptotic normality with asymptotic variance less than 1 and maybe indepen- 
dent of the density. In fact the asymptotic variance depends on the smoothness off, but 
it is smaller than the asymptotic variance of the variation term. According to this 
i l  f.-.f ii - Ell f, - f I1 is of order n-'I2. This should be compared to the rate of 
convergence of E I ,fit - f '  11,  which is at least of order JI - ""or differentiable f ;  and it can 
be achieved for h, = cn- , I 3 .  The best choice of c is 

(Devroye and Gyorfi (1985, section 5.6)). The limit law in this paper shows that 
essentially all information about /If, - f II is contained in E / I  f, - f /I. 
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ASYMPTOTIC NORMALITY OF Ll-ERROR 

11. MAIN RESULTS 

Introduce 

and 

V ( x ) =  Varf+,(lNlf, 

where x > 0 and N is a standard normal . t'(0,l) random variable. 

Theorem 1. I f f  is continuously dIfferentiahlr on R and i f  hn = c n  ' I 3 ,  then 

where 
c 3 , 2 ~ ~ - . ~  

a2  = SY(--) f dj.. 
2 Jf '  

Note that we do not have any tail condition: the support of f can be unbounded. 
Lemma 1 below, giving the behavior of the function V, ~mplies that a2 d 1 - 2/71, 
and a2 -t 1 - 2/71 as c J 0 .  When c is large, the bias dominates the variation, and a2 varies 
like l / c3  (Lemma l(c)). Thus if we cannot set c = c,,,, then c > c,,, should be preferred 
uvei c < L,,,,~. 

111. LEMMAS AND PROOFS 

Lemma 1. 

(a) V is monotone decreasing and has infinitely many derivatives. 
(b) For a,  small enough, V is concave on 10, a, 1. As r 10, 

(c)  For a, large enough, V is convex on [a,, + a[. For 1 < x, 

1 
lim a2 V ( a )  = -. 
rT r 2 

Proof: (a) For b > 0 we define the functions z ( x )  = $,,,,(x) and z l ( x )  = (r?/dh)(z(x)) and 
prove that for any positive random variable X with finite variance, Var { z ( X ) )  is a non 
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decreasing function of h. This clearly implies that V is monotone decreasing. We have, if 
all derivatives are with respect to h. 

(Var [ z ( X ) ) )  = (E  jz2(X)]) - (EL (z(X)))' 

Let us explain every step in this chain. The first equality is obvious. In the second one, 
we only use the fact that with g(x, h) = z2(x) one has 

The interchange of derivative and expectation is only allowed under certain circum- 
stances: fix h > 0 and consider 

Jl im 4(X> h + u) - d X .  h ) l  
I , , lo  u J 

At every x > 0, the limit of (g(x, h + u) - g(x, h))/u exists and equals g'(x) = 2z(x)z'(x). 
Also, as zl(x) = - (1 - bzx2)'/(2bz), it is easy to see that the family 
((Q(x, h + u) - g(x, h))/u) is uniformly integrable in u over a small interval near zero, 
provided that E XZ < m. Thus, by uniform integrability - the dominated convergence 
theoremj reallyj see Chung? 1974, p.97-? we note that 

The third equation in the original chain follows by taking g - z. For fixed h > 0, both 
z(x) and zl(x) are increasing in x. Thus, zl(X) and z(X) are positively associated (Tong, 
1980). Hence, 

thus explaining the last step. Now, if $ denotes the standard normal density then (b) 
and the second part of statement (a) follow from the expression: 
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A S Y M P T U I ' I C  N O R M A L I T Y  O F  L , - E R R O R  

(c) is a consequence of 

To prove Theorem 1, we use Poissonization (for L,  norms, this was also used by 
Horvhth (1991)). For any positive integer i, let N i  be a Poisson (i) random variable 
independent of the sequence Define, for  EN* 

# { i I X i!A , 1  d i d  N,) 
PN,,(A) = n 

and 

Assume that the {A",] are ordered according to non-decreasing distances of their 
centers from the orig~n. For y ~ ( 0 , l )  choose the integer nz, such that 

Roughly speaking, S,,, = uy:! A,/ is approximately an interval centered at the origin 
with 1 - y - p(SYn). Obviously nh, + cr-l implies that m,l/n - 0. Moreover, 

as n +  a. Also define S., as the interval centered at the origin with the property 
1 - y = AS),) .  

Beirlant, Gyorfi and Lugosi (1994) allow one to extend central limit theorems for 
Poissonized functions to the original ones (see Lemma 2). To prove our theorem with 
a centeringconstant equal to E / I  I,,, - J' 11 ,  we have to choose suitable functions gnj and 
to verify the conditions of this Lemma. Then we will get the final result by making use of 
Lemma I0 which implies that 

Lemma 2. L6.t y,,, hr rrul measuruhle functions w t h  

Assume rhur for ull t ,  u und y 
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334 A BERLINET el (11 

with p: = j ,  h(x)dx ,  where h ( x )  is some meusuruhlcfunc~tion such thut pi = j, h(u)dx < x. 
Then 

Lemma 3. Le t f  sutisfy the condition of Theorem 1 .  I f  u is the center of A E . ~ , , ,  put 

and 

Consider the Taylor expansion of ,j; f'(x) =,f (a)  + f '(u)(.Y - a) + o(h,). Then, as 
1, f = 1, E j, we see that E f,(u) = f ( u )  + o(h,). Thus, 

and therefore, 
m, 

E{I:) < n o(h:) = nm,o(hf) d n(diam(S;,) + h,)o( l /n)  = o(1).  
,= 1 

Lemma 4. Let q be ufirncrion ~ u c h  rhur for A E ~ , ,  jS, E f ,  = j ,  f =  jAg .  Then 
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ASYMPTOTIC NORMALITY OF L,-ERROR 

Proof. 

and 

Thus, 

Remark 2. Lemma 4 holds when fNn is replaced by f,, as well. Taking f = g, this means 
that for the histogram, the L, error is larger than the variation term. 

Lemma 5. Let g be a function such that for A E ~ , ,  f ,  = j A  f = j A  g ,  and let g he linear 
on A with slope C.  Then 

IA lg - jNnl  = * f l ( ~ , u N n ~ ~ ) -  , ~ ( A ) I ) -  

where 

we have 
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Proqf. Let A = [ a h ] ,  h, = h - u,  and g ( s )  = Cx + D, X E A .  Because of the condition on 
g,  E f,(u) = C ( u  + h)/2 + D. Taking Into account 

and Lemma 4, for p,\,,,(A) > / [ ( A )  we have 

For  p T n ( A )  6 p ( A )  we obtain a similar result. 

Lemma 6. Let H :  [W + -+ [c, d) ,  0 6 c < d 6 + x be an increasing, differentiable and 
incertible.functio~z such that 

Let (,AM + iL) and N be respectively a Poissorz (i) and a normal, I .(0,1) random turiahle. 
Then there is a constant C ,  such that 

and 

d /- 

Proof. Without loss of generality we may assume that i > 0 is integer, thus 

where M, , . . . , M, are i.i.d. Poisson (1) .  Therefore, by the Berry-Esseen inequality, there 
is a constant C ,  such that for u![W 
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A S Y M P T O T I C  N O R M A L I T Y  O F  L , - E R R O R  337 

Thus, 

The proof of the second statement is analogous. 

Lemma 8. Let g,, he defined as in Lemma 3 .  Then 

Proof: Let AM + 2 be Poisson (A), then first we show that there is a universal 
constan1 C, such that 
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Thus we get the result by applying Lemma 6 w ~ t h  H = $, and H = $:. Therefore 
denoting by a,, the center of A,,, and setting 

Y l  A \ -  
A, .  . I f '(q,J ~ ' i h :  

.I I - ip ' 
2 d  i4A"] )  

we have 
m, l a  I - 1 - p(A.;IV 

I C J s , ,  ' ,= ,  

Since 

we get 

Lemma 9. (Beirlan~, Muson (1994)): I/'& M + E. is Poisson (i) then for euch r 3 1 there 
is K ,  > 0 such that 

E { I J ~ M I ~ ~ )  < K,O:+E.I ,,, ,,I. 
Lemma 10. I f s u p j  p ( A n j )  < 1/4, then 

E I.&,-f I -E  I S + 2n exp [ - n( 1 - log 2)/2]. 

Proof. By f k , n  we denote the following density estimate: 

where An(x )  is the set of 9, containing u. 

D
ow

nl
oa

de
d 

by
 [M

cG
ill

 U
ni

ve
rs

ity
 L

ib
ra

ry
] a

t 0
9:

08
 2

2 
M

ar
ch

 2
01

3 



ASYMPTOTIC NORMALITY OF L,-ERROR 339 

Then f,,,(.x) =,f,(x) and .f.Nn,,(x) =,fN,(x). We begin with simple discrete sum calculus. 
Introduce the notation J, = J 1 1 ,,,, -J  1 .  and AJ, = J, , , - J,. Iterating this. we have 
A2Jj = J i+2  - 2 J j + ,  + Jj. I t  is trivial to see that 

iA2Jii  < 2,';; 

for all j. We show that 

when i 2 4 2  and sup, p(Anj) < 114. Fix i 2 1112. If K and L are the (random) indices j of 
the intervals in {A,,) to which X, , , and X, , , belong, and if P, denotes the number of 
points among X ,,.. ., Xi that belong to Anj .  then 

where we made neavy use of symmetry. Also, 
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340 A.  BERLINET et ul 

where in the last inequality we used that for a binomial (n ,p )  random variable B, with 
p d 114, we have 

which follows from standard upper bounds (see, e g ,  Mitrinovii., 1970, p. 197). Thus for 
i 2 n/2 and supj ,u(Anj) < li4, 

It is easy to see that 

In the above equations for J,, we replace k by the Poisson ( n )  random variable N ,  and 
take expectations. The coefficient of AJ, drops out. Thus, 

Therefore, 

N -  1 I i n- 1 

I n / 2 ~ ~ , ,  1 ( i - N S 1 )  + E  I,,,,, 1 ( i - N + l ) -  
i = N - 1  i = N - 1  
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ASYMPTOTIC NORMALITY OF L,-ERROR 

from which, using Lemma 10, Theorem 1 follows. Now, check the conditions of Lemma 
2. Choose the functions g,, as 

Introduce 

for which a central limit result holds as we will show. Note that 

By Lemmas 3 and 8 

"" lr l ~ N ~ ( ' n j )  f . l ] + [  v ( c 3 ' 2 1 f ' l ) f  n C Var 
; = I  (Jn,,l h,, ' 1 )  J s  \ 2 v / f ,  

T o  finalize the asymptotics for Var(S,) it remains to show that 

Because of the proof of Lemma 3 it suffices to show that 

Then 

Applying Lemma 6 with H = $ ,,,,,,, we get 
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342 A. BERLINET rt ul. 

and similarly for M i  and N . As E ($ ,,,4,,,, ( I  N I ) N )  = 0 we get 

I f  - n n j  - n  

f. and the sum in t'ne right hand side iends to l, ,/ f. This compietes t'ne caicuiation of the 
asymptotic variance. To finish the proof of 

we apply Lyapunov's central limit theorem, and note that we only need to show that 

and 

are both ~ ( n - ~ : ~ ) .  By mvoking the c, inequality, this would follow from 

and 

This last statement is shown in Beirlant, Gyorfi, Lugosi (1994). In order to show the 
former, let F , ,  be the distribution functior? of I Mrv,,A,,I. Then 
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ASYMPTOTIC NORMALITY OF L,-ERROR 

By Lemma 9, 

Thus, 

and we get the first limit relation in Lyapunov's condition. 
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