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Abstract

We discuss Cherno�-type large deviation results for the total variation, the I-divergence errors,
and the �2-divergence errors on partitions. In contrast to the total variation and the I-divergence,
the �2-divergence has an unconventional large deviation rate. Applications to Bahadur e�ciencies
of goodness-of-�t tests based on these divergence measures for multivariate observations are
given. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the problem of testing an unknown probability density function. The
test statistics are derived from dissimilarity measures of probability measures, like
�-divergences introduced by Csisz�ar (1967). The three most important �-divergences
in mathematical statistics and information theory are the total variation distance, the
information divergence and the �2-divergence. For recent accounts of the theory of
�-divergences, see Liese and Vajda (1987) and Vajda (1989).
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If � and � are probability measures on Rd (d¿1), then the total variation distance
between � and � is de�ned by

V (�; �) = sup
A

|�(A)− �(A)|;

where the supremum is taken over all Borel sets A.
The information divergence (also called I-divergence, Kullback–Leibler number,

relative entropy) of � and � is de�ned by

I(�; �) = sup
{Aj}

∑
j
�(Aj)log

�(Aj)
�(Aj)

;

where the supremum is taken over all �nite Borel measurable partitions {Aj}. The term
“information divergence” is due to Csisz�ar (1967), who introduced it to identify the
Kullback–Leibler mean information for discrimination between two densities f and g
(Kullback and Leibler, 1951) within the more general class of �-divergences of f and
g (Csisz�ar, 1967, Ali and Silvey, 1966).
The following inequality, termed Pinsker’s inequality, gives an upper bound to

the total variation in terms of I-divergence (see e.g. Csisz�ar, 1967; Kullback, 1967;
Kemperman, 1969):

2{V (�; �)}26I(�; �): (1)

The �2-divergence measure between � and � is de�ned by

�2(�; �) = sup
{Aj}

∑
j

(�(Aj)− �(Aj))2

�(Aj)
;

where again the supremum is taken over all �nite Borel measurable partitions {Aj}.
By using the inequality log t6t − 1 one easily obtains that
∑
j
�(Aj)log

�(Aj)
�(Aj)

6
∑
j

�(Aj)2

�(Aj)
− 1 =∑

j

(�(Aj)− �(Aj))2

�(Aj)
;

from which

I(�; �)6�2(�; �): (2)

On the other hand, there are examples where I(�; �n) → 0 and �2(�; �n) → ∞.
Therefore the �2-divergence is strictly topologically stronger, i.e. the convergence in
�2-divergence implies convergence in information divergence, but the converse is not
true.
Applications of large deviation results in statistical analysis mainly concern the com-

parison of test procedures using Bahadur e�ciencies. We consider the problem of
testing hypotheses

H0: �= � versus H1: � 6= �

by means of test statistics Tn = Tn(X1; : : : ; Xn) where X1; X2; : : : are independent and
identically distributed along �. Considering two tests rejecting H0 for large values of
the statistics Tn;1 and Tn;2, then (see e.g. Bahadur, 1971; Groeneboom and Shorack,
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1981) the e�ciency e1;2 of Tn;1 with respect to Tn;2 is calculated through the Bahadur
exact slopes 2b1(�) and 2b2(�) for testing against an alternative �: e1;2 = b1(�)=b2(�).
The functions b1 and b2 are then given by

bj(�) = gj( j(�)); j = 1; 2 (3)

when � is absolutely continuous, provided

Tn;j →  j(�) a:s: as n → ∞ under H1; (4)

lim
n→∞ ETn;j = 0 as n → ∞ under H0 (5)

and

lim
n→∞

1
n
logP(Tn;j ¿ �) =−gj(�) under H0; �¿ 0 (6)

for j = 1; 2.
Such a limit assumption on the tail of the distribution of Tn;j means that

P(Tn;j ¿ �) = e−n[gj(�)+o(1)]:

Each of the divergence measures de�ned above, when applied to the distance between
the null-hypothesis distribution � and the empirical distribution �n, both restricted to
a partition (see Tusn�ady, 1977; Barron, 1989), does lead to a test procedure. Hence,
the large deviation results given in the subsequent sections o�er the possibility to
calculate exact Bahadur slopes for these tests. Quine and Robinson (1985) derived
large deviation results for test statistics for uniformity based on I and �2, i.e. for the
classical likelihood ratio and chi-square goodness-of-�t tests. These authors derived
these results establishing probability inequalities. Here, we show how such results can
be obtained using a classical result of Sanov (1957). Also, we extend these results
to a more general setting and derive large deviation results for other test statistics
such as the L1-test statistic. We also refer to Nikitin (1995) for a survey on Bahadur
e�ciencies of di�erent well-known tests.

2. The L1 error

We now consider some goodness-of-�t tests for H0 given in the Introduction. Sup-
pose that � is nonatomic. Assume a sample of independent random vectors X1; : : : ; Xn,
distributed according to a probability measure �, and let �n denote the empirical
measure.
Gy�or� and van der Meulen (1991) introduced the test statistic

Jn =
mn∑
j=1

|�(An;j)− �n(An;j)|;

based on a �nite partition Pn = {An;1; : : : ; An;mn}; (n¿2), of Rd. These authors also
showed that under H0

P(Jn¿�)6e−n(�2=8+o(1)):
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Moreover, the asymptotic normality of this test statistic under the null hypothesis in
case � has a density was discussed in Beirlant et al. (1995). Let ��n and �∗

n be the
restrictions of � and �n to the partition Pn, then

Jn = 2V ( ��n; �
∗
n ):

Theorem 1. Assume that

lim
n→∞ max

j
�(An;j) = 0 (7)

and

lim
n→∞

mn log n
n

= 0: (8)

Then for all 0¡�¡ 2

lim
n→∞

1
n
logP{Jn ¿ �}=−g(�); (9)

where

g(�) = inf
0¡p¡ 1−�=2

(
p log

p
p+ �=2

+ (1− p)log
1− p

1− p− �=2

)
: (10)

In the proofs of our theorems we shall use the function

D(�||�) = � log
�
�
+ (1− �)log

1− �
1− �

(11)

and the following lemma.

Lemma 1 (Sanov, 1957; see p. 16 in Dembo and Zeitouni, 1992; or Problem1.2.11in
Csisz�ar and K�orner, 1981). Let � be a �nite set of measurable sets (alphabet); Ln

be a set of types (possible empirical distributions) on �; and let � be a set of
distributions on �. Then∣∣∣∣1n logP{�∗

n ∈ �}+ inf
�∈�∩Ln

I(�; ��n)
∣∣∣∣6 |�| log(n+ 1)

n
; (12)

where |�| denotes the cardinality of �.

Proof of Theorem 1. We apply (12) for

�= {An;1; : : : ; An;mn};
such that

� = {�: 2V ( ��n; �)¿�}:
Then, according to (12),∣∣∣∣1n logP{Jn¿�}+ inf

�∈�∩Ln

I(�; ��n)
∣∣∣∣6mn log(n+ 1)

n
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and therefore, under (8),

lim
n→∞

1
n
logP{Jn ¿ �}=− lim

n→∞ inf
�∈�∩Ln

I(�; ��n):

It now remains to show that

lim
n→∞ inf

�∈�∩Ln

I(�; ��n) = g(�):

The distributions in Ln are possible empirical distributions, having components of the
form r=n, where r is integer. Because of (7) we have that

mn → ∞;

therefore because of the continuity of V (�; ��n) and I(�; ��n)

lim
n→∞ inf

�∈�∩Ln

I(�; ��n) = lim
n→∞ inf

2V (�; ��n)¿�
I(�; ��n):

Here

I(�; ��n) =
mn∑
j=1

�(An;j)log
�(An;j)
�(An;j)

:

Put

L= {j: �(An;j)¿�(An;j)}
and

An =
⋃
j∈L

An;j:

Then

2V (�; ��n) = 2(�(An)− �(An))

and, by the Information Processing Theorem of Csisz�ar (1967),

I(�; ��n)¿D(�(An)||�(An));

where the equality holds i� �(An;j)=�(An;j) is constant both on L and Lc. Thus,

lim
n→∞ inf

2V (�; ��n)¿�
I(�; ��n)

= inf
0¡p¡ 1−�=2:�(An)=p;�(An)=p+�=2

D(�(An)||�(An));

= inf
0¡p¡ 1−�=2

(
p log

p
p+ �=2

+ (1− p)log
1− p

1− p− �=2

)
=g(�);

and Theorem 1 is proved.

Remark 1. Note that a lower bound for g follows from Pinsker’s inequality (1) since

inf
2V (�; ��n)¿�

I(�; ��n)¿ inf
I(�; ��n)¿�2=2

I(�; ��n);
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and therefore

g(�)¿�2=2:

The best-known lower bound is due to Toussaint (1975):

g(�)¿�2=2 + �4=36 + �6=280:

An upper bound ĝ(�) of g(�) can be obtained substituting p by (1 − �=2)=2 in the
de�nition of g(�). Then

ĝ(�) =
�
2
log

2 + �
2− �

¿g(�)

(Vajda, 1970). Further bounds can be found on pp. 294–295 in Vajda (1989). Remark
that also in Lemma 5:1 in Bahadur (1971) it was observed that

g(�) =
�2

2
(1 + o(1))

as � → 0.

Local Bahadur e�ciencies of the test Jn with respect to other goodness-of-�t tests
can now be computed on the basis of the above theorem.

Example 1 (Testing for uniformity). Let � be the restriction of the Lebesgue measure
on (0,1). For � 6= 0 consider alternatives � with density f�(x) = 1+ �h(x) (x ∈ (0; 1))
where

∫ 1
0 h = 0. Then, using (3), (9), the asymptotic formula for g(�) in Remark 1,

and the fact that the  -function for this L1-test equals
∫ 1
0 |f�(x)− 1| dx, we �nd that

the exact Bahadur slope for the Jn-statistic behaves as

� 2
(∫ 1

0
|h(x)| dx

)2
when � → 0:

Remark that condition (5) can be veri�ed here using Theorem 2:1 in Beirlant and
Gy�or� (1998).

From Groeneboom and Shorack (1981) it follows that the exact Bahadur slope
of the Kolmogorov–Smirnov test, respectively the Anderson–Darling test, behaves as
4� 2(supx∈(0;1) |

∫ x
0 h(t) dt|)2, respectively 2� 2∫ 10 (∫ x

0 h)2[x(1 − x)]−1 dx, when � → 0.
Remark that∣∣∣∣

∫ x

0
h(t) dt

∣∣∣∣ =
∣∣∣∣∣
∫ 1

0
h(t)

(
1[0; x](t)− 1

2

)
dt

∣∣∣∣∣
6
∫ 1

0
|h(t)|

∣∣∣∣1[0; x](t)− 1
2

∣∣∣∣ dt = 12
∣∣∣∣∣
∫ 1

0
h(t) dt

∣∣∣∣∣ :
Hence the Jn-test is more Bahadur e�cient than the Kolmogorov–Smirnov test in the
given setting. It is also more e�cient than the Anderson–Darling test (AD) for several
examples of h. For example when h(x)=sgn( 12−x) (x ∈ (0; 1)), then eJ;AD=1=(4 ln (2)
− 2) ∼ 1:29.
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Remark 2. The above result obviously can be generalized to a large deviation result
for the L1-inaccuracy rate of the histogram density estimator fn based on a sample of
independent random vectors X1; : : : ; Xn, distributed according to a probability measure
� with density f with respect to the Lebesgue measure �.

Introducing a partition Pn={An;j; j¿1}; (n¿2) of Rd such that supj¿1 �(An;j)¡∞,
then the histogram density estimator is de�ned by

fn(x) =
�n(An(x))
�(An(x))

: (13)

where An(x) = An; i if x ∈ An; i.
If � and � are absolutely continuous with respect to a �-�nite measure � with

densities f and g, respectively, then

||f − g||:=
∫

|f(x)− g(x)|�(dx) = 2V (�; �):

Hence for any density estimator the L1-consistency implies the consistency in total
variation.
Using the assumption that for each sphere S centered at the origin

lim
n→∞ sup

An; j∩S 6=∅
diam(An;j) = 0 (14)

and

lim
n→∞

|{An;j ∩ S 6= ∅}|
n

= 0 (15)

then

lim
n→∞ ||fn − f||= 0 (16)

a.s. and

lim
n→∞ E||fn − f||= 0 (17)

(see Devroye and Gy�or�, 1985). Combining this result with Theorem 1 then yields the
following result.

Corollary 1. Assume (14). If there exists a sequence of spheres Sn centered at the
origin such that Sn ↑ Rd and

lim
n→∞ card{An;j ∩ Sn 6= ∅} log n

n
= 0 (18)

then for all 0¡�¡ 2

lim
n→∞

1
n
logP{||f − fn||¿�}=−g(�); (19)

where g(�) is de�ned by (10).
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Note that in this statement there is no condition on f, and so (19) holds for all f,
and the rate function g(�) does not depend on f.

Proof of Corollary 1. Without loss of generality, assume that

An;j ∩ Sn 6= ∅; for j = 1; 2; : : : ; mn − 1
and

An;j ∩ Sn = ∅; for j = mn; mn + 1; : : : :

Put

A′
n;mn

=
∞⋃

j=mn

An;j

and

�n =
mn−1∑
j=1

|�(An;j)− �n(An;j)|+ |�(A′
n;mn
)− �n(A′

n;mn
)|:

Then

||fn − f|| =
∞∑
j=1

∫
An; j

|fn(x)− f(x)|�(dx)

¿
mn−1∑
j=1

∫
An; j

|fn(x)− f(x)|�(dx)

+

∣∣∣∣∣
∞∑

j=mn

∫
An; j

fn(x)�(dx)−
∞∑

j=mn

∫
An; j

f(x)�(dx)

∣∣∣∣∣
¿

mn−1∑
j=1

∣∣∣∣∣
∫
An; j

fn(x)�(dx)−
∫
An; j

f(x)�(dx)

∣∣∣∣∣
+

∣∣∣∣∣
∫
A′
n;mn

fn(x)�(dx)−
∫
A′
n;mn

f(x)�(dx)

∣∣∣∣∣
=

mn−1∑
j=1

|�(An;j)− �n(An;j)|+ |�n(A′
n;mn
)− �(A′

n;mn
)|

= �n:

On the other hand,

||fn − f||6 ||fn − Efn||+ ||Efn − f||
=

∞∑
j=1

|�(An;j)− �n(An;j)|+ ||Efn − f||

6
mn−1∑
j=1

|�(An;j)− �n(An;j)|+ |�(A′
n;mn
)− �n(A′

n;mn
)|
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+2�(A′
n;mn
) + ||Efn − f||

= �n + 2�(A′
n;mn
) + ||Efn − f||:

By de�nition A′
n;mn

⊂ Scn , and by assumption Sn ↑ Rd, and therefore �(A′
n;mn
) → 0. So

together with (17)

2�(A′
n;mn
) + ||Efn − f|| → 0

and consequently Corollary 1 is proved if

lim
n→∞

1
n
logP{�n ¿�}=−g(�); (20)

which follows from Theorem 1 with Jn = �n.

Remark 3. Louani (1998) derived large deviation results for a kernel density estimator
in terms of the sup-norm distance. Several assumptions are required for this case, such
as the boundedness of the density, and the results depend strongly on the bandwidth
parameter. Louani (2000) showed a large deviation limit for the L1-error of the kernel
estimate, with the same rate function g as given in Theorem 1.

3. The information divergence

In the literature on goodness-of-�t testing two statistics are related to the information
divergence, namely the I -divergence statistic

Ĩ n = I( ��n; �
∗
n ) =

mn∑
j=1

�(An;j) log
�(An;j)
�n(An;j)

and the reversed I-divergence statistic

In = I(�∗
n ; ��n) =

mn∑
j=1

�n(An;j) log
�n(An;j)
�(An;j)

:

If there are empty cells (�n(An;j) = 0) then Ĩ n =∞, and hence In is more common.
We show that

P{In ¿ �}= e−n(�+o(1))

and

P{Ĩ n ¿ �}= e−(n=mn)(1+o(1)):

Here we can refer to Tusn�ady (1977) and Barron (1989) who �rst discussed the
exponential character of the tails of In.
Again a large deviation result concerning In can be derived proceeding similarly as

in the proof of Theorem 1.

Theorem 2 (Corollary 2:4 in Kallenberg, 1985; Theorem 2 in Quine and Robinson, 1985).
Under (7) and (8); for all �¿ 0

lim
n→∞

1
n
logP{In ¿ �}=−�:
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This leads to the following observation concerning the goodness-of-�t tests based
on In.

Example 2. Again considering alternatives with density f�(x) = 1 + �h(x) (x ∈ (0; 1))
where

∫ 1
0 h = 0, when testing for uniformity, the above result implies that the test

based on In has an exact Bahadur slope 2
∫ 1
0 (1+�h(x)) log(1+�h(x)) dx ∼ � 2

∫ 1
0 h

2 for
� → 0. Hence the Cauchy–Schwarz inequality implies that this test is more e�cient
than the test based on Jn.

From this point on we suppose that for all n

�(An;j) =
1
mn

; j = 1; : : : ; mn: (21)

This condition can be satis�ed for any nonatomic distribution � on Rd, e.g. by using
tree partitions � described in Chapter 20 in Devroye et al. (1996).

Theorem 3. Assume that (21) holds. If; in addition;

lim
n→∞

m2n log n
n

= 0; (22)

then we have for all �¿ 0

lim
n→∞

mn

n
logP{Ĩ n ¿ �}=−1:

Proof. Again apply (12) for �= {An;1; : : : ; An;mn} such that
� = {�: I( ��n; �)¿�}:

Then, according to (12),∣∣∣∣ mn

n
logP{Ĩ n¿�}+ mn inf

�∈�∩Ln

I(�; ��n)
∣∣∣∣6m2n log(n+ 1)

n
:

Therefore, because of (21) and (22),

lim
n→∞

mn

n
logP{Ĩ n ¿ �}=− lim

n→∞ mn inf
�∈�∩Ln

I(�; ��n)

=− lim
n→∞ mn inf

I( ��n;�)¿�
I(�; ��n):

Using the notation

�= (�1; : : : ; �mn);

we obtain

I(�; ��n) =
mn∑
j=1

�j log(mn�j) (23)

and

I( ��n; �) =− 1
mn

mn∑
j=1

log(mn�j):
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Considering the distribution

�∗ =
(
0;

1
mn − 1 ; : : : ;

1
mn − 1

)
(24)

we �nd that

mn inf
I( ��n;�)¿�

I(�; ��n)6mnI(�∗; ��n) = mn log(mn=(mn − 1))→ 1:

Concerning the lower bound we show that for all but �nitely many n, the minimizing
distribution is of the form

�̃=
(
�1;
1− �1
mn − 1 ; : : : ;

1− �1
mn − 1

)
; (25)

where �1 (possibly depending on n) is bounded by

0¡�16
e−�mn

mn
:

To this end �x n and suppose that � is the minimizing distribution, with coordinates
ordered in the sense �16�26 · · ·6�mn .
(a) It holds �1¿ 0. Indeed, if �1 = 0 then, since the Shannon entropy is maximum

for the uniform distribution, it follows that I(�; ��n)¿I(�∗; ��n)=log(1=(1−1=mn)). This
however contradicts the fact that the functions

I(�̃; ��n) = D(�1||1=mn); I( ��n; �̃) = D(1=mn||�1); (26)

(cf. (11) and (25)) are continuous, strictly decreasing in the variable �1 ∈ (0; 1=mn]
with

D(0||1=mn) = log
1

1− 1=mn
; D(1=mn||0) =∞ (27)

and

D(1=mn||1=mn) = 0: (28)

(b) There exists 16rn ¡mn such that

�1 = · · ·= �rn ¡ �rn+1 = · · ·= �mn : (29)

If (29) does not hold then either �1=�2=· · ·=�mn=1=mn or there exist 1¡rn ¡sn6mn

such that �1¡�rn ¡�sn . The �rst possibility contradicts the assumption I( ��n; �)¿�¿ 0.
To see that the second possibility contradicts the de�nition of �, suppose for simplicity
that rn = 2 and sn = 3, i.e. let (cf. (a))

0¡�1¡�2¡�3: (30)

Consider a new distribution �� with all coordinates coinciding with those of � except
��1 = �1−�; ��2 = �2 +�t and ��3 = �3−�(t−1), where 0¡�¡�1 and 0¡t¡ 1+ �3=�1
are chosen such that I( ��n; ��) = I( ��n; �), i.e. such that

3∑
j=1

log
��j
�j
= 0:
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This means that(
− 1

�1
+

t
�2

− t − 1
�3

)
�+ o(�) = 0 as � → 0;

i.e.

t =
x − 1
y − 1 + o(1) for x =

�3
�1

; y =
�3
�2

;
x − 1
y − 1¿ 1:

It is easy to verify that

I( ��; ��n) = I(�; ��n) + �(ln x − t ln y) + o(�) as � → 0;

where x¿y¿ 1 and (ln x)=(x − 1)¡ (ln y)=(y − 1). Thus I( ��n; ��)¡I( ��n; �) for
su�ciently small �¿ 0 while I( ��n; ��)¿� for all �¿ 0.
(c) In (29), rn = 1 for all but �nitely many n. To see this, we de�ne

�n = �1rn

so that �1 = �n=rn; �mn = (1− �n)=(mn − rn), and

�n =
rn
mn

¿�n:

Then, using (11),

I(�; ��n) = D(�n||�n) and I( ��m; �) = D(�n||�n):

Since �n ¿�n, the assumption I( ��n; �)¿� implies

�n log
�n

�n
¿D(�n||�n)¿�;

so that �n ¡�n e−�=�n . Combining this with the monotonicity of D(�||�n) in the domain
� ∈ (0; �n], we obtain

I(�; ��n)¿D(�n e−�=�n ||�n)

= −� e−�=�n + (1− �n e−�=�n)log
1− �n e−�=�n

1− �n
: (31)

If rn = �nmn¿2 for in�nitely many n, then the last inequality contradicts the upper
bound

I(�; ��n)6D(0||1=mn) = log
1

1− 1=mn

proved above. This completes the proof of (c).
If (c) holds, then � under consideration coincides with �̃ given by (25) and (3). The

desired result I(�; ��n)¿1=mn + o(1=mn) thus follows from (31) applied to �n = �1 and
�n = 1=mn.

Remark 4. Remark that formula (3) cannot be applied directly for the test based on Ĩ n
because (5) does not hold in this case, in contrast to the test based on the I -divergence
statistic (see Remark 5 below). The same holds for the tests based on the reversed
Pearson statistic discussed in the next section.
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4. The �2-divergence

Of course, the best-known goodness-of-�t test is based on the �2 statistic. We refer
to Neyman (1949), Watson (1958) for some important historic references. See also
Kallenberg et al. (1985) for a more recent discussion. The Pearson statistic is given
by

�2n = �2(�∗
n ; ��n) =

mn∑
j=1

(�(An;j)− �n(An;j))2

�(An;j)
;

while the reversed Pearson statistic, also known as Neyman or Neyman-modi�ed Pear-
son statistic is de�ned as

�̃2n = �2( ��n; �
∗
n ) =

mn∑
j=1

(�(An;j)− �n(An;j))2

�n(An;j)
:

We show that

P{�2n ¿ �}= e−(n log mn=
√

mn) (
√

�=2+o(1))

and

P{�̃2n ¿ �}= e−(n=mn)(1+o(1)):

Theorem 4 (Theorem 1 in Quine and Robinson, 1985). Suppose that (21) holds. If;
in addition;

m3=2n log n
n logmn

→ 0; (32)

then for all �¿ 0

lim
n→∞

√
mn

n logmn
logP{�2n ¿ �}=−√

�=2:

Proof. Again apply (12) for �= {An;1; : : : ; An;mn} such that
� = {�: �2(�; ��n)¿�}:

Then, according to (12),∣∣∣∣
√
mn

n logmn
logP{�2n¿�}+

√
mn

logmn
inf

�∈�∩Ln

I(�; ��n)
∣∣∣∣6m3=2n log(n+ 1)

n logmn
:

Therefore, because of (32) and (21),

lim
n→∞

√
mn

n logmn
logP{�2n ¿ �}=− lim

n→∞

√
mn

logmn
inf

�∈�∩Ln

I(�; ��n)

=− lim
n→∞

√
mn

logmn
inf

�2(�; ��n)¿�
I(�; ��n):

Using the notation

�= (�1; : : : ; �mn)
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we have (23) and

�2(�; ��n) = mn

mn∑
j=1

�2j − 1:

Concerning the upper bound consider the distribution �̃ de�ned by (25) where �1 solves
the equation

�2(�̃; ��n) = �;

or,

�1 =
1 +

√
�(mn − 1)
mn

:

Then √
mn

logmn
inf

�2(�; ��n)¿�
I(�; ��n)6

√
mn

logmn
I(�̃; ��n)→

√
�=2: (33)

Concerning the lower bound one shows along similar lines as in the proof of Theorem 3
that for all but �nitely many n, �̃ is the minimizing distribution.

Remark 5. Since E(In)6E(�2n) = (mn − 1)=n, (5) holds for the statistics In and �2n
when mn=n → 0.

Remark 6. Theorem 4 means that when mn → ∞, the Bahadur exact slope of the
�2-test is identically zero. Another interpretation is that the tail of the �2-test statistic
is of sub-exponential nature, that is, is heavier than an exponential tail. This is due to
cells An;j with small probabilities, which put too much weight on the squared di�erence
(�(An;j) − �n(An;j))2. Although there is a widespread believe in literature that the
I-divergence test In and the �2-test have a similar behaviour, their Bahadur slopes are
quite di�erent.

Theorem 5. Under the conditions of Theorem 3

lim
n→∞

mn

n
logP{�̃2n ¿ �}=−1:

Proof. Again apply (12) for �= {An;1; : : : ; An;mn} such that
� = {�: �2( ��n; �)¿�}:

Then, according to (12),∣∣∣∣mn

n
logP{�̃2n¿�}+ mn inf

�∈�∩Ln

I(�; ��n)
∣∣∣∣6m2n log(n+ 1)

n
:

Therefore, because of (21) and (22),

lim
n→∞

mn

n
logP{�̃2n ¿ �}=− lim

n→∞ mn inf
�∈�∩Ln

I(�; ��n)

=− lim
n→∞ mn inf

�2( ��n;�)¿�
I(�; ��n):
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Concerning the upper bound consider distribution (24). Then

mn inf
�2( ��n;�)¿�

I(�; ��n)6mnI(�0; ��n)→ 1:

Concerning the lower bound apply Theorem 3 and (2) to obtain

mn inf
�2( ��n;�)¿�

I(�; ��n)¿mn inf
I( ��n;�)¿�

I(�; ��n)→ 1:
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