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On the impossibility of estimating densities in the extreme tail
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Abstract

We give a short proof of the following result. Let X1; : : : ; Xn be independent and identically distributed observations
drawn from a density f on the real line. Let fn be any estimate of the density gn of max(X1; : : : ; Xn). We show that there
exists a unimodal in�nitely many times di�erentiable density f such that

inf nE{
∫

|fn(x)-gn(x)| dx}¿ 1
49 :

Thus, in the total variation sense, universally consistent density estimates do not exist. A similar result is derived
concerning the supremum norm. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction and main result

We are given data X1; : : : ; Xn, an independent and identically distributed (i.i.d.) sample drawn from an
unknown density f on the real line. The maximum Yn =max(X1; : : : ; Xn) has density gn = nfFn−1, where F
is the cumulative distribution function for f. There have been many attempts in the literature at estimating
quantities related to the tail of f that make sense in the context of the study of Yn. Well-known references in
this respect are e.g. Hill (1975), Pickands III (1975), Hall (1982), Cs�org�o et al. (1985), Dekkers and de Haan
(1989) among many others. In this last reference a practical example of the estimation of small return period
of a yearly maximum is given. Recently, Hall and Weissman (1997) have proposed a bootstrap procedure
to estimate extreme tail probabilities. All of these references do assume that the distribution of Yn is in the
domain of attraction of an extreme value distribution. Also, de Haan and Resnick (1996) have studied rates
of convergence of the distribution of Yn to its limit distribution in the uniform metric and the total variation
distance.

∗ Corresponding author. E-mail: luc@cs.mcgill.ca.
1 Work supported by NSERC Grant A3456 and FCAR Grant 90-ER-0291.

0167-7152/99/$ – see front matter c© 1999 Elsevier Science B.V. All rights reserved
PII: S0167 -7152(98)00246 -6



58 J. Beirlant, L. Devroye / Statistics & Probability Letters 43 (1999) 57–64

In this paper we show that without such a domain of attraction condition on the underlying distribution
f, the general problem of designing an estimate fn of gn, respectively Fn of Fn, that is consistent in total
variation is unsolvable. This program will be carried out considering the total variation distance∫

|fn(x)− gn(x)| dx;
respectively the uniform metric

sup
x

|Fn(x)− Fn(x)|:

Concerning the estimation of a small survival probability 1 − F(x) itself using a nonparametric density
estimator f̂n of f itself, the method of proof used in deriving these results also leads to a similar result for
the distance∫ ∣∣∣∣∣f̂nf − 1

∣∣∣∣∣ dFn(x):
This distance measure discusses the relative error of density estimators in the extreme tail area.
In extreme value theory, few results are available on rates of convergence of estimation procedures. In Hall

and Welsh (1984) and Drees (1995) the rates of convergence for estimates of the extreme value index are
discussed.
When related to the general literature on density estimation, we recall the following. An estimate f̂n of f

is a mapping from Rn+1 to R. Given the data, f(x) is estimated by f̂n(x;X1; : : : ; Xn). The following “slow
rate of convergence” result was shown in Devroye (1983).

Theorem 1. Let {f̂n} be a given sequence of estimates and let an ↓ 0 be a sequence of real numbers. Then
there exists a density f such that

E
∫

|f̂n − f| dx¿an

in�nitely often. The density f may also be taken from the class of unimodal densities with in�nitely many
times continuous derivatives.

The theorem states that to study rates of convergence in density estimation, we need at least some combi-
nation of a tail condition and a smoothness condition. Nevertheless, the fact that the result referred to some
unknown subsequence prompted Birg�e (1986) to improve the above theorem as follows.

Theorem 2. Let an → 0 such that sup an ∈ (2=39; 2=13). For any sequence {f̂n}, there exists a density f on
[0; 1] bounded by two such that

E
∫

|fn − f| dx¿an
for all n.

With an monotonically decreasing and a161=32, a short proof of the above theorem may be found in
Devroye (1995). It is the method of proof of that paper that is used here again.

Main Theorem. Let X1; : : : ; Xn be i.i.d. observations drawn from a density f on the real line. Let fn be any
estimate of the density gn of max(X1; : : : ; Xn). Then there exists a density f such that

inf
n
E
{∫

|fn(x)− gn(x)| dx
}
¿
1
49
:
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It should be noted that by transformations of the axis, we can pick our density f from all in�nitely many
continuously di�erentiable densities. Also, as should be obvious from the proof, no attempt was made to
optimize the constant in the lower bound. Finally, at the expense of a smaller constant, we may pick f
from the class of bounded unimodal densities. It is only by jointly placing monotonicity or regular variation
conditions on the tail together with rates of decrease that one can obtain consistent density estimates.
A similar results yields an interpretation concerning the estimation of a density f in the extreme upper tail.

Second Theorem. Let X1; : : : ; Xn be i.i.d. observations drawn from a density f on the real line. Let f̂n be
any estimate of the density f. Then there exists a density f such that

inf
n
E

{∫ ∣∣∣∣∣f̂n(x)f(x)
− 1
∣∣∣∣∣ dFn(x)

}
¿
1
49
:

In the supremum norm, supx|Fn(x)− Fn(x)|, where Fn is any estimate of the distribution function Fn of Yn,
and F is the distribution function of X1, we also have poor performance for any estimate. As supx|Fn(x) −
Fn(x)|6(1=2) ∫ |fn − nfFn−1|, where fn is the density estimate corresponding to Fn, the Main theorem is
of little help. Also, Fn need not necessarily have a density. We only give a crude version of the lower
bound (in the limit supremum sense) in this case. Thus, even for this weak norm, one cannot hope to ever
universally estimate tail probabilities for maxima, regardless of sample size, without making assumptions on
the tail behavior of F .

Third Theorem. Let X1; : : : ; Xn be i.i.d. observations drawn from a distribution with distribution function F
on the real line. Let Fn=Fn(x;Xn) be any distribution function estimate of Fn, the distribution function of
Yn =max(X1; : : : ; Xn). Then there exists a distribution function F such that

lim sup
n→∞

E
{
sup
x

|Fn(x)− Fn(x)|
}
¿

1
2e3
:

2. Proofs

Proof of the Main Theorem. First we construct a family of densities f. Let b=0:b1b2b3 : : : be a real number
on [0; 1] with the shown expansion, where each bi takes values in {0; : : : ; 2li − 1} and may be represented by
li bits (bi0; : : : ; bi;li−1). The choice of the positive integers li will be left open for now. Thus,

b=
∞∑
i=1

bi
2l1+···+li

:

Let B be a random variable uniformly distributed on [0; 1] with expansion B = 0:B1B2B3 : : : . It should be
noted that this corresponds to taking all Bij’s independent Bernoulli (1=2) random variables. And each Bi is
uniformly distributed on {0; : : : ; 2li − 1} and independent of Bj, j 6= i.
Let us de�ne a random variable W with

P{W = j}= pj ( j¿1);
where pj = 2−j.
De�ne an i.i.d. sequence of uniform [0; 1] random variables U1; U2; : : : . De�ne another i.i.d. sequence

W1; W2; : : : drawn from the distribution of W . De�ne a third sequence of i.i.d. uniform random variables
Z1; Z2; : : : on {0; : : : ; li−1}. These sequences are used to construct coupled data sequences. Each b ∈ [0; 1) de-
scribes a di�erent distribution. With b replaced by B we have a random distribution. The real line is partitioned

into blocks of length 2l1, 2l2; : : : respectively, where the i-th block is Ai = [2
∑

j¡i lj; 2
∑

j6i lj)
def= [Li; Ri).
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The i-th block is picked with probability pi. Within a block, Zi picks the location, Ui moves Xi over within
the given location, and bWiZi is a polarity bit. We thus de�ne

Xi = LWi + Zi + Ui + bWiZi :

It is not di�cult to see that if Wi=j, Zi=k, and bjk=0, then Xi is uniformly distributed on [Lj+k; Lj+k+1).
If bjk = 1, then it is uniformly distributed on [Lj + k + 1; Lj + k + 2).
We write fb to denote the density of X1 for a given parameter value b. Let gn; b denote the density of Yn for

�xed b. Introduce the shorthand notation Un = (U1; U2; : : : ; Un), Wn = (W1; W2; : : : ; Wn), Zn = (Z1; Z2; : : : ; Zn),
and Xn=(X1; X2; : : : ; Xn). We write U∞ for the in�nite sample. Observe that in this manner we have de�ned
an in�nite number of samples, one for each value of b. De�ne kn = 2 + d log2ne, and denote the L1 error by

Jn(b) =
∫

|fn(x;Xn)− gn; b(x)| dx

=
∞∑
i=1

∫
Ai
|fn(x;Xn)− gn; b(x)| dx

¿
∫
Akn

|fn(x;Xn)− gn; b(x)| dx

def= Kn(b):

Thus,

sup
b
inf
n
EJn(b)¿ sup

b
E
{
inf
n
Jn(b)

}
¿E

{
inf
n
Kn(B)

}
:

Consider now the conditional expectation E{inf nKn(B)|U∞;W∞;Z∞}. Then for any c¿ 0,

E
{
inf
n
Kn(B)

∣∣∣U∞;W∞;Z∞
}
¿ cP

{ ∞⋂
n=1

[Kn(B)¿c]

∣∣∣∣∣U∞;W∞;Z∞

}

¿ c

(
1−

∞∑
n=1

P{Kn(B)¡c]|U∞;W∞;Z∞}
)

= c

(
1−

∞∑
n=1

P{Kn(B)¡c]|Un;Wn;Zn}
)
:

We bound the conditional probabilities inside the sum: let Dn denote Un;Wn;Zn; B′, where B′ denotes B, Bkn
excepted. With all this �xed, let N =

∑n
i=1 IWi=kn . It is important to note that on Akn , the interval of interest to

us, fn can at most be one of 2N possible functions, if we consider all possible values for Bkn (note that Bkn
is the only random variable left after conditioning). Let S={j: j=Zi;Wi= kn; i=1; : : : ; n} be the index set of
the collection of subintervals of Akn occupied by points Xi. Clearly, |S|6N6n. If we change bknj for j 6∈ S,
then fn remains unchanged, yet gn; b changes a lot. For such j, denoting the two possible vectors bkn by b+
and b− respectively, (and keeping all other lkn − 1 bits the same), we have with Akn = [Lkn + j; Lkn + j + 2)

max

(∫
Akn; j

|fn − gn; b+ |;
∫
Akn; j

|fn − gn; b− |
)
¿
1
2

(∫
Akn; j

|fn − gn; b+ |+
∫
Akn; j

|fn − gn; b− |
)

¿
1
2

∫
Akn; j

|gn; b− − gn; b+ |
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=
∫
Akn; j

gn; b−

¿ n
pkn
lkn

(
p1 + · · ·+ pkn−1

)n−1
def= qn:

If j ∈ S, we can bound the same maximum from below by zero. We �rst verify the value of qn. By our
choice of pi and kn,

qn =
n

2kn lkn

(
1− 2=2kn)n−1

¿
n

2kn lkn

(
1− 2(n− 1)=2kn)

¿
n

8nlkn

(
1− 2(n− 1)

4n

)

¿
1

16lkn
:

Consider thus T def= qn
∑lkn−|S|

i=1 Vi, where the Vi’s are independent Bernoulli (1=2) random variables. Then
given Dn, Kn(B) is stochastically greater than T . Thus, by Hoe�ding’s inequality (Hoe�ding, 1963),

P{Kn(B)¡c|Dn}6P


qn

lkn−|S|∑
i=1

Vi ¡c




6P



lkn−n∑
i=1

Vi ¡c=q




6P



lkn−n∑
i=1

(Vi − EVi)¡ c
q
− lkn − n

2




6P



lkn−n∑
i=1

(Vi − EVi)¡ 16clkn −
lkn − n
2




6P



lkn−n∑
i=1

(Vi − EVi)¡ n
2
− lkn
6




(when c = 1=48)

6P



lkn−n∑
i=1

(Vi − EVi)¡− lkn
12




(when lkn¿6n)

6 2e−2(lkn−n)
−1(lkn =12)

2

(by Hoe�ding’s inequality)

6 2e−lkn =72:
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As this bound does not depend upon the variables on which we conditioned, we obtain, by concatenation of
bounds,

sup
b
inf
n
EJn(b)¿E

{
inf
n
Kn(B)

}

¿ (1=48)

(
1−

∞∑
n=1

P{Kn(B)¡ (1=48)|Un;Wn;Zn}
)

¿ (1=48)

(
1− 2

∞∑
n=1

e−lkn =72
)

¿ (1=49)

if lkn¿72n log 50 + 72 log 2. So, it su�ces to pick lk in such a way that for all n

l2+d log2ne¿72n log 50 + 72 log 2:

Clearly, this is possible by making lk increase exponentially quickly with k. This concludes the proof of the
main theorem.

Proof of the Third Theorem. First we construct a family of densities F , following the lead of the proof of
the Main Theorem. Let b= 0:b1b2b3 : : : be a real number on [0; 1] with the shown expansion, where each bi
takes values in {0; 1}. Thus,

b=
∞∑
i=1

bi
2i

represents a real number on [0; 1]. Let B be a random variable uniformly distributed on [0; 1] with expansion
B= 0:B1B2B3 : : : . It should be noted that this corresponds to taking all Bi’s independent Bernoulli (1=2). Let
us de�ne a random variable W with

P{W = j}= 2−j ( j¿1):
De�ne an i.i.d. sequence W1; W2; : : : drawn from the distribution of W . These sequences are used to construct

coupled data sequences. Each b ∈ [0; 1) describes a di�erent distribution. With b replaced by B we have a
random distribution. We de�ne

Xi = 2Wi + BWi :

Thus, Xi is either 2Wi or 2Wi + 1, depending upon the value of BWi . We write Fb to denote the distribution
function of X1 for parameter b. Let Fn; b denote the distribution function of Yn for �xed b. Introduce the
shorthand notation Wn = (W1; W2; : : : ; Wn), and Xn = (X1; X2; : : : ; Xn). We write W∞ for the in�nite sample.
Observe that in this manner we have de�ned an in�nite number of samples, one for each value of b. De�ne
kn = d log2ne, and denote the sup-norm error by

Jn(b) = sup
x

|Fn(x;Xn)− Fn; b(x)|

¿ max
x∈{2kn+1=2; 2kn+3=2}

|Fn(x;Xn)− Fn; b(x)|

def= Kn(b):
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Thus,

sup
b
lim sup
n→∞

EJn(b)¿E
{
lim sup
n→∞

E{Jn(B)|B}
}

¿ lim sup
n→∞

E {E{Jn(B)|B}}

(by Fatou’s lemma and the boundedness of Jn)

= lim sup
n→∞

E {Jn(B)}

¿ lim sup
n→∞

E {Kn(B)} :

Consider now the following conditional expectation:

E {Kn(B)|W∞}¿ inf
b
|Fn; b(2kn + 3=2)− Fn; b(2kn − 1=2)|IDn

(where Dn is the event that no Xi is 2kn or 2kn + 1)

¿
[(
1− 1

2kn

)n
−
(
1− 2

2kn

)n]
IDn

¿
n+ 1
2kn

(
1− 2

2kn

)n−1
IDn

¿
n+ 1
2n

(
1− 2

n

)n−1
ID

∼ 1
2e2
IDn :

Thus,

lim inf
n→∞ EKn(B)¿ (1=(2e2)) lim inf

n→∞ P{Dn}

= (2e2)−1 lim inf
n→∞ (1− 1=2kn)n

¿ (2e2)−1 lim inf
n→∞ (1− 1=n)n

∼ 1
2e3
:

This concludes the proof of the Second Theorem.
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