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1. Introduction

A point y in Rd is said to be dominated by another point x if the (vector)
difference x − y has only nonnegative coordinates. We write y ≺ x. The
points in a given sample that are not dominated by any other points are
called maxima. We derive in this short note a central limit theorem (CLT)
for the number of maxima in random samples independently and identically
distributed (iid) in the hypercube [0, 1]d. A proof with the same rate was
given previously in our paper Bai et al. (2004). We provide an alternative
proof here using more original ideas introduced by Stein, which, in addition
to methodological interest, also sheds more light on the complexity of the
problem.

For concrete motivations and information regarding dominance and
maxima, we refer the reader to our paper Bai et al. (2004).

Maxima in hypercubes. Let x1, . . . ,xn be a sequence of iid points cho-
sen uniformly at random from [0, 1]d, d ≥ 2. Denote by Kn = Kn,d the
number of maxima in {x1, . . . ,xn}.

The mean of Kn is known to be

E[Kn,d] =
(log n)d−1

(d− 1)!
(
1 + O((log n)−1)

)
, (1)

for bounded d; see Bai et al. (2004) and the references therein for more
information.

The variance satisfies (see Bai et al., 1998)

V[Kn]
(log n)d−1

=
(

1
(d− 1)!

+ κd

)(
1 + O

(
(log n)−1

))
, (2)

where

κd =
∑

1≤k≤d−2

1
k!(d− 1− k)!(k − 1)!(d− 2− k)!

∫ 1

0

∫ 1

0

(− log x)k−1(− log z)d−2−k

x + z − xz
dx dz,

is a bounded constant for d ≥ 2. An asymptotic expansion for V[Kn] was
derived in Bai et al. (2004).

A Berry-Esseen bound for Kn,d. Suppose that Y1, Y2, . . . is a sequence
of random variables. Write {Yn} ∈ CLT (rn), if

sup
x

∣∣∣∣∣P
(

Yn − E[Yn]√
V[Yn]

< x

)
− Φ(x)

∣∣∣∣∣ = O (rn) ,
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where rn → 0 and Φ(x) is the standard normal distribution function. A
sequence rn will be referred to as a convergent sequence if rn → 0.

We will construct a sequence of random variables Kn,w satisfying the
following two theorems.

Theorem 1.1: For a convergent sequence rn ≥ Ω((lnn)−
d−1
2 ),

{Kn} ∈ CLT (rn) iff {Kn,w} ∈ CLT (rn) .

Theorem 1.2: The normalized random variables K∗
n,w := (Kn,w −

E[Kn,w])/
√

V[Kn,w] converge to the standard normal distribution with a
rate

d1

(
K∗

Wn
,X
)

= O
(
(log log n)2d (log n)−

d−1
2

)
,

where X denotes the standard normal distribution and

d1(X, Y ) := sup
{
|E[h(X)]− E[h(Y )]| : sup

x
|h(x)|+ sup

x
|h′(x)| ≤ 1

}
.

From Theorem 1.2, it is easy to derive a rate for the Kolmogorov distance
between the distribution of (Kn − E[Kn])/

√
V[Kn] and that of a standard

normal.

Theorem 1.3:

{Kn} ∈ CLT
(
(log log n)d (log n)−

d−1
4

)
.

Indeed, Theorem 1.3 follows from Theorem 1.2 and the fact that

E

[
h

(
Kn − E[Kn]√

V[Kn]
+
√

rn

)]
≤
√

rn P

(
Kn − E[Kn]√

V[Kn]
< x

)

≤ E

[
h

(
Kn − E[Kn]√

V[Kn]

)]
,

where

h(u) =


√

rn, if u ≤ x,

0, if u > x +
√

rn,

linear, otherwise,

and
√

rn = (log log n)d (log n)−
d−1
4 .

The proof given in this short note is similar to that given in Bai et al.
(2004) since they both relies on the log-transformation first introduced by
Baryshnikov (2000) and Stein’s method. The main difference is that we
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give here a more self-contained proof based on Stein’s original procedures
(instead of just applying a theorem formulated in the book Janson et al.
2000). Also the conditioning arguments used in Bai et al. (2004) are replaced
by more direct calculations.

2. CLT for Kn

As in Bai et al. (2004), the proof of Theorem 1.1 is divided into several
steps.

The log-transformation. Assume now that x1, . . . ,xn are iid points
uniformly distributed in the cube (−1, 0)d. The transformation x =
(x1, . . . , xd) → y = (y1, . . . , yd), where (see Baryshinikov, 2000)

yi = − log(−xi), i = 1, . . . , d,

from (−1, 0)d to Rd
+ = {x : xi > 0 for all i = 1, . . . , d}, preserves the

dominance relation and thus transforms exactly maximal point to max-
imal point. Denote by y1, . . . ,yn the images of x1, . . . ,xn under such a
transformation. Then the components of y1 are i.i.d. with exponential dis-
tribution (λ = 1). We define ‖x‖ = x1 + · · · + xd for x ∈ Rd

+. Then ‖y1‖
has a gamma distribution with parameter (d, 1), i.e., ‖y1‖ has the density
function xd−1

(d−1)!e
−x.

Approximation to Kn by the number of maxima in a strip. Let
Bα = {x : ‖x‖ > α} ∩ Rd

+ and Bc
α = {x : ‖x‖ ≤ α} ∩ Rd

+. Take

α = ln n− ln (4(d− 1) ln lnn) ,

β = ln n + 4(d− 1) ln lnn.

Let K̃n be the number of maxima of the points falling in the strip
T := Bα∩Bc

β . We prove that for a convergent sequence rn ≥ Ω((lnn)−
d−1
2 ),

{Kn} ∈ CLT (rn) iff {K̃n} ∈ CLT (rn) . (3)

To prove (3), we use the following Lemma whose proof is omitted.

Lemma 2.1: Let Xn, Yn be two sequences of random variables and rn be a
convergent sequence. Suppose that (i) the total variation distance d(Xn, Yn)
between Xn and Yn is bounded above by O(rn), (ii)

|E[Xn]− E[Yn]| = O(rn

√
V[Xn]),
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and (iii)

|V[Xn]− V[Yn]| = O(rn

√
V[Xn]).

Then {Xn} ∈ CLT (rn) iff {Yn} ∈ CLT (rn).

Let Nn(A) denote the number of points of {y1, . . . ,yn} falling in A.
Denote by Kn(A) the number of maxima of {y1, . . . ,yn} falling in A

and by Vn the event that no points of {y1, . . . ,yn} fall in Bβ . Clearly,
Kn(A) ≤ Nn(A). Note that maximal points contributing to K̃n may not be
maximal points contributing to Kn when Nn(Bβ) > 0. However, we have
Kn(Bα)1Vn

= K̃n1Vn
, which implies that

Kn = K̃n1Vn
+ Kn(Bc

α)1Vn
+ Kn1V c

n
. (4)

To apply Lemma 2.1, we need to estimate the following quantities:

d(Kn, K̃n) ≤ P(Kn1V c
n
≥ 1) + P(Kn(Bc

α)1Vn
≥ 1) + P(K̃n1V c

n
≥ 1),∣∣∣E[Kn]− E[K̃n]

∣∣∣ ≤ E[K̃n1V c
n
] + E[Kn(Bc

α)] + E[Kn1V c
n
],∣∣∣V[Kn]− V[K̃n]

∣∣∣ ≤ ∣∣∣E[K2
n]− E[K̃2

n]
∣∣∣+ ∣∣∣E[Kn]− E[K̃n]

∣∣∣ (E[Kn] + E[K̃n]
)

,

where ∣∣∣E[K2
n]− E[K̃2

n]
∣∣∣ = ∣∣∣E[K2

n1V c
n
] + E[K2

n(Bc
α)1Vn ]− E[K̃2

n1V c
n
]
∣∣∣ .

Observe that 1V c
n
≤ Nn(Bβ),

E[Nn(Bβ)] = nP (‖y1‖ ≥ β)

= n

∫ ∞

β

xd−1

(d− 1)!
e−xdx

= O
(
nβd−1e−β

)
= O

(
(lnn)−3(d−1)

)
,

and

E[Nn(T )] = nP (α ≤ ‖y1‖ ≤ β)

= n

∫ β

α

xd−1

(d− 1)!
e−xdx

= O
(
nαd−1e−α

)
= O

(
(lnn)d−1 ln lnn

)
.
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Recall that E[Kn] � (lnn)d−1 and E[K2
n] � (lnn)2(d−1); see (1) and (2).

We show that E[K̃n] and E[K̃2
n] have the similar asymptotic order. By (4),

K̃n = K̃n1V c
n

+ Kn −Kn(Bc
α)1Vn

−Kn1V c
n

≤ K̃n1V c
n

+ Kn

≤ Nn(T )1V c
n

+ Kn.

Therefore,

EK̃n ≤ E[Nn(T )Nn(Bβ)] + E[Kn]

= E[Kn] + n(n− 1)P(y1 ∈ T )P(y2 ∈ Bβ)

= E[Kn] + E[Nn(Bβ)]E[Nn−1(T )]

= O((lnn)d−1),

and

E[K̃2
n] ≤ 2E[N2

n(T )Nn(Bβ)] + 2E[K2
n]

= 2E[K2
n] + 2n(n− 1)P(y1 ∈ T )P(y2 ∈ Bβ) + 4n(n− 1)(n− 2)P2(y1 ∈ T )P(y2 ∈ Bβ)

= 2E[K2
n] + 2E[Nn(Bβ)]E[Nn−1(T )] + 4E[Nn(Bβ)]E[Nn−1(T )]E[Nn−2(T )]

= O((lnn)2(d−1)).

Estimates needed. We now claim that

(i) E[Kn(Bc
α)] = O((ln n)−3(d−1)),

(ii) E[Kn1V c
n
] = O((lnn)−2(d−1)),

(ii′) E[K̃n1V c
n
] = O((lnn)−2(d−1)),

(iii) E[K2
n1V c

n
] = O((lnn)−(d−1)),

(iii′) E[K̃2
n1V c

n
] = O((lnn)−(d−1)) and

(iv) E[K2
n(Bc

α)] = O((lnn)−2(d−1)).

From these it follows that

d(Kn, K̃n) = O((lnn)−2(d−1)),

∣∣∣E[Kn]− E[K̃n]
∣∣∣ = O((lnn)−2(d−1)),

and ∣∣∣V[Kn]− V[K̃n]
∣∣∣ = O((lnn)−(d−1)).
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Proof of (i). If y is a maximal point, then there are no points in the region
Cy = {z : zi > yi, i ≤ d}. The probability that y1 falls in Cy is∫ ∞

‖y‖

(u− ‖y‖)d−1

(d− 1)!
e−udu = e−‖y‖.

Therefore, for large n

E[Kn(Bc
α)] = n

∫ α

0

(1− e−y)n−1 yd−1

(d− 1)!
e−ydy

≤ n

∫ α

0

αd−1

(d− 1)!
e−y−(n−1)e−y

dy

= O
(
n(n− 1)−1αd−1e−(n−1)e−α

)
= O

(
(lnn)−3(d−1)

)
.

Proof of (ii). Note that

Gn:n := {y1 is a maximum in {y1, · · · ,yn}}
⊂ Gn:n−1 := {y1 is a maximum in {y1, · · · ,yn−1}}.

Thus

E[KnNn(Bβ)] ≤ nP (‖y1‖ ≥ β) + n(n− 1)P(Gn:n ∩ {yn ∈ Bβ})
≤ nP (‖y1‖ ≥ β) + n(n− 1)P(Gn:n−1 ∩ {yn ∈ Bβ})
= E[Nn(Bβ)] + E[Kn−1]E[Nn(Bβ)]

= O
(
(lnn)−3(d−1)

)
+ O

(
(lnn)(d−1)

)
O
(
(lnn)−3(d−1)

)
= O

(
(lnn)−2(d−1)

)
.

Proof of (iii).

E[K2
nNn(Bβ)] ≤ nP (‖y1‖ ≥ β) + 3n(n− 1)P(Gn:n ∩ {yn ∈ Bβ})

+ n(n− 1)(n− 2)P(Fn:n ∩ {yn ∈ Bβ})
≤ E[Nn(Bβ)] + 3E[Kn−1]E[Nn(Bβ)] + n(n− 1)(n− 2)P(Fn:n−1 ∩ {yn ∈ Bβ})
≤ E[Nn(Bβ)] + 3E[Kn−1]E[Nn(Bβ)] + E[K2

n−1]E[Nn(Bβ)]

= O
(
(lnn)−(d−1)

)
,

where

Fn:n := {y1,y2 are two maxima in {y1, · · · ,yn}}
⊂ Fn:n−1 := {y1,y2 are two maxima in {y1, · · · ,yn−1}}.
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Proof of (ii′). Similarly as above, we have

E[K̃nNn(Bβ)] ≤ n(n− 1)P(y1 ∈ T not dominated by points in T and y2 ∈ Bβ)

≤ E[K̃n−1]E[Nn(Bβ)]

= O
(
(lnn)−2(d−1)

)
.

Proof of (iii′).

E[K̃2
nNn(Bβ)] ≤ 2n(n− 1)P(y1 ∈ T not dominated by points in T and y2 ∈ Bβ)

+ n(n− 1)(n− 2)P(y1,y2 ∈ T not dominated by points in T and y3 ∈ Bβ)

≤ 2E[K̃n−1]E[Nn(Bβ)] + E[K̃2
n−1]E[Nn(Bβ)]

= O
(
(lnn)−(d−1)

)
.

Proof of (iv). Given y1,y2, the conditional probability that y3 falls in
Cy1 ∪ Cy2 is

P(Cy1) + P(Cy2)− P(Cy1 ∩ Cy2) ≥
1
2

(
e−‖y1‖ + e−‖y2‖

)
;

the conditional probability that both y1 and y2 are maximal is less than(
1− 1

2

(
e−‖y1‖ + e−‖y2‖

))n−2

≤ e−
1
2 (n−2)(e−‖y1‖+e−‖y2‖).

We thus have

E[K2
n(Bc

α)] = E
[∑n

i=1
1yi is maxima and‖yi‖≤α

]2
= E[Kn(Bc

α)] + n(n− 1)P(both y1 and y2 are maxima falling in Bc
α)

≤ E[Kn(Bc
α)] +

n2

[(d− 1)!]2

∫ α

0

∫ α

0

(xy)d−1e−
1
2 (n−2)[e−x+e−y]−x−ydx

≤ E[Kn(Bc
α)] +

n2(lnn)2(d−1)

[(n− 2)(d− 1)!]2
e−(n−2)e−α

= O
(
(lnn)−2(d−1)

)
.

Approximation by Poisson process. Construct a Poisson process
{Wn} on T with intensity function λn = ne−‖w‖. Denote by Nw the num-
ber of points of the Poisson process falling in T . Also, let Kn,w denote the
number of maxima of the Poisson process and Ñn be the number of points
of {y1, · · · ,yn} that falls in T . It is easy to see that the conditional distri-
bution of K̃n given Ñn = m is identical to the conditional distribution of
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Kn,w given Nw = m. Thus, the total variation distance between K̃n and
Kn,w satisfies

sup
A

∣∣∣P(K̃n ∈ A)− P(Kn,w ∈ A)
∣∣∣

= sup
A

∣∣∣∣∣∣
∑

0≤m≤n

P(Ñn = m)P(K̃n ∈ A|Ñn = m)−
∑

0≤m<∞

P(Nw = m)P(Kn,w ∈ A|Nw = m)

∣∣∣∣∣∣
≤

∑
0≤m≤n

∣∣∣P(Ñn = m)− P(Nw = m)
∣∣∣+ ∑

n<m<∞
P(Nw = m)

≤ O(pn),

(see Prohorov, 1953) where

pn := P (y1 ∈ T ) =
∫ β

α

xd−1

(d− 1)!
e−xdx = O

(
(lnn)d−1 ln lnn

n

)
.

Similarly, we have ∣∣∣E[K̃n]− E[Kn,w]
∣∣∣ ≤ np2

n,

and ∣∣∣E[K̃n(K̃n − 1)]− E[Kn,w(Kn,w − 1)]
∣∣∣ ≤ n(n− 1)p3

n.

The above three estimates imply that for a convergent sequence rn ≥
Ω((lnn)−

d−1
2 ),

{K̃n} ∈ CLT (rn) iff {Kn,w} ∈ CLT (rn) . (5)

3. A central limit theorem for Kn,w

We prove in this section Theorem 1.2. We first give a lemma on Stein’s
method.

Let h(x) be a function such that

sup
x
|h(x)|+ sup

x
|h′(x)| ≤ 1. (6)

Let f be the solution of the differential equation

xf(x)− f ′(x) = h(x)− Eh,

where

Eh = E[h(X )] =
1√
2π

∫ ∞

−∞
h(x)e−x2/2dx,
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where X is the standard normal variable.
Let Zv be a set of random variables and

Uv = {j : Zj is dependent of Zv},

Vv =
∑
j∈Uv

Zj ,

Uv,j = {k : Zk is dependent of Zv or Zj},

Vv,j =
∑

k∈Uv,j

Zk,

S =
∑

v

Zv,

Sv = S − Vv,

Sv,j = S − Vv,j .

Lemma 3.1: Use the above notation and assume that E[Zv] = 0 and
E[S2] =

∑
v E[ZvVv] = 1.

d1 (S,X ) ≤ C
∑

v

∑
j∈Uv

∑
k∈Uv,j∪Uv

(E|ZvZjZk|+ E|ZvZj |E|Zk|) .

The lemma is essentially the same as Theorem 6. 31 of Janson et al (2000,
Page 158).

Split Rd
+ into cubes of edge-length δn where δn is a small positive number

to be specified later. Let Zv denote the number of maxima of the Poisson
process falling in the cell Tv (only cubes intersecting with T are counted).
Set

Kn,w =
∑

v

Zv.

and

K∗
n,w = (Kn,w − E[Kn,w])/

√
V[Kn,w] =

∑
v

(Zv − E[Zv])/
√

V[Kn,w].

Replacing Zv in Lemma 3.1 by (Zv − E[Zv])/
√

V[Kn,w], we obtain

d1(K∗
n,w,X )

≤ CV[Kn,w]−
3
2

∑
v

∑
j∈Uv

∑
k∈Uv,j∪Uv

(E[ZvZjZk] + E[ZvZj ]E[Zk] + E[Zv]E[Zj ]E[Zk]) .

(7)

We now show that
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(i) If v 6= j, then

E[Z`1
v Z`2

j ] ≤ E[Z`1
v N `2

j ] ≤ E[Z`1
v ]E[N `2

j ] (`1, `2 = 1, 2),

where Nj is the number of Poisson process points falling in the
region Tj .
This follows from the fact that E[Z`1

v |Nj = m] is decreasing in m.
(ii) If v, j, k are pairwise distinct, then

E[ZvZjZk] ≤ E[ZvZjNk] ≤ E[Zv]E[Nj ]E[Nk].

Similar to the proof for (i), E[ZvZj |Nk = m] is a decreasing func-
tion of m. Thus, E[ZvZjNk] ≤ E[ZvZj ]E[Nk]. Then (ii) follows
from (i).

Substituting these into (7), we obtain

d1(K∗
n,w,X )

≤ CV[Kn,w]−
3
2

∑
v

E[Z3
v ] +

∑
v

E[Zv]2
∑
j∈Uv

E[Nj ] +
∑

v

E[Zv]
∑
j∈Uv

E[Nj ]
∑

k∈Uv,j∪Uv

E[Nk]

 .

(8)

Recall that V[Kn,w] � (lnn)d−1. Define

Mn =
∑

v

E[Zv] � (lnn)d−1,

pv =
∫

Tv

ne−‖y‖dy,

Pn =
∫

T

ne−‖y‖dy ∼ (lnn)d−1

(d− 1)!
ne−α ∼ a(lnn)d−1 ln lnn

(d− 1)!
.

Then we have∑
v

E[Z3
v ] =

∑
v

∑
m≥1

E[Z3
v |Nv = m]

pm
v

m!
e−pv

≤
∑

v

∑
m≥1

E[Zv|Nv = m]m2 pm
v

m!
e−pv

≤ 9
∑

v

∑
m≥1

E[Zv|Nv = m]
pm

v

m!
e−pv +

∑
v

∑
m≥4

m3 pm
v

m!
e−pv

≤ 9Mn + 5
∑

v

p4
v

≤ 9Mn + 5 max
v

p3
vPn.
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(Recall that α = lnn− ln(4(d− 1) ln lnn)). If we choose Tv (i.e. δn) so
small that

max
v

p3
vPn ≤ 1/5,

then ∑
v

E[Z3
v ] ≤ 9Mn + 1.

Similarly, we can prove that∑
v

E[Z2
v ] ≤ 3Mn + 1.

Combining the above estimates, we have

d1(K∗
n,w,X ) ≤ CV[Kn,w)]−

3
2
(
Mn(1 + Q1 + Q2

2) + 1
)
,

where

Q1 = max
v

∑
j∈Uv

E[Nj ]

Q2 = max
v,j

∑
k∈Uv,j∪Uv

E[Nk].

On the other hand, Q1 ≤ Q2 and

Q2 = O

(
(ln lnn)d−1

∫ β

α

ne−xdx

)
= O((ln lnn)d).

Therefore, we conclude that

d1(K∗
n,w,X ) = O

(
(ln lnn)2d(lnn)−

d−1
2

)
.
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