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J.M. Kurtzherg proposed a method of obtaining approximate solutions to the assignment problem by decomposing a large 
problem into many smaller subproblems. Thus a km × km assignment problem is decomposed into k 2 problems of size m × m 
and one prt~blem of size k × k. In this paper we analyze the performance of this heuristic, obtaining the following main results: 

It) For the maximization problem, the ratio of the optimal solution to the heuristic solution can be as lalg¢ as. bat cannot 
e~teeed rain( k, m); 

4 2) For the minimization problem, it k = o~ ~1/log n I where n ~ nd,', and the matrix elements are independently drawn from 
a uniform distribution on [0, t), in the limit t he expected value of the heuristic solution is at least k/3 times that of the optimal 
solution. 

assignment problem * heuristics * analysis of algorithms 

O R ~ M S  Index: 486. 632. 

I. Inlroduction 

Let A = ( a , )  be an n × n matrix whose entries 
are nonnegative real numbers. The maximum (resp. 
minimum) weight assignment problem is to choose 
precisely one element from each row and column 
so that total sum is maximized (resp. minimized). 
Many techniques are known for finding an opti- 
mal solution in time O(n 3) and space O(n2). See 
for example [15]. 

In this case where n is large, time and /or  space 
limitations may make it infeasible to find an opti- 
mal solution, hence the need for heuristics. J.P. 
Kurtzberg [3] has proposed a number of heuristics 
for the assignment problem. One of the most 
interesting involves partitioning the matrix into 
smaller submatrices and then solving many smaller 
assignment problems. These solutions are then used 
to solve one 'master" problem that provides an 
approximate solution to the original problem. This 
type of approach has been found useful for a 
variety of large scale optimization problems. In 
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this paper we provide an analysis of the quality of 
the approximate solutions produced by this heuris- 
tic. For a comparison with other heuristics for the 
assignment problem, the reader is referred to the 
survey paper [1]. We begin by stating the heuristic 
more precisely and discussing its complexity. 

For convenience, we assume that n = k X m for 
integers k and m. This can always be achieved by 
enlarging A if necessary and by setting the new 
matrix elements to zero in case of maximization or 
some very large positive value in case of minimiza- 
tion. The solution to an assignment problem on A 
can be described by a n  n × n p e r m u t a t i o n  m a t r i x  

M = (m,~). The entries in M are either zero or one 
and each row and column of M contains precisely 
one nonzero entry, corresponding to the element 
chosen in the assignment. The v a l u e  of the solu- 
tion is then the matrix product A × M. 

procedure ASSIGN (A, k, m) 
begin 

1. Partition A into k 2 submatrices Rij, 1 ,.~ i, 
j < k of size m x m; 

2. Solve the assignment problem on each R~j 
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using an optimal algorithm obtaining solu- 
tions with value d,j and permutation 
matrices Y~/: 

3. Solve the k x k assignment .problem D = 
( d . )  obtaining permutation matrix Q =  
( q . ) ;  

4. Build the n × n  permutation matrix M 
from k 2 =ubmatrices q, iY,,. i ~< i, j .  ~ k. 

end. 

The algorithm is illustrated schematically in 
Figure 1. The complexity analysis of ASSIGN is 
straight forward. Step 2 requires the solution of/,.2 
assignment problems of  size m × m and hence 
requires O(k2m ~) time. Step 3 requires the solu- 
tion of one k X k assignment problem and hence 
requires O(k 3) time. A nice feature of the al- 
gorithm is that A may he stored in secondary 
storage and the main memory required is only 
max(m 2, k 2). Therefore the space-optimal version 
of  ASSIGN is eh:ained when m = k = ~/~ and 
requires O(n) space and O(o 2s) time. The time. 
optimal version of ASSIGN is obtained by setting 

Step l : Partition 

Step 2: Solveeach R,~ 
(e.g. i = 2, j = 3) 

o Ir,~l o ]  
o , 0 , 1 0 0 [  

I I OOI/ __.,l___.J.___ 
.r~ 1 0 I o ]  

Step 3: Solve ' master ~ problem 

Step4: Build solution M forA 

I _ '  ' ] R l l  l R I 2  I R I 3  
- - - I -  - - 1 - - - A= _~,j_R_~j3, _, 

i i L r ~ , ,  e32, r . J  

R2~ = 6 

D = d2~ d2z 

G d32 d'3 J 

M= 

Fig. 1. Schematic illustration of ASSIGN : Minimization (k = 3. 
m=3). 
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k2m 3= k ~ and hence k = u "V4. This version has 
space requirement O(n ts)  and time requirement 
0(n2'25). 

In the next two sections we analyze the quality 
of  the solution obtained by ASSIGN. The next 
section i~ c.oncerned with worst case analysis, and 
the last section with expected case analysis. 

2. Worst ease analysis 

In this section, we consider the worst case anal- 
ysis of the heuristic ASSIGN. We denote by 
H.~;~(A) and H."~(A)  the value obtained by 
ASSIGN(A. k. m) for the maximization and 
minimization problems respectively. Let O.,.~(A) 
and O..i.(A) be the respective optimal solutions. 
One measure of the effectiveness of the heuristic 
are the ratio bounds 

O.,,,~(A) and H~'~(A) 
.... k 0,,,~.( A ) " 

In this section we analyze how large these ratios 
can get in the worst case. Unless stated otherwise. 
all matrix subscripts are reduced mod n to the 
range 1.2 . . . . .  n in this section. 

We begin by defining a matrix that will be 
useful in the worst ease analysis. Again. for con- 
venience, we assume n = k m  for integers k, m. 
Consider the matrix W.. k ~(w,~) 1 ~< i, j .~  n de- 
fined by 

(10 i = a m + b ~ ' l . j = b m + i .  
%i  = a ~ 0 , 1  . . . . .  k - l , b = 0 , 1  . . . . .  m - l ,  

otherwise. 

For n = 6, The constructions for m = 2, k = 3 and 
m = 3. k = 2 are given in Figure 2. Interchanging 
the values zero and one in_W.,,, yields the comple- 
mentary matrix denoted IV.,. k. The required prop- 
erties of these matrices are contained in the follow- 
ing lemma: 

t olo o:o o] [t o olo o o] 
0 0 , 0  l , O  O l  lO 0 0 , 0  1 O l  
0 - - 0 - ~ - 1 - 0 ~ , - 0 - - 0 |  / 0 0 t ' ,  0 0 O [  
o_oj_o_o ;o__~_| [~--o--~rT'o--~/ 
0 0 t 0 0 I 1 O/  tO  ] 0 t 0 0 O /  
o t ' ,o  o , o  oJ Lo o ~',o o t l  

%,.~ w~,2 

Fig. 2. 
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Lemma I. (a) Oma.( B~,.. t ) = kin. (b) O,.i.(W., k ) = 
o. (c) n,~,',~(~,,.~)= k if/~ > ,.. (d) n"~(~,,,,.~) 
>~k if m, k > 2 .  

Proof. We begin by show;ng that W.,,k is a permu- 
tation matrix. First observe that i takes the values 
1, 2 . . . . .  n as we step through values of a letting b 
run from 0 to m -- 1. Thus it suffices to show that 
the same value of j cannot occur twice. Suppose, 
on the contrary, that 

him + (aim + b I + 1) = b2m + (a2m + b 2 + 1) 

for integers 0 < a t, o 2 < k - l and 0 ~< b t, b 2 6 
m - I. This implies that 

(m+l)(b I-b2)=(a 2-a,)m (modmk). 

and hence that b t - b 2 is a multiple of m. This is 
only possible if b I = b 2. Therefore 

( a ~ - a l ) m = O  (med ink) ,  

and so a 2 - a I is a multiple of k. This implies that 
a I = a 2, completing the proof that W,,.~ is a per- 
mutation matrix. This proves parts (a) and (b) of 
the lemma. 

Consider the partition of W,,,,k into k 2 sub- 
matrices R~, of size m × m in step 1 of ASSIGN. 
We will determine the number of nonzero entries 
in each submatri~t. Set a = 0 and let b range from 
0 to m -  1. These m nonzero elements are dis- 
tributed into R n, R u , . : . ,  R~k as follows: 

Ru[1 ,  l ] = l ,  Rt : [2 ,  2 ] =  I ,  R , s [ 3 , 3 l = i  . . . . .  

If k >~m, this sequence ends with the entry 
Rim[m, m], Otherwise it continues: 

R n [ k + l , k + l ] = l ,  R i2[k+2 ,  k + 2 ] = l  . . . .  

terminating with Rl,,,,mo~[m, m ] =  1. Thus each 
submatrix receives either [~'] or [~]  nonzero 
entries. The same analysis and results holds for 
each value of a, and hence for each submatrix R . .  

If  k > m,  then each submatrix receives at most 
one nonzero entry, hence part (c) of the lemma 
follows. I f  m, k > 2, then no submatrix R .  con- 
tains as many as m nonzero elements. Therefore in 
the complementary matrix R~,, there are less than 
m zeroes and the minimum assignment in this 
submatrix has weight at least one. Thus (d) follows 
and the proof of the lemma is complete. [] 

When m >~ k we define the matrix W.*,.~ as 
follows: 

, _ { 1  i = a m + b + l ,  j = b m + i ,  

w~j-  a = O  . . . . .  k - I ,  b = O  . . . . .  k - l ,  
0 otherwise. 
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W,*t is a zero-one matrix whose nonzero entries 
are a subset of those of W=. k. Analogously to 
Lemma 1, we can prove the following lemma. 

i .emma 2. (a) O,,~(W.*,.k)=k 2, (b) .,.k H~a~ (14~.k) 

Let .at. be the set of n x .  matrices which are 
nonzero and whose entries are nonnegative real 
numbers. Then we can !0rove the main theorem of  
this section. 

Theorem 1 

(a) sap ~ =  min(k m). 

(b) sup - - =  + ~ .  
.4E~. Omi.( A ) 

Proof. Part (b) follows immediately from Lemma 1 
parts (b) and (d). From Lemma 1 parts (a) and (c) 
and from Lemma 2 we can conclude that 

sup ~ > ~  min(k ,  m) .  

Therefore, to establish part (a) of  the theorem, it 
suffices to prove the above with the inequality 
reversed. Fix n = m k  and let A be any matrix in 
.at.. Referring to the heuristic ASSIGN.  we see 
that 

Omax(A) ~ ~ £ dq ,  
~-1  jffi l  

since d~ must be larger than the sum of  all 
elements in the optimal assignment for A that lie 
in the submatrix R,j.  Now every k × k matrix D 
contains k disjoint assignments that partition the 
elements of  D. Therefore, by averaging, 

k k .... ~ Ei=lEj~tdij O ~ (  A) 

which shows that the worst case ratio is bounded 
by k. Now consider the matrix D* = (d~).  1 ~ i, 

j ~ k, defined by 

• t d q  if  R o contMns an element in the 
dq = optimal assignment 

0 otherwise. 

Then D* can have at most m positi~,e elements in 
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each row and column. These positive entries c a n  
be decomposed into at most m disjoint assign- 
ments. Since 

i=1 j = l  

we have 

m 

which proves that the worst case ratio is bounded 
b y m .  I"1 

In order to put this result in perspective, con- 
sider the heuristic G R E E D Y  which repeatedly 
chooses the largest (resp. smallest) matrix element 
that does not lie in the same row or column as any 
previously chosen element. Then, as shown in [1], 
the maximization problem has a ratio bound of 2, 
and the minimization problem has an unbounded 
ratio. G R E E D Y  runs in time O(n 2 log n). 

3. Expected case analysis 

In this section we give a probabilistic analysis 
of ASSIGN. Throughout this section, we assume 
that A is an n x n matrix whose elements are 
independent uniformly distributed random varia- 
bles on the l a t e r a l  [0, 1]. Under  these assump- 
tions, the minimization and maximization prob- 
lems are symmetric, sc that 

r ( o . , . , ( a ) )  = ,  -- r (O~.(A)). 

E(  Hm~'.'~ ( A ) )  = n- £(  H~'i~( A )). 

We therefore consider just  the minimization prob- 
lem and denote the random variables correspond- 
ing to the value of ~he optimal and heuristic solu- 
tions by 0"  and H '''~ respectively. The expected 
value of O" has been obtained by Walkup, and we 
state the rather surprising result here. 

Theorem 2 [6]. E ( O " )  ~ 3. 

An application of Theoreta 2 yields an upper 
bound on ASSIGN:  

E( H re'k) ~ 3k. 

We will show in the next theorem that for most 
values of m and k, this bound is sharp to a 
constant factor. 
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Theorem 3. I f  k = e  °°'~ and m--.oo (which is 
satisfied/fk = o(n / Iog  n)), then 

lim inf E( H"~ ) >~ 1 
m k ~ o  k ~ " 

Proof. Let R , [ r , s J, 1 g i, j <.<. k, I ~ r , s <~ m be 
the element [r, s] of submatris R,: A simple 
argument shows that 

H '''t >1 ~ min min R,/[r, s]. 

We claim that the random variable min~ ~, ~ ,,, R jr 
[r, s] is stochastically greater than 

E, , ( r ) / (E , j ( r )+m) ,  

where E~i(r) is an independent exponential ran- 
dom variable. Indeed, dropping the subscripts i, j 
and the index r, we have, for x contained in [0, l], 

p( ~,n,,, R ,r ' ,  ~l > ~ )=  (I - ~)" 

Thus, for all constants c in the open interval (0, 1), 

~ '~i~kr= I E u ( r ) + m  ] 
m 

If  we can prove that lim . . . .  /8 = 1, then, since c 
was arbitrary, the proof is complete. We have 

~,- i  t ~ t r l t m  } 
~ l - k P ( ~ E ( r ) l , L ' , r , < , , , l  <2em) 

[ ) > ~ l - k  P E(r )<em 

+P( ~f E(r) l ,  tl~,~,,,,>cm)]" 

Applying Chebyshev's inequality to the last term, 
we have 

/8>~l-k[p(G'mm<c-1)+~Sxe-Mx], 
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where Go, is a gamma distributed random variable 
with parameter m. Finally, using a strong tail 
inequality for gamma distributions (see, for exam- 
ple Devroye [2]), we obtain 

= t  -o0), 
since k = e  " ' ~  and c ~ ( 0 ,  1). [] 

This theorem demonstrates that the space opti- 
mal version of ASSIGN will give solutions of 
expected size roughly v~ times that of the optimal 
solution. For the time optimal version, the factor 
is even worse at n "V4. By comparison, G R E E D Y  
gives a solution that is approximately log n times 
optimal. The best heuristic for this kind of input 
appears to be the ¢O(n 2) heuristic of Lai [4]. This 

gives an expected solution of size at most 6, which 
is a small constant larger than optin~aL 
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