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Abstract. Let fnh be the Parzen-Rosenblatt kernel estimate of a density f on the real line, based upon

a sample of n i.i.d. random variables drawn from f , and with smoothing factor h. Let gnh be another

kernel estimate based upon the same data, but with a different kernel. We choose the smoothing factor H

so as to minimize
∫
|fnh− gnh|, and study the properties of fnH and gnH . It is shown that the estimates

are consistent for all densities provided that the characteristic functions of the two kernels do not coincide

in an open neighborhood of the origin. Also, for some pairs of kernels, and all densities in the saturation

class of the first kernel, we show that

lim sup
n→∞

E
{∫
|fnH − f |)

}

E
{

infh
∫
|fnh − f |

} ≤ C,

where C is a constant depending upon the pair of kernels only. This constant can be arbitrarily close to

one.
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Section 1: INTRODUCTION

We consider the standard problem of estimating a density f on R1 from an i.i.d. sample X1, ..., Xn

drawn from f . The density estimates considered in this note are the well-known kernel estimates

fn =
1

n

n∑

i=1

Kh(x−Xi)

where h > 0 is a smoothing factor, K is an absolutely integrable function called the kernel,
∫
K = 1, and

Kh(x) = (1/h)K(x/h) (Parzen, 1962; Rosenblatt, 1956). We are particularly interested in smoothing

factors that are functions of the data (which are denoted by H to reflect that they are random variables).

Most proposals for functionsH found in the literature minimize some criterion; for example, many attempt

to keep
∫

(fnH−f)2 as small as possible. Extending Stone (1984), we say that fn is asymptotically optimal

for f if H is such that
E
{∫
|fnH − f |

}

infh E {|fnh − f |}
→ 1

as n → ∞. Stone defined this notion with L2 errors instead of L1 errors, without the expected values,

and with almost sure convergence to one for the ratio. In Theorem S1, we will show that for our way

of choosing H , E infh and infh E can be used interchangeably, and that
∫
|fnH − f |/E

∫
|fnH − f | → 1

almost surely, so that all definitions are equivalent for our method.

It should be noted that fn may be asymptotically optimal for some f and K and not for

other choices. A perhaps too trivial example is that in which K is the uniform density on [−1, 1],
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and H = cn−1/5 where c is known to be optimal for the normal (0, 1) density and the given K. Ob-

viously, such a choice leads in general to asymptotic optimality for the normal (0, 1) density, and to

suboptimality in nearly all other cases. It is clearly of interest to the practitioner to make the class of

densities on which asymptotic optimality is obtained as large as possible. Remarkably, in the L2 work

of Stone (1984), asymptotic optimality was established for all bounded densities and all bounded kernels

of compact support if H is chosen by the L2 cross-validation method of Rudemo (1982) and Bowman

(1984). This H is of little use in L1, and the method is dangerous: for some unbounded densities, we have

lim inf E
{∫
|fnH − f |

}
≥ 1 (Devroye, 1988). Since data-based techniques for choosing H are supposed to

be automated and inserted into software packages, it is important that the method be consistent.

It is perhaps useful to reflect on the possible strategies. Hall and Wand (1987) have proposed a

plug-in adaptive method, in which unknown quantities in the theoretical formula for the asymptotically

optimal h are estimated from the data using other nonparametric estimates, and then plugged back in

the formula to obtain H . Similar strategies have worked in the past for L2 (see, e.g., Woodroofe (1970),

Nadaraya (1974) and Bretagnolle and Huber (1979)). The advantages of this approach are obvious: the

designer clearly understands what is going on, and the problem is conceptually cut in clearly identifiable

subproblems. On the other hand, how does one choose the smoothing parameters needed for the secondary

nonparametric estimates? And, assuming that the conditions for the theoretical formula for h are not

fulfilled, isn’t it possible to obtain inconsistent density estimates? To avoid the latter drawback, it is

imperative to go back to first principles. Cross-validated maximum likelihood products have been studied

by many: Duin (1976) and Habbema, Hermans and Vandenbroek (1974) proposed the method, and Chow,

Geman and Wu (1983), Schuster and Gregory (1981), Hall (1982), Devroye and Györfi (1985), Marron

(1985) and Broniatowski, Deheuvels and Devroye (1988) studied the consistency and rate of convergence.

Unfortunately, the maximum likelihood methods for choosing h pertain to the Kullback-Leibler distances

between densities, and bear little relation to the L1 criterion under investigation here. The L2 cross-

validation method proposed by Rudemo (1982) and Bowman (1984) has no straightforward extension

to L1. Its properties in L2 are now well understood, see, e.g., Hall (1983,1985), Stone (1984), Burman

(1985), Scott and Terrell (1987) and Hall and Marron (1987). This seems to leave us empty-handed were

it not for the versatility of the kernel estimate itself. Indeed, the method we are about to propose does

not easily generalize beyond the class of kernel estimates.

The estimator proposed below has two advantages:

A. It is consistent for all f , i.e., E
{∫
|fnH − f |

}
→ 0 for all f .

B. For a large family of nice densities, we have C-optimality, i.e., there exists a constant C such

that for all f in the class,

lim sup
n→∞

E
{∫
|fnH − f |

}

infh E
{∫
|fnh − f |

} ≤ C.

The constant C can be as close to one as desired. We define our H simply as the h that minimizes∫ |fnh − gnh|, where gnh is the kernel estimate based upon the same data, but with kernel L instead of

kernel K. The key idea is that most kernels considered in practice have built-in limitations, including the

class of all kernels with compact support. For any such kernel K, it is fairly easy to construct another
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kernel L whose bias is asymptotically superior in the sense that

lim
h↓0

∫
|f ∗ Lh − f |∫
|f ∗Kh − f |

= 0,

where ∗ is the convolution operator. The class of densities f for which this happens coincides roughly

speaking with the class of densities for which
∫ |f ∗Kh − f | tends to zero at the best possible rate (or:

saturation rate) for the given K. These classes are rich, but they won’t satisfy everyone. What the

improved kernel can do for us is simple: it is very likely that gnh, the kernel estimate with K replaced by

L, is much closer to f than fnh, and thus that
∫
|fnh − gnh| is of the order of magnitude of

∫
|fnh − f |.

We won’t worry here about the numerical details. First of all, if K and L are polynomial and of

compact support (as they often are), then the integral to be minimized can be rewritten conveniently as

a finite sum with O(n) terms, by considering that each kernel estimate is piecewise polynomial with O(n)

pieces at most. The minimization with respect to h is a bit harder to do. Observing that the function to

be optimized is uniformly continuous on any interval (a, b) ⊆ [0,∞), we see that the minimum exists and

is a random variable. For more general non-polynomial K and L, under some smoothness conditions, we

still have ∣∣∣∣
∫
|fnh − f | −

∫
|fnh′ − f |

∣∣∣∣ ≤ c
∣∣∣∣
h− h′
h

∣∣∣∣

for some c > 0. For h, h′ close enough, this can be made smaller than 1/n, which is much smaller than the

smallest possible L1 error (which is 1/
√

528n by Devroye, 1988). Thus, the minimization can be carried

out over a grid of points, and in any case, it is possible to define a random variable H with the property

that
∫
|fnH − gnH | ∼ infh

∫
|fnh − gnh|.

There is another interesting by-product of this method, namely that we end up with two kernel

estimates fnH and gnH , where for the class of densities under consideration, gnH is probably better than

fnH . Interestingly, fnH is asymptotically optimal for K but gnH is usually not asymptotically optimal

for L. One way of looking at our method is as a technique for creating a better estimate (gnh) without

imposing additional smoothness conditions on the densities. Another by-product of the method is that∫
|fnH − gnH | is a rough estimate of the actual error

∫
|fnH − f |. Unfortunately, if one decides to use

gnH instead of fnH , then
∫
|fnH − gnH | provides little information about the actual error obtained with

gnH .

Not all pairs (K,L) are useful. The most important property needed to be fulfilled is that the

characteristic functions of K and L do not coincide in an open neighborhood of the origin. This often

forces K and L to be kernels of a different order. In addition, we will see that the constant C can be

chosen equal to (1 + u)/(1− u), where u = 4
√∫

L2/
∫
K2.

The length of the paper is partially explained by the fact that we wanted to state as many

properties of the estimate as possible in a density-free manner. This also renders the results more useful

for future work on the same topic. Among the density-free results, we cite

• The consistency (Theorem C1).

• The complete convergence (Lemma O2).
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• The strong relative stability of the estimate (Lemma O5).

• Bounds on the error that are uniform over all h (Theorem C2 and Lemma O1).

• Necessary conditions of convergence (Lemmas C1 and C2).

• A universal lower bound for the expected error (Lemma O5).

• Universal lower bounds for the variation in the error (Lemmas O7, O8).

While it is good to know that the estimate always converges and is C-optimal for virtually all

densities in the saturation class of a kernel K, it is informative to find out what we have not been able

to achieve. First of all, the kernels K considered here for C-optimality are class s kernels, i.e., all their

moments up to but not including the s-th moment vanish. This implies, as we will see, that the expected

error can go to zero no faster than a constant times n−s/(2s+1) for any density. In this respect, we are

severely limited, since it is well-known that for very smooth densities kernels can be found that yield error

rates that are O(1/
√
n) or come close to it (see, e.g., Watson and Leadbetter (1963) for an equivalent

statement in the L2 setting). We can exhibit explicit constants C and D such that for n large enough,

E
{∫
|fnH − f |

}
≤ C inf

h
E
{∫
|fnh − f |

}
+D

√
logn

n
.

This inequality implies that C-optimality can only be hoped for when the best possible error rate for the

present K and f is at least be
√

log n/n. Unfortunately, this would exclude such interesting densities as

the normal density, for which we can get O(log1/4 n/
√
n) (Devroye, 1988). In particular, it seems that

for analytic densities in general, the techniques presented here need some strengthening.

But perhaps the biggest untackled question is what happens to the expected error for densities

f that are not in the saturation class of K; these are usually densities that are not smooth enough or

not small-tailed enough to attain the rate n−s/(2s+1). Despite this, it may still be possible to apply the

present minimization technique to obtain good asymptotic performance for most of them. All that is

needed is to verify the fact that for the pair (K,L),
∫
|f ∗Lh−f | = o(

∫
|f ∗Kh−f |). On the other hand,

it is also possible that a general result such as the one obtained by Stone (1984) for L2 errors does not

exist in the L1 setting.

Section 2: CONSISTENCY

The purpose. The purpose of this section is to prove the following

Theorem C1. Let K and L be absolutely integrable kernels such that their (generalized) characteristic

functions do not coincide on any open neighborhood of the origin, and let f be an arbitrary density. Then

E
∫
|fnH − f | and E

∫
|gnH − f | tend to zero as n→∞.

One of the difficulties with this sort of Theorem is that it needs to be shown for all densities

f , even those f for which the procedure for selecting H is not specifically designed. Furthermore, the
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L1 errors are not easily decomposed into bias and variance terms, since H depends upon the data, so

that conditional on H , the summands in the definition of the kernel estimate are not independent. We

will provide a mechanism for decoupling H and the data. In the final analysis, the proof of Theorem C1

rests on an exponential inequality of Devroye (1988) and some other properties of the random function∫
|fnh − f | (considered as a function of h). The proof will be cut into many lemmas, some of which will

be useful outside this paper and in other sections.

The condition on K and L implies that
∫ |K − L| > 0. It is possible to have consistency even

if the characteristic functions of K and L coincide on some open neighborhood of the origin, but such

consistency would not be universal; it would apply only to densities whose characteristic function vanishes

off a compact set. The details for such cases can be deduced from the proof. We have also unveiled where

it is possible to go wrong: it suffices to have the said coincidence of the two characteristic functions, while

f has a characteristic function with an infinite tail. In those cases, the H may actually end up tending

to a positive constant as n → ∞. Unfortunately, as is well known, for such densities, it is impossible to

have consistency unless H → 0. From this, we retain that the behavior of the characteristic function of

K−L near the origin is somehow a measure of the discriminatory power of the method. Usually, we take

a standard nonnegative kernel for K whose characteristic function varies as 1− at2 near t = 0, whereas

for L we can take a kernel whose characteristic function is flatter near the origin, behaving possibly as

1− bt4 or even identically 1 on an open neighborhood of the origin.

The decoupling device. We have seen that X1, . . . , Xn are i.i.d. random variables with density f ,

and that H = H(n) is a sequence of random variables where H(n) is measurable with respect to the σ-

algebra generated by X1, . . . , Xn, i.e., it is a function of X1, . . . , Xn. Consider now independent identically

distributed copies of the two sequences, denoted by X̂1, . . . , X̂n, . . . and Ĥ = Ĥ(n) respectively. Density

estimates based upon the former data are denoted by fnh,gnh,fnH and gnH typically, while for the latter

data, we will write f̂nh and so forth.

In our decoupling, we will show that
∫
|fnH − f | and

∫
|f̂nH − f | are close in a very strong sense.

Note that the second error is that committed if H is used in a density estimate constructed with a new

data set. The independence thus introduced will make the ensuing analysis more manageable. To keep

the notation simple, we will write En for the conditional expectation given X1, . . . , Xn, and Ên for the

conditional expectation given X̂1, . . . , X̂n. With this notation, note that En
∫
|f̂nH − f | is distributed as

Ên
∫
|f
nĤ
− f |, and thus that E

∫
|f̂nH − f | = E

∫
|f
nĤ
− f |.

Uniform convergence with respect to h

The first auxiliary result is so crucial that we are permitting ourselves to elevate it to a Theorem:

Theorem C2. Let M be an arbitrary absolutely integrable function, and define mnh = 1
n

∑n
i=1Mh(x−

Xi) where X1, . . . , Xn are i.i.d. random variables with an arbitrary density f , and h > 0 is a real number.

Then

sup
h

∣∣∣∣
∫
|mnh| − E

∫
|mnh|

∣∣∣∣→ 0
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almost surely as n→∞. In fact, for every ε > 0, there exists a constant γ > 0 possibly depending upon

f , M and ε, such that for all n large enough,

P
{

sup
h

∣∣∣∣
∫
|mnh| − E

∫
|mnh|

∣∣∣∣ > ε

}
≤ e−γn.

To see how Theorem C2 exactly provides us with the required decoupling between H and the

data, consider the following

Corollaries of Theorem C2. Let fnh,gnh be kernel estimates with kernels K and L respectively,

and define Jnh =
∫
|fnh − gnh| and Ĵnh =

∫
|f̂nh − ĝnh|. Then

A. suph>0 |Jnh − EJnh| → 0 almost surely as n→∞.

B. For any random variable H (possibly not independent of the data), JnH − EnĴnH → 0 almost

surely as n→∞.

C. For any random variable H (possibly not independent of the data), JnH → 0 in probability

implies EJnH → 0, EnĴnH → 0 in probability, EĴnH → 0, and EJ
nĤ
→ 0.

Proof. Note first that |mnh − unh| ≤
∫
|M −M ′| when unh is the kernel estimate with kernel M ′. The

fact that the bound does not depend upon h and that M ′ is arbitrary means that we need only show the

Theorem for all M that are continuous and of compact support (since the latter collection is dense in the

space of L1 functions).

The first auxiliary result is the following inequality, valid for all fixed h,n,M and f :

P
{∣∣∣∣
∫
|mnh| − E

∫
|mnh|

∣∣∣∣ > ε

}
≤ 2e

− nε2

32
∫ 2 |M |

(Devroye, 1988). It is this inequality that will be extended to an interval of h’s using a rather standard

grid technique. Set ∆(h) = |
∫
|mnh| − E

∫
|mnh||, and ∆(a, b) = suph,h′∈[a,b] |∆(h) −∆(h′)|. Then the

following inclusion of events is valid:

[
sup
a≤h≤b

∆(h) > ε

]
⊆ ∪ki=0[∆(aci) > ε/2] ∪ki=1 [∆(aci − 1, aci) > ε/2]

where k is an integer so large that ack ≥ b, and c > 1 is such that

sup
1≤h≤c

∫
|M1 −Mh| ≤ ε/4.
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Such a c can indeed be found, since for all absolutely integrable M , limh→1

∫
|M1 −Mh| = 0 (see, e.g.,

Devroye, 1987, pp. 38-39). The second union in the inclusion inequality is a union of empty events since

∆(aci − 1, aci) ≤ sup
aci−1≤h,h′<aci

∣∣∣∣
∫
|mnh| −

∫
|mnh′ |

∣∣∣∣+ sup
aci−1≤h,h′<aci

∣∣∣∣E
∫
|mnh| − E

∫
|mnh′ |

∣∣∣∣

≤ 2 sup
aci−1≤h,h′<aci

∫
|Mh −M ′h| = 2 sup

1≤h≤c

∫
|M1 −Mh| < ε/2.

Thus,

P

{
sup
a≤h≤b

∆(h) > ε

}
≤

k∑

i=0

P
{

∆(aci) > ε/2
}
≤ 2(k + 1)e

− nε2

128
∫ 2 |M | .

This tends to 0 when k increases at a polynomial rate in n. To see how large k just is, note that ack ≥ b,
so that k ≥ log(b/a)/ log(c). Since c is a constant depending upon ε and M only, it suffices to have limits

a and b that are such that b/a ≤ dn for some constant d. We will only need the present inequality with

b/a = O(n), so that k can be taken smaller than d + log(n) for some constant d. Recapping, we need

only establish that for some sequences a = a(n) and b = b(n) with b/a = O(n) that

lim
n→∞

(
P
{

sup
h<a

∆(h) > ε

}
+ P

{
sup
h>b

∆(h) > ε

})
= 0.

Assume that M vanishes off [−s, s]. Take a = sδ/2n where δ > 0 is a constant to be picked further

on. Note that 1 ≥
∫
|mnh|/

∫
|M | ≥ n−N

n where N is the number of Xi’s for which [Xi− 2a,Xi+ 2a] has

at least one Xj with j 6= i. The inequality is uniform over h ≤ a. We have

P
{

sup
h<a

∆(h) > ε

}
≤ P

{
sup
h<a

∣∣∣∣
∫
|mnh| −

∫
|M |

∣∣∣∣ > ε/2

}
+ P

{
sup
h<a

∣∣∣∣E
∫
|mnh| −

∫
|M |

∣∣∣∣ > ε/2

}

≤ P
{
N

n
>

ε

2
∫ |M |

}
+ P

{
EN
n

>
ε

2
∫ |M |

}
.

By Markov’s inequality, this can be made smaller than a given small constant ε′ if

EN
n
≤ min(1, ε′)

ε

2
∫
|M | .

But EN/n ≤
∫
f(x) min

(
1, n

∫ x+sδ/n
x−sδ/n f(y)dy

)
dx and the right-hand-side tends to

∫
f(x) min(1, 2sδf(x))dx

by the Lebesgue dominated convergence theorem and the Lebesgue density theorem (see, e.g., Wheeden

and Zygmund, 1977). It can be made as small as desired by our choice of δ. We conclude that for any

ε, ε′ > 0, we can find δ > 0 small enough such that

lim sup
n→∞

P
{

sup
h<a

∆(h) > ε

}
≤ ε′.

We should note here that if Markov’s inequality is replaced by an exponential bounding method, then it

should be obvious that for δ small enough the probability in question can be bounded by e−dn for some

constant d > 0.

We finally proceed to show that

P
{

sup
h>b

∆(h) > ε

}
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can be made arbitrarily small by choosing a large enough constant b. This would conclude the proof of

the theorem since b/a = O(n) as required. We have

∫
|mnh| ≥

n−N
n

(∫

|x|≤Th
|Mh(x)|dx −

∫

|x|≤Th
sup
|y|≤T

|Mh(x)−Mh(x− y)|dx
)
− N

n

∫
|M |,

where T is a large constant, and N is the number ofXi’s with |Xi| > T . Let ω be the modulus of continuity

of M defined by ω(u) = supx sup|y|≤u |M(x)−M(x+ y)|. By our assumptions on M , ω(u)→ 0 as u ↓ 0.

Then ∫

|x|≤Th
sup
|y|≤T

|Mh(x)−Mh(x− y)|dx ≤
∫

|x|≤Th

1

h
ω(T/h)dx ≤ 2Tω(T/h) ≤ 2Tω(T/b),

when h ≥ b. Furthermore, by Hoeffding’s inequality (Hoeffding, 1963),

P

{
N

n
> 2

∫

|y|>T
f

}
≤ e−2n

∫ 2
|y|>T f

so that, combining all this,

P

{
sup
h≥b
|
∫
|mnh| −

∫
|M || > 2Tω(T/b) + 4

∫
|M |

∫

y|≥T
f

}
≤ e−2n

∫ 2
|y|>T f .

From this, we have since
∫
|mnh| ≤

∫
|M |,

sup
h≥b

∣∣∣∣E
∫
|mnh| −

∫
|M |

∣∣∣∣ ≤ 2Tω(T/b) + 4

∫
|M |

∫

|y|≥T
f +

∫
|M |e−2n

∫ 2
|y|>T f .

For fixed ε > 0, we choose T and b so large that the terms on the right hand side are < ε/6, < ε/6 and

o(1) respectively. Then

P

{
sup
h≥b

∆(h) > ε

}
≤ P

{
sup
h≥b

∣∣∣∣
∫
|mnh| −

∫
|M |

∣∣∣∣ > ε/2

}
+ P

{
sup
h≥b

∣∣∣∣E
∫
|mnh| −

∫
|M |

∣∣∣∣ > ε/2

}

≤ e−2n
∫ 2
|y|>T f

for all n large enough. This concludes the proof of Theorem C2.

2 Behavior of the minimizing integral

Although this seems rather obvious, we will nevertheless state and prove the following property:

Theorem C3. Let H minimize
∫
|fnh − gnh|. For all f and all absolutely integrable K and L,

∫
|fnH −

gnH | tends to 0 almost surely and in the mean. Also, En
∫
|f̂nH − ĝnH | → 0 almost surely, and E

∫
|f
nĤ
−

g
nĤ
| → 0.
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Proof. Let the sequence h∗ = h∗(n) be such that E
∫
|fnh∗−gnh∗ | ∼ infh E

∫
|fnh−gnh|. We know that

whenever h → 0 and nh → ∞, it follows that
∫
|fnh − f | → 0 almost surely and in the mean (see, e.g.,

Devroye, 1983). In particular, infh
∫ |fnh − f | → 0 almost surely, and E

∫ |fnh∗ − gnh∗ | → 0 as n → ∞.

Assume that n is so large that E
∫
|fnh∗ − gnh∗ | < ε/2. Then, since

∫
|fnH − gnH | ≤

∫
|fnh∗ − gnh∗ | by

definition, we see that for such n,

P
{∫
|fnH − gnH | > ε

}
≤ P

{∫
|fnh∗ − gnh∗ | − E

∫
|fnh∗ − gnh∗ | > ε/2

}

≤ 2e
− nε2

128
∫ 2 |K−L| .

We can now apply the corollaries of Theorem C2, to conclude that En
∫
|f̂nH − ĝnH | → 0 almost

surely, and E
∫
|f
nĤ
− g

nĤ
| → 0.

The decoupling necessary for the proof of Theorem C1 is now complete.

Necessary conditions of convergence.

Proof of Theorem C1. From Theorem C3, we see that E
∫ |f

nĤ
−g

nĤ
| → 0. From Lemmas C1 and C2

we retain that Ĥ → 0 and nĤ →∞ in probability as n→∞. Since Ĥ and H are identically distributed,

the same statement is true for H . By Theorem 6.1 of Devroye and Györfi (1985) or Theorem 3.3 of

Devroye (1987), this implies that
∫
|fnH − f | → 0 in probability for all f and all absolutely integrable

K, and similarly for
∫
|gnH − f |. This in turn implies convergence in the mean of both quantities.

Section 3: C-OPTIMALITY

The main result. This is the main body of the paper, even though it is concerned only with specific

subclasses of densities. The kernel estimates considered here are class s-estimates (s is an even positive

integer), i.e., estimates based upon class s-kernels, which are kernels K having the following properties:

A.
∫

(1 + |x|s)|K(x)|dx <∞.

B.
∫
K = 1,

∫
xiK(x)dx = 0 for 0 < i < s, and

∫
xsK(x)dx 6= 0.

C. K is symmetric.

D.
∫
K2 <∞.

Note that nonnegative kernels are at best class 2 kernels. It is worth recalling that for every

density f , no matter how h is picked as a function of n,

lim inf
n→∞ n

s
2s+1 E

∫
|fn − f | ≥ c

10



where c > 0 is a constant depending upon K only (for s = 2 and K ≥ 0, see Devroye and Penrod (1984),

and for general s, see Devroye, 1988). This lower bound is not achievable for many densities. The rate

n−s/(2s+1) can however be attained for densities with s−1 absolutely continuous derivatives (i.e., f , f (1),

. . ., f (s−1) all exist and are absolutely continuous), satisfying the tail condition
∫ √

f < ∞ (see, e.g.,

Rosenblatt (1979), Abou-Jaoude (1977), or Devroye and Györfi (1985)). The class of such densities will

be called Fs (or F when no confusion is possible).

To handle the tails of f satisfactorily, it is necessary to introduce a minor tail condition, slightly

stronger than
∫ √

f < ∞: we let W be the class of all f for which
∫
|x|1+εf(x)dx < ∞ for some ε > 0,

and let V be the class of all f for which
∫ √

uf (x)dx < ∞, where uf (x)
def
= sup|y|≤1 f(x + y). Devroye

and Györfi (1985) noted that
∫ √

f < ∞ is virtually equivalent to
∫
|x|f(x)dx < ∞ although there are

exceptions both ways. Thus, Fs∩W is not much smaller than Fs. The same is true for V , since
∫ √

f <∞
implies

∫ √
uf <∞ for most smooth densities (e.g. it is always implied when f is monotone in the tails).

Next, we will impose a weak smoothness condition on an absolutely integrable function M : M

is said to be smooth if there exists a constant C such that

sup
1≤h≤c

∫
|M −Mh| ≤ C(c− 1)

for all c > 1. Smoothness of a kernel implies that small changes in h induce proportionally small changes

on fnh with regard to the L1 distance. It seems vital to control these changes for any method that is based

upon the minimization of a criterion involving h. Consider now the problem of picking the smoothness

constant C. For example, if M ≥ 0 is unimodal at the origin and
∫
M = 1, then we can always take

C = 2 (see Devroye and Györfi (1985, p. 187)). However, this is not interesting for us, since we need to

have smoothness for the difference function K−L, which takes on negative values. When M is absolutely

continuous, we can take C =
∫ |x||M ′(x)|dx +

∫ |M |. This can be seen as follows, if h > 1:
∫ ∞

0
|M(x)−Mh(x)|dx =

∫ ∞

0

∣∣∣∣
∫ ∞

x
M ′ −

∫ ∞

x
(Mh)′

∣∣∣∣ dx

=

∫ ∞

0

∣∣∣∣
∫ ∞

x
M ′ −

∫

x
/h∞

1

h
M ′
∣∣∣∣ dx

≤
∫ ∞

0

∣∣∣∣∣

∫ x

x/h

1

h
M ′
∣∣∣∣∣ dx+

∫ ∞

0

∣∣∣∣
∫ ∞

x
(1− 1/h)M ′

∣∣∣∣ dx

=

∫ ∞

0
|M ′(z)| 1

h

∫ zh

z
dxdz + (1− 1/h)

∫ ∞

0
|M |

=
h− 1

h

∫ ∞

0
z|M ′(z)|dz +

h− 1

h

∫ ∞

0
|M |.

The claim is now obtained by considering
∫ 0
−∞ as well.

Finally, a kernel K is said to be regular if it is bounded, and if there exists a symmetric unimodal

integrable nonnegative function M such that |K| ≤M .

Our main result can now be announced as follows:

11



Theorem O1. Let K be a smooth regular class s kernel. Assume that f ∈ Fs∩W , and that L is chosen

such that to pick L such that

A.
∫

(1 + |x|s)|L(x)|dx <∞.

B.
∫
L = 1,

∫
xiL(x)dx = 0 for 0 < i ≤ s.

C. L is symmetric, smooth, and regular.

D. The generalized characteristic functions of K and L do not coincide on any open neighborhood

of the origin. (This implies that
∫ |K − L| > 0.)

E.
∫
L2 <

∫
K2/16. Then, the kernel estimate with smoothing factor H minimizing

∫
|fnh − gnh|,

is C-optimal where C = (1 + u)/(1 − u) and u = 4
√∫

L2/
∫
K2. When f ∈ Fs ∩ V ∩ Wc, the

same is true, provided that, additionally, L has compact support.

A pair (K,L) is chosen as a function of s and the constant C only. Rescaling L changes
∫
L2,

and can thus be used to push the value of C as close to one as desired.

Example 1. Let us illustrate the choice of L on a simple but important example with s = 2 and

nonnegative kernels K. There is plenty of evidence in favor of choosing Bartlett’s kernel K(x) = (3/4)(1−
x2)+ in those cases, see, e.g., Bartlett (1963), Epanechnikov (1969) and Devroye and Penrod (1984). This

2-kernel is smooth, regular, absolutely integrable and of compact support. It is easy to find 4-kernels

with the same properties. A little algebra shows that we can take, for example, the continuous kernel

L(x) = (75/16)(1 − x2)+ − (105/32)(1 − x4)+. Interestingly, this coincides with an optimal 4-kernel

described, e.g., in Gasser, Müller and Mammitzsch (1985, Table 1).

Example 2. It is interesting to note that the functional form of L can be fixed for all s and K once

and for all. It suffices for example to consider bounded smooth symmetric kernels L whose characteristic

function is zero in an open neighborhood of the origin satisfying the moment condition A of Theorem O1

for all s. This can be done by defining the characteristic function of L as the convolution of the uniform

function on [−1, 1] with a symmetric bounded infinitely many times continuously differentiable function

with support on [−1/2, 1/2].

Example 3. There is a systematic way of creating higher order kernels. Stuetzle and Mittal (1979)

pointed out that 2K −K ∗K is a class 2s kernel whenever K is a class s kernel. This can be iterated

at will. There are other tricks. For example, if M is a class r kernel, and K is a class s kernel, then

K +M −K ∗M is a class s+ r kernel. We can also use higher convolutions for creating better kernels.

One can verify that 3K − 3K ∗K +K ∗K ∗K is a class 3s kernel whenever K is a class s kernel. Good

12



sources of possible definitions of families of kernels that are optimal in certain senses are Müller (1984),

Gasser, Müller and Mammitzsch (1985), Su-Wong, Prasad and Singh (1982) and Singh (1979).

A better estimate. We have mentioned that gnh is probably preferable over fnh, Even though it is

not asymptotically optimal in any sense for its kernel L, it has a smaller error than that of fnh, basically

because the class s kernel used in fnh limits its performance. It is interesting to observe that for any

absolutely integrable compact support kernel K, we must have
∫
xsK(x) 6= 0 for some finite s (see,

e.g., Theorem 22 of Hardy and Rogosinski (1962)). Thus, for all such kernels we have the saturation

phenomenon, and a judiciously picked L for gnh is potentially better.

Theorem O2. Let L and K be as in Theorem O1, and assume that all the conditions of Theorem O1

are satisfied. Then

lim sup
n→∞

E
∫ |gnH − f |

E
∫
|fnH − f |

≤ c def
= 4

√∫
L2/

∫
K2,

and

lim sup
n→∞

E
∫
|gnH − f |

infh E
∫
|fnh − f |

≤ c(1 + c)

1− c .

Theorem O2 basically states that since c can be chosen arbitrarily small, the asymptotic perfor-

mance of gnH can be made any desired fraction of infh E
∫
|fnh− f |. The argument that gnH itself is not

asymptotically optimal for L can be countered with the observation that no smoothing parameters have

to be chosen for gnH either. Unless, of course, one considers the spread of L (measured by
∫
L2) as a

hidden smoothing factor of sorts.

Complete convergence of the L1 error. The first result is related to Theorem C2, but differs in that

it is more specific in its error estimates.

Lemma O1. Let f be an arbitrary density and let K and L be smooth absolutely integrable kernels with∫
|K − L| > 0. Then, for arbitrary fixed ε, u > 0,

P

{
sup

ε/n≤h≤1/ε

∣∣∣∣
∫
|fnh − gnh| − E

∫
|fnh − gnh|

∣∣∣∣ ≥
√

128
∫
|K − L|

√
(1 + u) log(n)√

n

}

≤ (1 + o(1))
C
√
n log(n)√

2
∫ |K − L|√1 + u

n−(1+u),

where C is the smoothness constant for K − L (see definition of smoothness above).

13



Proof. From the proof of Theorem C2, we recall the following inequality:

P

{
sup

ε/n≤h≤1/ε

∣∣∣∣
∫
|fnh − gnh| − E

∫
|fnh − gnh|

∣∣∣∣ ≥ t
}
≤ 2

(
log(n/ε2)

log(c)
+ 2

)
e
− nt2

128
∫ 2 |K−L| ,

valid for all t > 0. Here c depends upon t and K − L in the following manner: it is so small that

sup
1≤h≤c

∫
|(K − L)− (Kh − Lh)| ≤ t/4.

Now, upon replacing t by
√

128
∫
|K − L|

√
(1 + u) log(n)/n, we obtain as upper bound

2

(
log(n/ε2)

log(c)
+ 2

)
n−(1+u).

We are left with the sole problem of choosing c. From our assumption on K − L, we see that it suffices

to take c = 1 + t/(4C). Using the fact that log(c) ≥ 2t/(8C + t)), the upper bound becomes

2

(
(8C + t) log(n/ε2)

2t
+ 2

)
n−(1+u) ∼ C

√
n log(n)√

2
∫
|K − L|√1 + u

n−(1+u)

when u and ε are held fixed and n→∞.

Lemma O2. Let f be an arbitrary density. Let K and L be smooth absolutely integrable kernels with∫
|K−L| > 0, and let H minimize

∫
|fnh−gnh|. Assume also that the generalized characteristic functions

of K and L do not coincide on any open neighborhood of the origin. Then, for arbitrary fixed ε > 0,

P {H 6∈ [1/(nε), ε]} < 1/n2

for all n large enough. Furthermore, H → 0 and nH → ∞ completely. Finally,
∫
|fnH − f | → 0

completely.

Proof. We will inherit the notation of Lemma O1. Define t =
√

128
∫
|K − L|

√
3 log(n)/

√
n. Then, by

Lemma O1,

P

{
sup

1/(nε)≤h≤ε

∣∣∣∣
∫
|fnh − gnh| − E

∫
|fnh − gnh|

∣∣∣∣ ≥ t
}
≤ (1 + o(1))

C
√

log(n)√
6
∫
|K − L|

n−5/2.

This will be combined with the fact that

lim inf
n→∞ inf

h6∈[1/(nε),ε]
E
{∫
|fnh − gnh|

}
> 0

(Lemmas C1 and C2), and with the observation that for fixed u > 0,

P
{

sup
h

∣∣∣∣
∫
|fnh − gnh| − E

∫
|fnh − gnh|

∣∣∣∣ > u

}
≤ e−γn
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where γ = γ(u) > 0 (Theorem C2). Let A be the set [1/(nε), ε]. For any δ > 0, we have the following

inclusion of events:

[H 6∈ A] ⊆
[

sup
h∈A
|
∫
|fnh − gnh| − E

∫
|fnh − gnh|| ≥ t

]
∪
[
inf
h

E
∫
|fnh − gnh|+ t ≥ δ

]

∪
[

inf
h6∈A

E
∫
|fnh − gnh| ≤ 2δ

]
∪
[

inf
h6∈A

∫
|fnh − gnh| − E

∫
|fnh − gnh| ≤ −δ

]
.

Since t → 0, the second event on the right-hand-side is vacuous for large enough n. Also, for δ small

enough and n large enough, the third event is vacuous as we have pointed out above. Hence, for such δ

and such large n,

P {H 6∈ A} ≤ (1 + o(1))
C
√

log(n)√
6
∫
|K − L|

n−5/2 + e−γ(δ)n < 1/n2

for n large enough. The last statement of Lemma O2 follows from Theorem 6.1 of Devroye and Györfi

(1985).

Relative stability of the estimate.

Lemma O3. Let f be an arbitrary density. Let K and L be smooth absolutely integrable kernels with∫
|K−L| > 0, and let H minimize

∫
|fnh−gnh|. Assume also that the generalized characteristic functions

of K and L do not coincide on any open neighborhood of the origin.

P

{∣∣∣∣
∫
|fnH − gnH | − En

{∫
|f̂nH − ĝnH |

}∣∣∣∣ ≥
√

128
∫ |K − L|

√
3 log(n)√

n

}
≤ 2

n2

for all n large enough. Also,
∣∣∣∣E
{∫
|fnH − gnH |

}
− E

{∫
|f
nĤ
− g

nĤ
|
}∣∣∣∣

≤ E
{∣∣∣∣
∫
|fnH − gnH | − En

∫
|f̂nH − ĝnH |

∣∣∣∣
}

≤
√

129
∫
|K − L|

√
3 log(n)√

n

for all n large enough.

Proof. Define t =
√

128
∫
|K−L|

√
3 log(n)√

n
. Let A be as in the proof of Lemma O2 for arbitrary ε > 0.

Define the random variable HA as the projection to A of H . We have

P
{∣∣∣∣
∫
|fnH − gnH | − En

∫
|f̂nH − ĝnH |

∣∣∣∣ ≥ t
}

≤ P
{∣∣∣∣
∫
|fnHA − gnHA | − En

∫
|f̂nHA − ĝnHA |

∣∣∣∣ ≥ t
}

+ P {H 6∈ A}

<
1

n2 + P {H 6∈ A} < 2

n2
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for all n large enough, where we used estimates from Lemma O2. Also,

E
{∣∣∣∣
∫
|fnH − gnH | − En

∫
|f̂nH − ĝnH |

∣∣∣∣
}

≤ t+

∫
|K − L|P

{∣∣∣∣
∫
|fnH − gnH | − En

∫
|f̂nH − ĝnH |

∣∣∣∣ ≥ t
}

≤
√

129
∫
|K − L|

√
3 log(n)√

n

for all n large enough.

Lemma O4. Let f be an arbitrary density. Let K and L be smooth absolutely integrable kernels with∫
|K−L| > 0, and let H minimize

∫
|fnh−gnh|. Assume also that the generalized characteristic functions

of K and L do not coincide on any open neighborhood of the origin.

P

{∣∣∣∣
∫
|fnH − f | − En

∫
|f̂nH − f |

∣∣∣∣ ≥
√

128
∫
|K|
√

3 log(n)√
n

}
≤ 2

n2

for all n large enough. Also,
∣∣∣∣E
{∫
|fnH − f |

}
− E

{∫
|f
nĤ
− f |

}∣∣∣∣≤ E
{∣∣∣
∫
|fnH − f | − En

∫
|f̂nH − f |

∣∣∣
}

≤
√

129
∫ |K|

√
3 log(n)√

n

for all n large enough.

Proof. We mimick the proof of Lemma O1 first, replacing gnh throughout by f , and K−L by K. From

this, we conclude that for arbitrary fixed ε, u > 0,

P

{
sup

ε/n≤h≤1/ε

∣∣∣∣
∫
|fnh − f | − E

∫
|fnh − f |

∣∣∣∣ ≥
√

128
∫
|K|
√

(1 + u) log(n)√
n

}

≤ (1 + o(1))
C
√
n log(n)√

2
∫
|K|√1 + u

n−(1+u),

where C is the smoothness constant for K (see definition of smoothness just before Lemma O1). Then

turn to the proof of Lemma O3, replacing K − L in the definition of t by K. Furthermore, replace all

the references to gnH and gnHA by f , and note that
∫
|fnh − f | ≤ 1 +

∫
|K|. This concludes the proof of

Lemma O4.

Lemma O5. Let fnh be a kernel estimate with class s kernelK. Then there exists a constant c = c(K) > 0

such that for any f and for any sequence h = h(n),

lim inf
n→∞ n

s
2s+1 E

∫
|fnh − f | ≥ c > 0,
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The same bound is valid if fnh is replaced by fnH , where H = H(n) is any sequence of positive random

variables independent of the data sequence.

If H is obtained by minimizing
∫
|fnh − gnh| and K and L are smooth absolutely integrable

kernels with
∫ |K−L| > 0, such that the generalized characteristic functions of K and L do not coincide

on any open neighborhood of the origin, then the asymptotic bound is also valid. In that case, we also

have ∫
|fnH − f |

E
∫
|fnH − f |

→ 1

almost surely as n→∞ for all densities f .

Proof. The asymptotic bound for deterministic h(n) is obtained in Devroye (1988). It is clear that for

any sequence of random variables {H = H(n)}, that

lim inf
n→∞

E
∫
|f
nĤ
− f |

E
∫
|fnh∗ − f |

≥ 1,

where h∗ = h∗(n) is such that E
∫
|fnh∗ − f | ∼ infh E

∫
|fnh − f |. Since the asymptotic lower bound is

valid for fnh∗ , it must be valid for f
nĤ

.

Let H now be found by minimization as indicated in the statement of Lemma O5. Then, as we

have seen in Lemma O4,

E
∫
|fnH − f | − E

∫
|f
nĤ
− f | = O

(√
logn

n

)
.

Thus, the asymptotic bound also applies to E
∫
|fnH − f |. The last statement of the Lemma is obtained

from the probability bound of Lemma O4, the asymptotic lower bound of Lemma O5, and the Borel-

Cantelli lemma (the sequence 2/n2 is summable in n).

It is perhaps worthwhile to pause here to see what Lemma O5 implies for us. First of all, fnH
is strongly relatively stable, as shown in the last statement of the Lemma. Thus, the random variable∫
|fnH − f | is very close to its mean. This is true for all densities f . For general theorems on the relative

stability of fnH , with arbitrary f , K and H , see, e.g., Devroye (1988). What this means for us is that∫
|fnH −gnH |, a known quantity, is probably close to its mean, which, as we shall see below, is not too far

away from E
∫
|fnH − f |. By relative stability again, the last quantity is about equal to

∫
|fnH − f |. In

other words, we have another useful by-product of the minimization, i.e., a rough estimate of the actual

L1 error
∫
|fnH − f |.
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Proof of Theorems O1 and O2. Let h∗ = h∗(n) be such that

E
{∫
|fnh∗ − gnh∗ |

}
∼ inf

h
E
{∫
|fnh − gnh|

}
.

We note the following:

E
{∫
|fnH − f |

}
≤ E

{∫
|fnH − gnH |

}
+ E

{∫
|gnH − f |

}

= E
{

inf
h

∫
|fnh − gnh|

}
+ E

{∫
|gnH − f |

}

≤ (1 + o(1))E
{∫
|fnh∗ − gnh∗ |

}
+ E

{∫
|g
nĤ
− f |

}
+
√

129

∫
|K|
√

3 log(n)√
n

≤ (1 + o(1))E
{∫
|fnh∗ − f |

}

+ (1 + o(1))E
{∫
|gnh∗ − f |

}
+ E

{∫
|g
nĤ
− f |

}

+

√
129

∫
|L|
√

3 log(n)√
n

for all n large enough (Lemma O4, applied to gnh). So far, everything is valid for all densities.

Under the conditions of Theorem O1, with L as suggested in the statement of the Theorem, it is

possible to show that (1) through (6) are satisfied with c1 = c2 = 4
√∫

L2/
∫
K2 (Lemmas O6, O11 and

O12):

(1) ∫
|Egnh∗ − f | = o

(∫
|Efnh∗ − f |

)
,

(2)

E
{∫
|gnh∗ − Egnh∗ |

}
≤ (c1 + o(1))E

{∫
|fnh∗ − f |

}
,

(3)

E
{∫
|gnh∗ − f |

}
≤ (c1 + o(1))E

{∫
|fnh∗ − f |

}
,

(4)

E
{∫
|f ∗ L

Ĥ
− f |

}
= o

(
E
{∫
|f ∗K

Ĥ
− f |

})
,

(5)

E
{∫
|g
nĤ
− f ∗ L

Ĥ
|
}
≤ (c2 + o(1))E

{∫
|f
nĤ
− f |

}
,

(6)

≤ (c2 + o(1))E
{∫
|f
nĤ
− f |

}
.
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We may conclude from (3) and (6) that

E
{∫
|fnH − f |

}
≤ (1 + o(1))(1 + c1 + o(1))E

{∫
|fnh∗ − f |

}

+ (c2 + o(1))E
{∫
|f
nĤ
− f |

}
+

√
129

∫
|L|
√

3 log(n)√
n

≤ (1 + c1 + o(1))E
{∫
|fnh∗ − f |

}
+ (c2 + o(1))E

{∫
|fnH − f |

}

+ (c2 + o(1))

√
129

∫
|K|
√

3 log(n)√
n

+

√
129

∫
|L|
√

3 log(n)√
n

by Lemma O4. By Lemma O5, we see that the last two terms in the upper bound are asymptot-

ically negligible with respect to the first term. Thus, we can conclude that

E
{∫
|fnH − f |

}
≤ 1 + c1 + o(1)

1− c2 + o(1)
E
{∫
|fnh∗ − f |

}
.

The right hand side can be made smaller than 1+ε+o(1) for any ε > 0 by the appropriate choice

of L, since c1 = c2 = 4
√∫

L2/
∫
K2. This concludes the proof of Theorem O1.

Recall the n−s/(2s+1) lower bound for E
{∫
|fnH − f |

}
and infh E

{∫
|fnh − f |

}
(Lemma O5).

Theorem O2 follows from this fact, (6), Theorem O1, and the fact that E
{∫
|fnH − f |

}
−E

{∫
|f
nĤ
− f |

}

is O(
√

logn/n), and similarly for gnh (Lemma 4).

Remarks and further work. First we observe that the condition that f ∈ Fs is too strong. Theorem

O1 holds for a much larger class of densities. It suffices to note that the crucial asymptotic result used

in the proof of Lemma O6 remains valid, in the case s = 2, K ≥ 0, when f is such that it has a finite

functional

D(f)
def
= lim inf

a↓0

∫
|(f ∗ φa)(2)|,

where φ is a mollifier, i.e., a kernel with
∫
φ = 1, φ ≥ 0, φ = 0 outside [−1, 1], and φ has infinitely many

continuous derivatives on the real line. This functional coincides with
∫
|f (2)| when f and f ′ are absolutely

continuous, and is well-defined (possibly∞) and independent of the choice of φ for all f . For the proofs of

this, see, e.g., Devroye (1987), pp. 108-111. To illustrate this, consider the triangular density. It does not

have an absolutely continuous derivative, yet D(f) < ∞. For smooth regular symmetric nonnegative K

with finite second moment, Theorem O1 is valid for all f in W or V for which
∫ √

f <∞ and D(f) <∞.

It is possible to get asymptotic optimality for a proper subclass of Fs by choosing L in such a

way that L varies with n by a scale factor only, i.e., Lh is replaced throughout by Lanh where an tends

very slowly to∞ so as not to upset properties (1) and (4). This will allow us to formally take c1 = c2 = 0,

and obtain the asymptotic optimality. The proper subclass of Fs is determined by the rate of divergence

of an. This will not be pursued any further here.

In Theorem O1, K is a class s kernel, so that the best possible rate of convergence is n−s/(2s+1)

(Lemma O5). If we know that f is very smooth, then this could be an unwelcome restriction. One

might wonder if there is nothing that can be said if we employ a class ∞ kernel. We have the following
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general result, which can be proved along the lines of the proof of Theorem 1, provided that Lemma O6

is replaced by a (trivial) counterpart.

Theorem O3. Let K and L be symmetric smooth regular kernels, with
∫
L2 <

∫
K2/16. Assume fur-

thermore that the generalized characteristic functions of K and L do not coincide on any open neighbor-

hood of the origin. (This implies that
∫
|K−L| > 0.) Let f ∈ W be such that

∫
|f∗Lh−f |/

∫
|f∗Kh−f | →

0 as h ↓ 0. Then, the kernel estimate in which H is defined by
∫ |fnH −gnH | ∼ infh

∫ |fnh−gnh|, satisfies

the following inequality:

E
{∫
|fnH − f |

}
≤ (1 + o(1))

1 + u

1− u inf
h

E
{∫
|fnh − f |

}
+ (1 + o(1))

u
∫
|K|+

∫
|L|

1− u

√
387 logn

n
,

where u = 4
√∫

L2/
∫
K2. When f ∈ V ∩ Wc, the same is true, provided that, additionally, L has

compact support.

It is easy to see that the H obtained with the pair (K,L) = (K, 2K−K ∗K) is indistinguishable

from the H obtained by the pair (K,K ∗K). This has an interesting interpretation: indeed, the kernel

estimate fnh can formally be considered as µn ∗Kh where µn is the standard empirical measure. With

L = K ∗K, the estimate gnh is nothing but µn ∗Kh ∗Kh = fnh ∗Kh. Minimizing
∫
|fnh − gnh| is like

asking that the operation ∗Kh yields a stable point (doesn’t change things too much); if h is really good,

then µn ∗Kh should be close to f . But then applying the same operator again should not yield a very

different curve, so µn ∗Kh ∗Kh should be close to µn ∗Kh. So, what are the properties of the double

kernel estimate with the pair (K,K ∗K)?

The final series of lemmas.

Lemma O6. Assume that f ∈ Fs. LetK and L be smooth absolutely integrable kernels whose generalized

characteristic functions do not coincide on any open neighborhood of the origin, and let K be a class s

kernel. Then facts (1) and (4) are valid provided that L is picked such that L is symmetric,
∫
L = 1,∫

|L| <∞,
∫
xiL(x)dx = 0 for all 0 < i ≤ s, and

∫
|x|s|L(x)|dx <∞.

Proof. We recall that h∗ → 0 as n→ ∞ (see the proof of Theorem C3 together with Lemmas C1 and

C2). Under the conditions of Theorem O1, we have for f ∈ Fs, as h ↓ 0,
∫
|Efnh − f | =

∫
|f ∗Kh − f | ∼ hs|

∫
xs

s!
K(x)dx|

∫
|f (s)|

(see, e.g., Devroye and Györfi (1985, p. 209) or Devroye (1987, p. 110)). Also, if
∫
|f (s)| < ∞, and if L

is such that
∫
L = 1,

∫
|L| < ∞,

∫
xiL(x)dx = 0 for all 0 < i ≤ s, and

∫
|x|s|L(x)|dx < ∞, then, from

Devroye (1987, p. 110) we retain that
∫
|Egnh − f | =

∫
|f ∗ Lh − f | = o(hs).
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This establishes (1). For the proof of (4), we note that H → 0 in probability (from Theorem C3 and

Lemma C1). Thus, if µ is the probability measure forH , and F (h) andG(h) denote the biases
∫
|f∗Kh−f |

and
∫ |f ∗ Lh − f | respectively, then, for ε > 0,

E
{∫
|f ∗ LH − f |

}

E
{∫
|f ∗KH − f |

} =

∫
G(h)µ(dh)∫
F (h)µ(dh)

≤
∫ ε

0 G(h)µ(dh) + (1 +
∫ |L|)P {H > ε}∫

F (h)µ(dh)

≤ sup
h<ε

G(h)

F (h)
+

(
1 +

∫
|L|
)

P {H > ε}
P {H ∈ [1/(nε), ε)} inf1/(nε)≤h≤ε F (h)

.

The first term in the upper bound tends to zero as ε ↓ 0 (by (1)), while for fixed ε, the denominator of the

second term is at least equal to a constant times n−s (by Lemma O2 and an estimate for the bias used

above). Its denominator is not greater than n−(s+1) (say) for n large enough by a suitable generalization

of the bound of Lemma O4 (it suffices to replace the constant 3 in the definition of t there by a larger

constant). This proves (4).

The following lemma provides a uniform lower bound for the expected variation of any kernel

estimate with a regular kernel.

Lemma O7. Let fnh be the kernel estimate with regular kernel K. Then, for all f , and for all sequences

an and bn with bn → 0, nan →∞, an ≤ bn,

lim inf
n→∞ inf

an≤h≤bn

{
4nh∫
K2

}1/2

E
{∫
|fnh −Kh ∗ f |

}
≥
∫ √

f.

Proof. Let h∗ = h∗(n) be a sequence of positive numbers with an ≤ h∗(n) ≤ bn such that

E
{√

nh∗
∫
|fnh∗ −Kh∗ ∗ f |

}
∼ inf
an≤h≤bn

E
{√

nh

∫
|fnh −Kh ∗ f |

}
.

Then, since h∗ → 0 and nh∗ →∞, we know that

lim inf
n→∞

{
4nh∗∫
K2

}1/2

E
{∫
|fnh∗ −Kh∗ ∗ f |

}
≥
∫ √

f.

(Devroye, 1987, Lemma 5). This proves Lemma O7.
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Lemma O8. Let f be an arbitrary density. Let K be regular. Let H = H(n) have an arbitrary sequence

of distributions. Then, for any sequences an ≤ bn with bn → 0 and nan → ∞, and for any ε, we have

for n large enough (where the definition of large enough does not depend upon the distribution of the

sequence {H = H(n)}),

E
{∫
|f̂nH −KH ∗ f |

}

E
{

1√
nHIan≤H≤bn

} ≥
{

1
ε if

∫ √
f =∞;√∫

K2
∫ √

f
2−ε if

∫ √
f <∞.

Proof. Let us write ∆(n, h) for E
{∫
|fnh −Kh ∗ f |

}
. Then, since f̂ and H are independent,

E
{∫
|f̂nH −KH ∗ f |

}
= E∆(n,H) ≥ E

{
∆(n,H)Ian≤H≤bn

}

≥ E

{ √
nH∆(n,H)1√
nHIan≤H≤bn

}

≥ inf
an≤h≤bn

√
nh∆(n, h)E

{
1√

nHIan≤H≤bn

}
.

Now apply Lemma O7.

Lemma O9. Assume that
∫ √

f < ∞. Let fnh be the kernel estimate with regular kernel K. Then, for

all sequences an and bn with bn → 0, nan →∞, an ≤ bn,

lim sup
n→∞

sup
an≤h≤bn

{
nh∫
K2

}1/2

E
{∫
|fnh −Kh ∗ f |

}
≤
∫ √

f,

when either f ∈ W and K has finite second moment, or when f ∈ V and K has compact support.

Proof. Note first that every regular kernel is square integrable. Now apply a standard bound that can

be obtained directly via the Cauchy-Schwarz inequality:

E
{∫
|fnh − f ∗Kh|

}
≤
∫ √

f ∗ (K2)h√
nh

(see, e.g., Devroye, 1987, p. 113). This upper bound is

(1 + o(1))
√∫

K2
∫ √

f
√
nh

when h→ 0 as n→∞ when both f and K2 have finite absolute 1 + ε moments for some ε > 0 (see, e.g.,

exercise 7.8 of Devroye (1987)). The latter condition on K is satisfied if K has finite second moment and

is regular. For f , the condition is implied when f ∈ W . The same asymptotic result is valid if K has

compact support and is bounded, and f ∈ V (Devroye and Györfi 1985, Lemma 5.26).
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Let h∗ = h∗(n) be a sequence of positive numbers with an ≤ h∗(n) ≤ bn such that

E
{√

nh∗
∫
|fnh∗ −Kh∗ ∗ f |

}
∼ sup
an≤h≤bn

E
{√

nh

∫
|fnh −Kh ∗ f |

}
.

Then, since h∗ → 0 and nh∗ →∞, we know that

lim sup
n→∞

{
nh∗∫
K2

}1/2

E
{∫
|fnh∗ −Kh∗ ∗ f |

}
≤
∫ √

f.

This proves Lemma O9.

Lemma O10. Let f and K be as in Lemma O9. Then, for any sequences an ≤ bn with bn → 0 and

nan →∞, and for any definition of the random variables H = H(n),

lim sup
n→∞

E
{∫
|f̂nH −KH ∗ f |

}

E
{

1√
nH

Ian≤H≤bn
} ≤

√∫
K2

∫ √
f + lim sup

n→∞
2
√
nbn

∫
|K|P {H 6∈ [an, bn]}

P {H ∈ [an, bn]} .

Proof. Let us write ∆(n, h) for E
{∫
|fnh −Kh ∗ f |

}
. Then, since f̂nh and H are independent,

E
{∫
|f̂nH −KH ∗ f |

}
= E∆(n,H)

≤ E
{

∆(n,H)Ian≤H≤bn
}

+ 2

∫
|K|P {H 6∈ [an, bn]}

≤ E
{√

nH∆(n,H)
1√
nH

Ian≤H≤bn

}
+ 2

∫
|K|P {H 6∈ [an, bn]}

≤ sup
an≤h≤bn

√
nh∆(n, h)E

{
1√
nH

Ian≤H≤bn

}
+ 2

∫
|K|P {H 6∈ [an, bn]} .

Now apply Lemma O9.

Lemma O11. Let fnh,gnh and H be as in Theorem O1 and assume that
∫ √

f <∞. Assume that K is

a smooth regular kernel. Then (2) and (5) hold if we choose a smooth regular L in such a way that the

generalized characteristic functions of K and L do not coincide on any open neighborhood of the origin,

and that either f ∈ W and L has finite second moment, or f ∈ V and L has compact support.

Also, we can take c1 = c2 = 4
√∫

L2/
∫
K2.

Proof. By Lemmas C1 and C2, we have h∗ → 0 and nh∗ →∞ when K and L are absolutely integrable

kernels whose generalized characteristic functions do not coincide on any open neighborhood of the origin.

Thus, from Lemma O7 applied to fnh and K (which requires that K be regular) and Lemma O9 applied
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to gnh and L (which requires that
∫ √

f <∞, that L be regular, and that either f ∈ W and L has finite

second moment, or f ∈ V and L has compact support),

lim sup
n→∞

√
nh∗ E

{∫
|gnh∗ − Egnh∗ |

}
≤
√∫

L2

∫ √
f

=
c1
2

1

2

√∫
K2

∫ √
f

≤ lim inf
n→∞

c1
2

√
nh∗ E

{∫
|fnh∗ − Efnh∗ |

}

≤ lim inf
n→∞ c1

√
nh∗ E

{∫
|fnh∗ − f |

}
,

by the triangle inequality and Jensen’s inequality, where c1 = 4
√∫

L2/
∫
K2. We will see that we can

take c2 = c1. This concludes the proof of (2).

To prove (5), let an and bn be 3/n2 and 1− 3/n2 quantiles of H respectively. We show first that

bn → 0 and nan → ∞. Take ε > 0 arbitrary. Assume for example that for an infinite subsequence, we

have bn > ε. Then, on that subsequence,

P {ε ≤ H ≤ bn} = P {H ≥ bn} − P {H ≥ ε}
≥ 3

n2 −
1

n2 (Lemma O2, all n large enough)

>
1

n2
,

which is a contradiction, since P {H ≥ ε} ≤ 1/n2 for n large enough. Hence bn < ε for all n large enough,

and, by symmetry, nan > 1/ε for all n large enough. Thus, bn → 0 and nan → ∞ as required. Note

that Lemma O2 required that K and L both be smooth absolutely integrable kernels whose generalized

characteristic functions do not coincide on any open neighborhood of the origin.

Since
∫ √

f <∞ and K is regular, we can employ Lemma O8, and since
∫ √

f <∞, L is regular,

and either f ∈ W and L has finite second moment, or f ∈ V and L has compact support, we can use

Lemma O10 to conclude that

lim sup
n→∞

E
{∫
|ĝnH − LH ∗ f |

}

E
{

1√
nH

Ian≤H≤bn
} ≤

√∫
L2

∫ √
f + lim sup

n→∞
2
√
nbn

∫
|K|P {H 6∈ [an, bn]}

P {H ∈ [an, bn]}

≤
√∫

L2

∫ √
f + lim sup

n→∞
2o(
√
n)
∫
|K|(6/n2)

1− 6/n2

=
c2
2

√∫
K2
∫ √

f

2

≤ c2
2

lim inf
n→∞

E
{∫
|f̂nH −KH ∗ f |

}

E
{

1√
nH

Ian≤H≤bn
}

≤ c2 lim inf
n→∞

E
{∫
|f̂nH − f |

}

E
{

1√
nH

Ian≤H≤bn
}
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where we once again used the fact that

En

{∫
|f̂nH − f |

}
≥ 1

2
En

{∫
|f̂nH − Enf̂nH |

}
=

1

2
En

{∫
|f̂nH − f ∗KH |

}
.

Fact (5) follows from the chain of inequalities derived above and the observation that for sequences of

positive numbers un, vn, wn,

lim supun/vn ≤
lim supun/wn
lim inf vn/wn

.

Lemma O12. In the proof of Theorem O1, (1) and (2) together imply (3), and (4) and (5) together imply

(6).

Proof. We will use the facts that
∫
|Efnh∗ − f | ≤ E

{∫
|fnh∗ − f |

}
and that

E
{∫
|f ∗K

Ĥ
− f |

}
= E

{∫
|ÊnfnĤ − f |

}
≤ E

{
Ên

{∫
|f
nĤ
− f |

}}
= E

{∫
|f
nĤ
− f |

}
.

Now, E
{∫ |gnh∗ − f |

}
does not exceed the sum of the left-hand-sides of (1) and (2), from which the claim

about (3) follows. Similarly, E
{∫
|g
nĤ
− f |

}
does not exceed the sum of the left-hand-sides of (4) and

(5), from which the claim about (5) follows.

Section 4: PROPERTIES OF THE OPTIMAL SMOOTHING FACTOR

Theorem S1. Let f be an arbitrary density. Let fnh be a kernel estimate with smooth absolutely

integrable class s kernel K. (Note: its characteristic function does not coincide with 1 on any open

neighborhood of the origin.) Let H = H(n) be any sequence of random variables for which
∫
|fnH − f | ∼ inf

h

∫
|fnh − f |.

Then

lim
n→∞

E
{∫
|fnH − f |

}

infh E
{∫ |fnh − f |

} = 1,

and

lim
n→∞

∫
|fnH − f |

E
{∫
|fnH − f |

} = 1

almost surely.

Theorem S1 reassures us that it is irrelevant whether we study infh E
{∫
|fnh − f |

}
or E

{
infh

∫
|fnh − f |

}
,

since both are asymptotically equal for all densities f when K is a class s kernel. The study of the pre-

vious section was with respect to the former quantity. We now see that in the definition of C-optimality,

it would have been possible to replace the denominator by E
{

infh
∫
|fnh − f |

}
.
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Lemma S1. Let f be an arbitrary density. Let K be an absolutely integrable kernel whose characteristic

function does not coincide with 1 on any open neighborhood of the origin. Then, for all ε > 0,

lim inf
n→∞ inf

h6∈[1/(nε),ε]
E
{∫
|fnh − f |

}
> 0.

Proof. The first statement is obtained by mimicking the proofs of Lemmas C1 and C2. In Lemma C1,

it suffices to replace f ∗Lh throughout by f (which formally corresponds to taking L with characteristic

function identical to one). Hence the need to introduce the condition that K not coincide with 1 on any

open neighborhood of the origin. Lemma C2 remains valid with little change, provided that M in that

proof is replaced by K. It is necessary there to reverify that

lim inf
n→∞ inf

0<h≤d/n
E
{∫
|mnh − Emnh|

}
> 0,

where mnh is in the notation of Lemma C2; it is the fnh of the present Lemma. Still in the notation of

Lemma C2, we have

inf
h≤d/n

E
{∫
|mnh − Emnh|

}
≥ inf
h≤d/n

E
{
pN

n
− q(n−N)

n
−
∫
|Emnh| − E

∫

B
|Emnh|

}

where B is the collection of all sets [Xi−ch,Xi+ch] that capture no data point besides Xi. Let us consider

the last term. It is surely not greater than suph≤d/n(
∫
|Emnh−f |+E

∫
B f). This is o(1)+suph≤d/n E

∫
B f

by the convergence of the bias (Theorem 2.1 of Devroye and Györfi, 1985). The last term is in turn not

larger than E
{
ω(λ(B′))

}
where B′ is defined as B, but with the interval lengths 2ch replaced by the

larger values 2cd/n, λ is Lebesgue measure, and ω(u)
def
= supA:λ(A)≤u

∫
A f (which → 0 as u ↓ 0). We can

bound the term by 2cdN/n ≤ 2cd. Combined with the lower bounds of Lemma C2, we can conclude that

inf
h≤d/n

E
{∫
|mnh − Emnh|

}
≥
∫
fe−2cdf

∫
|M | − q − ω(2cd) > 0,

for n large enough, c large enough and d small enough. The second part of the proof of Lemma C2

requires no modifying.

Lemma S2. Let f be an arbitrary density. Let K be an absolutely integrable kernel. For fixed u > 0,

P
{

sup
h

∣∣∣∣
∫
|fnh − f | − E

{∫
|fnh − f |

}∣∣∣∣ > u

}
≤ e−γn

where γ = γ(u) > 0. As a consequence, with Jnh
def
=
∫
|fnh − f |, we have the following:

A. suph > 0|Jnh − EJnh| → 0 almost surely as n→∞.

B. For any random variable H (possibly not independent of the data), JnH − EnĴnH → 0 almost

surely as n→∞.

C. For any random variable H (possibly not independent of the data), JnH → 0 in probability

implies EJnH → 0, EnĴnH → 0 in probability, EĴnH → 0 and EJ
nĤ
→ 0.
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Proof. We extend the proof of Theorem C2. Note first that |fnh − unh| ≤
∫
|K −K ′| when unh is the

kernel estimate with kernel K ′. The fact that the bound does not depend upon h and that K ′ is arbitrary

means that we need only show the Theorem for all K that are continuous and of compact support (since

the latter collection is dense in the space of L1 functions).

The following inequality is valid for all fixed h,n,K and f :

P
{∣∣∣∣
∫
|fnh − f | − E

{∫
|fnh − f |

}∣∣∣∣ > ε

}
≤ 2e

− nε2

32
∫ 2 |K|

(Devroye, 1988). We employ the grid technique of Theorem C2 again. Set ∆(h) = |
∫
|fnh − f | −

E
{∫
|fnh − f |

}
|, and ∆(a, b) = suph,h′∈[a,b] |∆(h)−∆(h′)|. Then let c > 1 be such that

sup
1≤h≤c

∫
|K1 −Kh| ≤ ε/4.

Noting that ∣∣∣∣
∫
|fnh − f | −

∫
|fnh′ − f |

}
≤
∫
|fnh − fnh′ | ≤

∫
|Kh −K ′h|,

we see that as in the proof of Theorem C2,

P

{
sup
a≤h≤b

∆(h) > ε

}
≤

k∑

i=0

P
{

∆(aci) > ε/2
}
≤ 2

(
1 +

log(b/a)

log c

)
e
− nε2

128
∫ 2 |K| .

It suffices to have limits a and b that are such that b/a = O(n), for this upper bound to tend to zero with

n at an exponential rate. We need only establish that for some sequences a = a(n) and b = b(n) with

b/a = O(n) that

lim
n→∞

{
P
(

sup
h<a

∆(h) > ε

}
+ P

{
sup
h>b

∆(h) > ε

})
= 0.

Assume that K vanishes off [−s, s]. Take a = sδ/2n where δ > 0 is a constant to be picked further

on. Let N be the number of Xi’s for which [Xi−2a,Xi+ 2a] has at least one Xj with j 6= i, and let A be

the union of the sets [Xi−a,Xi+a] for those Xi not counted in N . Note that 1 ≥
∫
A |fnh|/

∫
|K| ≥ n−N

n ,

uniformly over h ≤ a. We have

P
{

sup
h<a

∆(h) > ε

}
≤ P

{
sup
h<a

∣∣∣∣
∫
|fnh − f | − (1 +

∫
|K|)

}
> ε/2

}

+ P
{

sup
h<a

∣∣∣∣E
{∫
|fnh − f |

}
− (1 +

∫
|K|)

}
> ε/2

}
.

We claim that

P
{

sup
h<a

∣∣∣∣
∫
|fnh − f | − (1 +

∫
|K|)

}
≥ ε/2

}
≤ P

{
sup
h<a

∫

A
|fnh| ≤

∫
|K| − ε/6

}

if δ < ρ(f, ε) for some positive-valued function ρ. Indeed, since
∫
|fnh − f | ≤ 1 +

∫
|K|, it suffices to

consider only one kind of signed difference. Take δ so small that uniformly over all sets B with λ(B) < sδ,
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∫
B f < ε/12 where λ is Lebesgue measure (this is always possible). Note in passing that λ(A) ≤ sδ. It

suffices to show that supB:λ(B)<sδ

∫
B |fnh| ≥

∫
|K| − ε/6 implies that

∫
|fnh − f | ≥ 1 +

∫
|K| − ε/2. We

have
∫
B |fnh− f | ≥

∫ |K| − ε/6− ∫B f ,
∫
Bc |fnh− f | ≥

∫
Bc f −

∫
Bc |fnh|, which is at least 1− ∫B f − ε/6.

Summing this and noting that
∫
B f ≤ ε/12 shows that

∫
|fnh − f | ≥ 1 +

∫
|K| − ε/2.

The previous facts can now be combined to conclude that for δ small enough,

P
{

sup
h<a

∆(h) > ε

}
≤ P

{
N

n
>

ε

6
∫
|K|

}
+ P

{
EN
n

>
ε

6
∫
|K|

}
.

This is handled precisely as in the proof of Theorem C2. Thus, limn→∞ P {suph<a ∆(h) > ε} = 0 for

a = sδ/(2n) and δ small enough. In fact, the said probability does not exceed e−dn for some constant

d > 0 depending upon ε.

We finally proceed to show that

P
{

sup
h>b

∆(h) > ε

}

can be made exponentially small in n by choosing a large enough constant b. This would conclude the

proof of the Theorem since b/a = O(n) as required. Let ω be the modulus of continuity of K defined by

ω(u) = supx sup|y|≤u |K(x)−K(x+ y)|. By our assumptions on K, ω(u)→ 0 as u ↓ 0. Let t and T > t

be positive numbers chosen in such a way that
∫
t≤|x|≤T |K| ≥

∫
|K|− ε/8 and supz

∫ z+t
z−t |K| ≤ ε/8. Also,

T should be so large that
∫
|x|≥T f < ε/(12

∫
|K|). This fixes t and T once and for all. Let N be the

number of Xi’s with |Xi| ≥ T . We have the following inequality:
∫

th≤|x|≤Th
|fnh −Kh| ≤ (T − t)ω(T/b) +

N

n

∫
|K|.

This can best be seen by noting that

|fnh −Kh| =
∣∣∣∣∣
1

n

n∑

i=1

(Kh(x−Xi)−Kh(x))

}

≤ 1

n

∑

i:|Xi|≤T
sup
|y|≤T

|Kh(x− y)−Kh(x)| + 1

n

∑

i:|Xi|>T
|Kh(x−Xi)|

≤ 1

h
ω(T/h) +

1

n

∑

i:|Xi|>T
|Kh(x−Xi)|.

Now, integrating over the given interval and noting that h ≥ b yields the result. For h ≥ b,
∫
|fnh − f |

≥
∫

th≤|x|≤Th
|fnh| −

∫

th≤|x|≤Th
f +

∫

|x|≤th
f −

∫

|x|≤th
|fnh|

≥
∫

th≤|x|≤Th
|Kh| −

∫

th≤|x|≤Th
|fnh −Kh| −

∫

th≤|x|≤Th
f +

∫

|x|≤th
f − 1

n

n∑

i=1

∫

|x|≤th
|Kh(x−Xi)|

≥
∫
|K| − ε

8
− (T − t)ω(T/h)−

∫
|K|N
n

+ 1− 2

∫

th≤|x|
f − sup

z

∫

z
−tz + t|K|

≥
∫
|K| − ε

8
− (T − t)ω(T/b)−

∫
|K|N
n

+ 1− 2

∫

tb≤|x|
f − ε

8
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≥
∫
|K|+ 1− ε

3
−
∫
|K|N
n

if b is so large that (T − t)ω(T/b) + 2
∫
tb≤|x| f ≤ ε/12. Thus,

P
{

inf
h≥b

∫
|fnh − f | ≤ 1 +

∫
|K| − ε/2

}
≤ P

{
N

n
≥ ε

6
∫
|K|

}

and

inf
h≥b

E
{∫
|fnh − f |

}
≥ 1 +

∫
|K| − ε

2

when EN/n ≤ ε/(6
∫
|K|). Now, EN/n =

∫
|x|≥T f < ε/(12

∫
|K|) by our choice of T . By Hoeffding’s

inequality (Hoeffding, 1963),

P
{
N

n
≥ ε

6
∫
|K|

}
≤ P

{
N − EN

n
≥ ε

12
∫
|K|

}
≤ e
− 2nε2

144
∫ 2 |K| .

In conclusion, for our choice of t, T and b,

P

{
sup
h≥b

∆(h) > ε

}

≤ P

{
sup
h≥b
|
∫
|fnh − f | − (1 +

∫
|K|)| > ε/2

}
+ P

{
sup
h≥b
|E
{∫
|fnh − f |

}
− (1 +

∫
|K|)| > ε/2

}

≤ e
− 2nε2

144
∫ 2 |K| .

This concludes the proof of Lemma S2.

Proof. Let us first try to prove that for arbitrary fixed ε > 0,

P {H 6∈ [1/(nε), ε]} < 1/n2

for all n large enough, and that H → 0 and nH →∞ completely. This statement parallels that of Lemma

O2. It suffices to replace gnh throughout by f and K − L by K. Also, the constant C now becomes the

smoothness constant for K. It is easy to see then that we need only two facts at this stage:

lim inf
n→∞ inf

h6∈[1/(nε),ε]
E
{∫
|fnh − f |

}
> 0

and for fixed u > 0,

P
{

sup
h

∣∣∣∣
∫
|fnh − f | − E

{∫
|fnh − f |

}∣∣∣∣ > u

}
≤ e−γn

where γ = γ(u) > 0. These were proved in Lemmas S1 and S2.

We note now that the inequalities of Lemma O4 apply without change to the present H . In

particular,

E
{∫
|fnH − f |

}
− E

{∫
|f
nĤ
− f |

}
= O

(√
logn

n

)
,
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where Ĥ is distributed as H but independent of the data stream. From Lemma O5 we retain that for

any f

lim inf
n→∞ n

s
2s+1 E

{∫
|f
nĤ
− f |

}
≥ c > 0,

for some constant c > 0. Hence, this bound also applies if Ĥ is replaced by H . In fact, we have

lim
n→∞

E
{∫
|fnH − f |

}

E
{∫ |f

nĤ
− f |

} = 1

for all densities f . Thus,

E
{∫
|fnH − f |

}
∼ E

{∫
|f
nĤ
− f |

}
≤ inf

h
E
{∫
|fnh − f |

}
≤ E

{∫
|fnH − f |

}
,

which shows the first part of the Theorem. The strong convergence is obtained from the probability bound

of Lemma O4 generalized above, the asymptotic lower bound of Lemma O5 (also generalized above), and

the Borel-Cantelli lemma (the sequence 2/n2 is summable in n).
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