
A Lecture on Divide-and-Conquer Algorithms and
the Master Theorem
Adam Wertheimer, Jason Pizzuco. McGill University.

February 1, 2018

This is the augmented transcript of a lecture given by Luc Devroye on
the 16th of January 2018 for a Data Structures and Algorithms class
(COMP-252, McGill University). The subject was various divide-and-
conquer algorithms and their recurrence relations.

Recurrences

Definition 1. Given a problem with input size n and an algorithm Recall the following recurrences below:

Chip Testing (n is the number of chips) :{
Tn ≤ 3n/2 + Tbn/2c,
T0 = T1 = 0.

Fast Exponentiation (n is the exponent) :
Tn ≤ 1 + Tbn/2c, (RAM Model)
Tn ≤ n2 + Tbn/2c, (Bit Model)
T0 = T1 = 0.

Merge Sort (n is the list size) :{
Tn ≤ Tbn/2c + Tdn/2e + n− 1,
T0 = T1 = 0.

Binary Search (n is the sorted list size) :{
Tn ≤ 1 + Tbn/2c,
T0 = 0, T1 = 1.

Karatsuba Multiplication (n-bit numbers) :{
Tn ≤ 3Tn/2 + n,
T0 = 0, T1 = 1.

Toom-3 Multiplication (n-bit numbers) :{
Tn ≤ 5Tn/3 + n,
T0 = 0, T1 = 1.

that solves this problem in time Tn (where Tn is a function of n), a
recurrence or a recurrence relation is a formula for Tn in terms of
any of the previous running times {Tn−1, Tn−2, . . . , T1, T0} and n.

Example 2. Consider the following formula for Tn:{
Tn = 2Tn−1 + Tn−2 + n2 ∀n ≥ 2,
T1 = 1, T0 = 0.

(1)

The first line of equation (1) represents a recurrence for Tn that de-
pends on the previous two running times Tn−1 and Tn−2 and the
input size n, as long as n is greater or equal to 2. The second line
represents the base case running times when n = 1 or n = 0.

Mathematical Induction

Definition 3. Given a collection of statements {Sn}n≥n0 indexed by
the set of integers greater or equal to some n0 ∈ N, we can prove Sn

for all n ≥ n0 using the three steps of mathematical induction:

1. We show that the base case statement Sn0 holds,

2. We assume the inductive hypothesis, which is that the statement
Sk holds for all k such that n0 ≤ k < n,

3. We prove the inductive step, which is that the statement Sn holds
given the assumption of the inductive hypothesis.

n0 Base Case n0

...

n− 2

n− 1 Inductive Hypothesis

n Inductive Step

...

Figure 1: The “climbing a ladder"
analogy for mathematical induction.

Mathematical induction is analogous to the act of climbing a ladder.
To climb a ladder, one starts by climbing the first rung (base case).
Next, one must reach the first n− 1 rungs (inductive hypothesis) and
then the nth rung (inductive step). Since this holds for all n ∈ N, all
of the ladder’s rungs can be reached (end of proof).

a lecture on divide-and-conquer algorithms and the master theorem 2

Chip-Testing Algorithm

Example 4. Show that in the chip testing algorithm, we have Tn ≤
C · n for all n and some C > 0.1 1 Recall that an algorithm has worst-

case running time Tn = O(n) if

∃C ∈ R such that Tn ≤ C · n ∀n ≥ n0,

where Tn0 is some base case run time
and n0 > 0.

The base case n = 0 is trivial, since 0 = T0 ≤ C · n for any C ∈ R.
Now, assume the inductive hypothesis, which states that

Tk ≤ C · k, for all k ∈ {0, 1, 2, . . . , n− 1}.

By hypothesis and definition of Tn, we have the following:

Tn ≤
3n
2

+ Tbn/2c ≤
3n
2

+ C ·
⌊

n
2

⌋
≤ 3n

2
+ C · n

2
,

but we want to prove the inductive step or Tn ≤ C · n, so we will
need Note that whenever we place a question

mark on top of a relational operator
such as ≤ or =, the relation is simply
one that we hope holds.

3n
2

+ C · n
2

?
≤ C · n,

which holds if C ≥ 3. Therefore, Tn ≤ 3 · n for all n.

Binary Search

Definition 5. Given a sorted list [x1, x2, . . . , xn] of size n and an object
x′, the divide-and-conquer Binary Search algorithm returns the list
position of the object in question (if it exists in the list).

The algorithm uses a ternary oracle, which takes two objects xa, xb

as input and returns one of {(xa < xb), (xa = xb), (xa > xb)}.

• If the list [] is of size 0, then it does not contain the desired object.

• If the list [x] is of size 1 and the oracle returns x′ = x, then the lone
element in the list is our desired object. If not, then the list does
not contain the desired object.

The algorithm uses the fact these lists are sorted to its advantage.
It repeatedly compares the desired object to the middle element of
the list and calls itself on the corresponding half of the list until the
object is found or a base case is reached.

1 2 3 4 5 6 7 8 9 10 11

1 3 4 7 8 9 11 15 16 20 22

Here, the middle element (9) lies in the
6th slot. The oracle returns 8 < 9, so we
call Binary Search on the left sub-list.

1 2 3 4 5

1 3 4 7 8

Here, the middle element (4) lies in the
3rd slot. The oracle returns 8 > 4, so we
call Binary Search on the right sub-list.

4 5

7 8

Here, the middle element (7) lies in the
1st slot. The oracle returns 8 > 7, so we
call Binary Search on the right sub-list.

5

8

We have arrived at the base case n = 1.
The oracle returns 8 = 8 so the
algorithm returns the index 5.

Figure 2: Finding the number 8 in a
sorted list using Binary Search

• If n is even, we use xn/2 as the middle object. If the oracle returns
x′ = xn/2 then we have found the object. If not, the list is split
into [x1, x2, . . . , x(n/2)−1] and [x(n/2)+1, x(n/2)+2, . . . , xn], and we call
Binary Search on the sub-list that may contain x′.

• If n is odd, we use x(n+1)/2 as the middle object. If the oracle re-
turns x′ = x(n+1)/2 then we have found the object. If not, the list is
split into [x1, x2, . . . , x((n−1)/2)−1] and [x((n+1)/2)+1, x((n+1)/2)+2, . . . , xn],
and we call Binary Search on the sub-list that may contain x′.

a lecture on divide-and-conquer algorithms and the master theorem 3

Example 6. Show that for Binary Search, the worst-case time Tn

satisfies Tn = O(log2(n)).

The case n = 0 of Binary Search requires no oracle calls, so T0 = 0.
When n = 1, a single oracle call is required, so T1 = 1. Calling Binary
Search on a list of size n ≥ 2 requires a single oracle call and perhaps
a Binary Search call on a list of size bn/2c, so:{

Tn ≤ 1 + Tbn/2c ∀n ≥ 2,
T0 = 0, T1 = 1.

We will show that Tn ≤ 1 + C · log2(n) for some C > 0.

The base case n = 1 is trivial, since T1 = C · log2(1) for any C ∈ R.
Now, assume the inductive hypothesis, which states that:

Tk ≤ C · log2(k) + 1, for all k ∈ {1, 2, . . . , n− 1}.

By hypothesis and definition of Tn, we have the following:

Tn ≤ 1 + Tbn/2c ≤ 1 + C · log2bn/2c+ 1

≤ 1 + C · log2 (n/2) + 1

= 1 + C · log2(n)− C · log2(2) + 1

= 1 + C · log2(n) + 1− C

≤ 1 + C · log2(n) whenever C ≥ 1.

So we have shown that Tn ≤ 1 + log2(n) holds for all n.

Exercise 7. Show by induction that if Binary Search runs with a Hint: The algorithm remains the same,
but two oracle calls are necessary to
show that two objects are equal.

binary oracle that returns one of {(xa ≤ xb), (xa 6≤ xb)} then:{
Tn ≤ 2 + dlog2(n)e,
T0 = 0, T1 = 2.

Master Theorem

We have seen many algorithms that have recurrences of the form

Tn = a · Tn/b + f (n),

for some integers a and b such that a ≥ 1 and b > 1 along with a pos-
itive function f (n) of n. We can prove that Tn = O(g(n)) inductively,
but we need to conjecture a guess for g(n) ahead of time. The Master
Theorem gives us a way of hazarding a guess for g(n).

a lecture on divide-and-conquer algorithms and the master theorem 4

Theorem 8 (Master Theorem). Given a recurrence of the form

Tn = a · Tbn/bc + f (n), (2)

(a) If there exists some ε > 0 and some n0 ∈N such that 2 2 If we have equality, meaning that

nlogb(a)/ f (n) = Θ(nc) ∀n ≥ n0,

then Tn = Θ(nlogb(a)) instead.
nlogb(a)/ f (n) > nε ∀n ≥ n0,

then Tn = O(nlogb(a)).

(b) If there exists some ε > 0 and some n0 ∈N such that 3 3 This case holds under the technical
assumption

lim inf
n→∞

(
f (n)

a · f (n/b)

)
> 1.

f (n)/nlogb(a) > nε ∀n ≥ n0,

then Tn = O(f (n)).

(c) If f (n) = Θ(nlogb(a)) then Tn = Θ(nlogb(a) · logb(n)).

Example 9. Approximating the time complexity for Merge Sort yields

Tn ≤ Tbn/2c + Tdn/2e + n− 1 ≈ 2 · Tn/2 + n− 1, (3)

which is equation (2) with a = b = 2 and f (n) = n− 1. We have The recursive relation given by equation
(3) holds for n ≥ 2, since the base cases
T0 = T1 = 0 are handled separately.
This implies that f (n) = n− 1 ≥ 1 > 0
is a positive function of n and so we can
apply the Master Theorem.

f (n) = n− 1 = Θ(n) = Θ(nlog2(2)) = Θ(nlogb(a)),

so the third case applies here. Therefore:

Tn = Θ(nlog2(2) · log2(n)) = Θ(n · log2(n)).

One can show formally by induction that Tn ≤ n · log2(n) for all n.

Exercise 10. Solve the recurrences below using the Master Theorem:

Chip Testing O(n)

Fast Exponentiation (RAM Model) O(log(n))

Fast Exponentiation (Bit Model) O(n2)

Merge Sort Θ(n log(n))

Karatsuba Multiplication O(nlog2(3)) ≈ O(n1.585)

Toom-3 Multiplication O(nlog3(5)) ≈ O(n1.465)

a lecture on divide-and-conquer algorithms and the master theorem 5

Recursion Trees

Definition 11. Given a recurrence of the form Tn = a · Tn/b + f (n), The node representing a problem of
time n is denoted by

n

f (n)

where f (n) is the work required, and
each of the ”a” lines lead to a problem
of size n/b.

calling Tn costs f (n) units of "work" and results in a new problem
with worst-case time Tn/b being called ”a” times. To visualize this
scenario, we define an a-ary tree aptly named the algorithm’s recur-
sion tree. Each node represents an algorithm call, with the root node
referring to the first call on a problem of size n. Given the recursion
tree for some algorithm, summing the required work over all of its
nodes allows us to obtain the time complexity of the algorithm.

Example 12. Consider the recurrence Tn = 3Tn/4 + n.
Its recursion tree is given below.

n

n

n/4 n/4 n/4

n/42 n/42 n/42

n/4k

Work Done

n

3/4 · n

(3/4)2 · n
...

(3/4)k · n

n/4 n/4 n/4

n/42 n/42 n/42

n/4k

Examining the work done at each level, we see that most of the
work is done at the top of the tree (early in the recursion). Observe
that k ≈ log4(n) since n/4k ≈ 1. The total work is

Tn = n
[
1 + 3/4 + (3/4)2 + · · ·+ (3/4)k

]
≤ n

∞

∑
i=0

(3/4)i = 4n,

where we have used the fact that
∞

∑
i=0

xi =
1

1− x
for any x ∈ (0, 1).

Just as the master theorem predicts, we conclude that Tn = O(n).

a lecture on divide-and-conquer algorithms and the master theorem 6

Example 13. Consider the recurrence Tn = 4 · Tn/4 + n.
Its recurrence tree is given below.

n

n/4 n/4 n/4 n/4

n/4k

Work Done

n

4/4 · n

...

(4/4)k · n

n

n/4 n/4 n/4 n/4

n/4k

Examining the work done at each level, we see that it is distributed
uniformly about each level. The total work is

Tn = Θ(n log(n)),

since we do n work on k ≈ log4(n) levels. Again, this is confirmed by
the master theorem.

Example 14. Consider the recurrence Tn = 5 · Tn/4 + n.
Its recurrence tree is given below.

n

n/4 n/4 n/4 n/4 n/4

n/4k

n

n/4 n/4 n/4 n/4 n/4

n/4k

Work Done

n

5/4 · n

...

(5/4)k · n

Examining the work done at each level, we see that most of the
work is done at the bottom of the tree (late in the recursion). At the
last level we do (5/4)k · n = 5k work (since k ≈ log4(n)) so the work
done here is 5log4(n) = nlog4(5). The total work done is

Tn = nlog4(5)
(

1 + 4/5 + (4/5)2 + · · ·+ (4/5)k
)
≤ nlog4(5)

∞

∑
i=0

(4/5)i = 5nlog4(5),

as predicted by the master theorem.

a lecture on divide-and-conquer algorithms and the master theorem 7

Matrix Multiplication (Strassen’s Algorithm)

Consider the problem of multiplying two n× n matrices, A× B = C.
A naive algorithm for computing this would be the standard matrix
multiplication algorithm:

Cij =
n

∑
k=1

aik · bkj

which takes Θ(n3) time in the RAM model of computation. Divide-
and-conquer methods allow us to improve on this. We split A and
B into four n/2× n/2 sub-matrices4 and multiply them instead. This 4 This is only possible if n = 2k for some

k ∈ N so we pad the matrices A and B
with zeros if necessary.

A =

[]
=⇒

[
A1 A2
A3 A4

]
allows us to restate our problem as

A× B =

[
A1 A2

A3 A4

]
×
[

B1 B2

B3 B4

]
=

[
A1B1 + A2B2 A1B2 + A2B4

A3B1 + A4B3 A3B2 + A4B4

]
which has its recurrence given by We do n2 work during positioning and

8Tn/2 work doing multiplications.
Tn = n2 + 8Tn/2.

Despite the above trick, applying the master theorem results in the
same asymptotic bound Θ(n3) as for the naive method. Using a
cleverly defined set of operations, we can get away with performing
only 7 multiplications.5 Therefore, the new recurrence is given by 5 Defining the following operations

M1 = (A1 + A4)(B1 + B4)

M2 = (A3 + A4)B1

M3 = A1(B2 − B4)

M4 = A4(B3 − B1)

M5 = (A1 + A2)B4

M6 = (A3 − A1)(B1 + B2)

M7 = (A2 − A4)(B3 + B4)

allows us to express the matrix C as[
M1 + M4 −M5 + M7 M3 + M5

M2 + M4 M1 −M2 + M3 + M6

]

Tn = n2 + 7Tn/2

which yields Tn = Θ(nlog2(7)) ≈ Θ(n2.807) by the master theorem.

Remark: Many years after Strassen’s discovery, faster methods saw
the light. Coppersmith and Winograd designed an O(n2.378) algo-
rithm in 1990 and Williams an O(n2.373) algorithm in 2014. It is
known that the best one can hope for is O(n2 log n), so the gap be-
tween lower bound and best known algorithm is still considerable.

References

T. Cormen, C. Stein, R. Riverest, C. Leiserson: Introduction to Algo-
rithms, McGraw-Hill Higher Education, Second Edition, 2011.

V. Strassen: “Gaussian Elimination is not Optimal”, Numerische Mathe-
matik, vol. 13, pp. 354-356, 1969.

D. Coppersmith, S. Winograd: “Matrix multiplication via arithmetic
progressions”, Journal of Symbolic Computation, vol. 9, pp. 251-280,
1990.

V. Williams: “Multiplying matrices in O(n2.373) time”, Stanford Univer-
sity, 2014.

	Recurrences
	Mathematical Induction
	Chip-Testing Algorithm
	Binary Search
	Master Theorem
	Recursion Trees
	Matrix Multiplication (Strassen's Algorithm)
	References

