
Augmented Data Structures
Jad Hamdan and Tyler Kastner

March 2, 2020

This is the augmented transcript of two lectures given by Luc Devroye
in his Data Structures and Algorithms classes (COMP 251/252) at
McGill University.

Introduction

In certain situations, our standard data structures (such as a linked
list, or binary search tree), are enough for our needs, but this is not
always the case. Instead of creating an entirely new data structure,
however, what we can do is ’augment’ an existing data structure, by
storing additional information in it. Some examples of augmented
data structures are:

Data

Data Structure 1 Data Structure 2

Backpointer

Cell (exogenous)

Figure 1: Visualization of data partici-
pating in multiple data structures

• Data participating in multiple data structures

• Search trees & lists

• Order statistics trees

• Interval trees

Combining Red-Black Tree and Linked List

Within a red-black tree, it may be interesting to store a ’next’ and a
’previous’ pointer with each node, so we can easily browse it. The
next pointer points to the next node in the ordering of the keys. We
will see that if we keep track of these pointers from the beginning of
our tree, it is not difficult to accomplish this.

parent[x]

right[x]left[x]

Color
Key

NextPrevious

Figure 2: The cell of a combined red-
black tree and linked list

As seen in Figures 3 and 4, it is very straightforward to update
the pointers while doing our ordinary operations, they in fact take
constant time. Therefore we will be able to do all our normal red-
black tree operations, without adding extra time to these operations.
This is what we will aim to do when augmenting data structures.
Note that the data live in two data structures, a red-black tree and a
linked list.

augmented data structures 2

1

6

4

2

5 7
3

8

9

10

11

12

βα

α

β

Figure 3: Upkeep of list during INSERT.

β

α

δ

γ
β

α

δ

γ

Figure 4: Upkeep of list during RO-
TATE

Order Statistics ADT

The ADT "Order Statistics" supports the standard dictionary opera-
tions (INSERT, DELETE, SEARCH), and two new operations:

• SELECT(k, D): retrieve the kth smallest element of D

• RANK(x,D): return the rank of the item pointed to by x in D.

parent[x]

right[x]left[x]

Color
Key

Size

Figure 5: The cell of an order statistics
tree.

We can imagine SELECT and RANK are opposite operations. In
the former, we are inputting a rank and outputting a node, while in
the latter we are inputting a node and outputting a rank. We will
implement this data structure via an Order Statistics Tree, which is
an augmented red-black tree. We will create the red-black tree with
cells as seen in Figure 2, where "size" is the number of nodes in the
subtree.

The new important field to keep track of is size. We have two im-
portant tasks: determining whether we can still perform INSERT,
DELETE in O(log n), as well as perform SELECT and RANK in
O(log n).

x

±1

±1

±1

±1

Figure 6: The strategy for inserting and
deleting.

To maintain size during INSERT and DELETE, all we need to do
is change the size associated with all the ancestors of the inserted or
deleted node. If we perform INSERT, we add one to all ancestors,
and if we DELETE, we subtract one from all ancestors (as seen in
Figure 6). When we rotate, the only node whose size field changes
is the one we are rotating, as can be seen in Figure 7. Therefore, this
only adds O(log n) time to these operations, and they all still run in
O(log n).

augmented data structures 3

Note: by an extension of the above arguments, it is straightforward
to maintain fields of the form f (u) = ∑u∈subtree f (key[u]), or f (u) =

maxu∈subtree f (key[u]) (respectively min).

SELECT(k, t)

1 // t is a pointer to the root of the tree
2 if le f t[t] = nil
3 r = 1 // r is the rank of the root
4 else r = 1 + size[le f t[t]]
5 case
6 r = k: return t
7 k < r: return SELECT(k, left[t])
8 k > r return SELECT(k-r, right[t])

This runs in O(log n) time, as desired.

A B

C

B C

A

A+B+C+2

A+B+C+2

A+B+1 B+C+1

Figure 7: Subtree sizes are shown next
to each node involved in a rotation.

RANK(x, t)

1 // x is a pointer to a node, t is a pointer to root
2 if le f t[x] = nil
3 r = 1
4 else r = 1 + size[le f t[x]]
5 y = x // Travelling pointer
6 while y ̸= t
7 if right[parent[y]] = y
8 r = r + 1 + size[le f t[parent[y]]
9 // rank = 1 + number of green items

10 y = parent[y]
11 return r

x

root

Figure 8: The idea behind the algorithm
for RANK. The rank of x is the number
of elements to the left of it, so we will
count all of the green nodes in the
figure.

Interval Trees

Used to store intervals, Interval Trees make the task of finding over-
lap between said intervals particularly efficient. We will begin by
introducing a problem that will serve as motivation for the technical
details to come:

Ri

ai bi

xi

yi

Figure 9: Visual explanation of what
ai , bi , ci , and di correspond to for a
rectangle Ri . Ri’s left side (red) is the
interval we’re interested in.

Placing rectangles on a surface with no overlap
We are given a finite rectangular surface and a placement of n smaller
rectangles on this surface (more specifically, a list of ai, bi, xi and yi

for each rectangle Ri, as defined in the Figure 9). How can we check
that no two rectangles overlap? We could encounter such a problem while
designing a chip, for instance.

augmented data structures 4

In a naïve approach, one could just compare all pairs of rectangles
to check for overlap. This would cost Θ(n2). time. We will outline. a
faster method that runs in O(n log n) time.

We introduce the sweepline problem-solving paradigm, which
consists of replacing one of the problem’s dimensions with time,
effectively reducing its dimensionality by one. We do so with our
surface’s x-axis; one can imagine a sweepline traversing the surface
from left to right and encountering rectangles along the way. We refer
to these encounters as births, as opposed to deaths which occur when
a rectangle is no longer touched by the sweepline.

Assume, for now, that we have an arbitrary data structure capa-
ble of storing intervals. Using the latter, along with the sweepline
paradigm, the following algorithm can check if a placement is valid.
Start from the left, and "sweep" through the surface. When faced
with a birth, insert (in our data structure) the interval formed by y-
coordinates of the rectangle in question. In case of a death, delete the
corresponding interval from our data structure. At every birth, check
if the newly added interval causes any overlap and terminate if it is
the case (by doing so, we discretize time and limit ourselves to one
check per rectangle).

SWEEPLINE(a, b, x, y) //a is the sequence of all ai’s, b of bi’s, etc.

1 MAKENULL(t) //create empty interval tree
2 L← SORT(a,b) //returns a sorted list containing all ai’s and bi’s
3 for i = 1 to 2n do
4 // to simplify, we assume that we have a way of accessing xi and yi

5 if L[i] is a birth
6 if OVERLAP((xi,yi),t) //this checks if [xi,yi] intersects any existing interval in t
7 exit "INVALID PLACEMENT"
8 else INSERT((xi,yi),t)
9 if L[i] is a death

10 DELETE((xi,yi),t)
11 exit "VALID PLACEMENT"

A brief explanation of how "sweeping" translates into code: we sort the
ai’s and bi’s to get an increasing sequence that effectively represents the x-
axis (more specifically, the points at which births/deaths occur), and iterate
through the sequence to "traverse".

t (Time)Sweeplinet = 0

Birth Death

Figure 10: Visualization of the
sweepline (red) traversing the sur-
face, along with examples of points
where a birth/death occurs (blue).

We will see below how to implement the interval tree such that
INSERT, DELETE and OVERLAP each take O(log n) time. We es-
tablished that there are at most n OVERLAP checks (where n is the
number of rectangles to be placed). Each rectangle is inserted and
deleted once from the Interval Tree; this adds up to O(n log n) time.

augmented data structures 5

The initial sorting step yields another O(n log n) term, giving a total
run-time O(n log n), as desired.

The description above reveals the following abstract data type
requirements:

• Objects: Intervals

• Operations: INSERT, DELETE, OVERLAP

High

Low

Max value
o f subtree

Color

Rank

parent[t]

le f t[t] right[t]

Figure 11: Example of an interval tree
node (added attributes in color).

OVERLAP checks if a given interval intersects any interval already
stored in the data structure.

Implementation:
Interval trees are augmented Red-Black trees. As displayed in Figure
11, the nodes are start off as RB-tree nodes to which we add three
attributes. The first two are Low and High, referring to the beginning
and end point of the interval stored in the node. We will use Low as
a key for the node. Next, we have the Max attribute, referring to the
largest High attribute in this node’s subtree. Using this information,
the OVERLAP algorithm is as follows:

OVERLAP(a, b, t) //checks if [a,b] overlaps any interval stored in the inter-
val tree with root t.

1 if t = nil
2 return FALSE
3 else if [a, b] ∩ [low[t], high[t]] ̸= ∅
4 return TRUE
5 else if le f t[t] = nil
6 return OVERLAP(a, b, right[t])
7 else if a > low[t] and a ≤ Max[le f t[t]]
8 return TRUE
9 else if a < low[t] and a > Max[le f t[t]]

10 return FALSE
11 else if a ≤ Max[le f t[t]]
12 return OVERLAP(a, b, left[t])
13 else
14 return OVERLAP(a, b, right[t])

One can simplify the pseudo-code in the case that the tree t only
stores non-overlapping intervals.

1 7

2 11

9 20

4 10

4

91

2

Max : 11

Max : 11

Max : 20

Max : 20

Figure 12: Example of an Interval
Tree. Each node contains an interval
(depicted below) and said interval’s
lowest point is used as the key.

The number of recursive calls thus at most matches the height of
the tree, which is O(log n) since we have a Red-Black tree. OVERLAP
therefore runs in O(log n) time.

Recall the previously mentioned sweepline algorithm:

augmented data structures 6

Level Linking in Red-Black Trees

We would like to implement fast browsing. Some operations which
we would like to be able to perform are:

• INSERT, DELETE

• SEARCH

• NEXT

• k-NEXT (skip over k items)

• PREVIOUS

• k-PREVIOUS (same idea as k-NEXT)

To achieve this, we will use a data structure known as a level-
linked red-black tree. Recall the 2-3-4 tree view of a red-black tree,
where black nodes live in different ’levels’. We will augment the red
black tree by adding a linked list at each level of black nodes, as seen
in figure 2. This data structure will have red cells unchanged, and
black cells the same as the augmented cells of the combined red-
black tree and linked list (figure 2).

1

2

3

Figure 13: The 2-3-4 view of a level-
linked red black tree

The main idea we need to implement is that given a key k, we
must efficiently find a way to search for y such that key[y]= k. We
will assume we start at a node x, and key[x]< k. We would like to
take advantage of our data structure, and so beginning at node x,
we will advance up the tree (towards the root) until we find a point
whose right neighbor "overshoots y", and call this point z (z is the
first point such that [next[z]] > k). We will call this neighbor z∗, and
from here we will traverse down the tree and search for y (standard
search). We might have a problem however, if x were the root and
y was the end of a left-going 1-ary tree beginning at right[x]. This
would be undesirable, as it would take O(log n) to search for y, even
though |Rank(y)−Rank(x)| = 1. y

x

z z*

Figure 14: The idea behind searching
for key k

As a remedy, we will slightly alter our algorithm as follows:

(1) x = next[x]

(2) from x, continue search as before.

Exercise 1. Prove that Time ≤ 1 +O(log(Rank(y)−Rank(x)))

k-d Trees

k-d Trees are binary search trees that are used to partition Rk. They
store k-dimensional data. For simplicity and the ability to visualize,

augmented data structures 7

we will consider k = 2 (for k = 1, we obtain a standard binary search
tree). Denote the input by (x1, y1), ..., (xn, yn).

parent[t]

right[t]left[t]

(x,y):
point [t]rectangle "owned"

by (x,y): rect[t]

https://www.overleaf.com/project/623382abb5bf8e77c5e343b3

Figure 15: The cell of a k-d tree pointed
to by t.

The first data point, (x1, y1) partitions the space with respect to x1.
Recursively on each side, we choose a point and partition the space
with respect to the y-entry this time. Each time we recurse, we cycle
through which dimension we use as our key to split. To build the
tree, each cut corresponds to an internal node of the tree, and every
leaf in the k-d tree corresponds to a region in our final space.

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)
(x5,y5)

1

2 3

4

5

An example of a 2-d tree. Cuts passing through the points (xk, yk)

are represented by the internal nodes labeled k, and the final regions
in the space are represented by leaves of the same color.

Operations on 2-d trees:

• INSERT, DELETE

• SEARCH for (x, y)

• SEARCH for (x, ∗)

• SEARCH for (∗, y)

• RANGE SEARCH(R, t) 1 1 Given a rectangle R = [a, b] × [c, d]
return all points inside this rectangle

To accomplish Range Search, we recursively visit all subtrees whose
region intersects R, and output all points (xi, yi) which lie in R.

Each node x stores left and right pointers, a data entry, point[x], a
cut direction, dir[x] and a rectangle Rect[x], i.e., the rectangle that is
cut by point[x].

augmented data structures 8

Outline of Range Search Algorithm :

Given: rectangle R = [a, b]× [c, d], tree t.

RANGE SEARCH(R, t)

1 if t ̸= nil and R∩ Rect[t] ̸= nil
2 if point[t] ∈ R
3 Output point[t]
4 RANGE SEARCH(R, left[t])
5 RANGE SEARCH(R, right[t])

left[t] right[t]

rect[t]

R

point[t]

Figure 16: A visualization of Range
Search in 2-d

Quadtrees

Quadtrees are 2
d-ary trees similar to k-d trees. The main difference

between these and k-d trees is that instead of partitioning using lines,
we use quadrants. We can perform Range Search on these as well.
Quadtrees are popular in computer graphics.

(x1,y1)

(x2,y2)

1

2

The construction of a quadtree from two points in R2.

BSP Trees

Binary Space Partition trees, also known as BSP trees, are binary
trees used in computer graphics. They are used to represent objects
living in space using a tree. We will see that the construction of this
tree allows us to easily render a scene of this object from a given
viewpoint. First, what is the need for such a tree? Imagine you are
taking using a camera to take a picture of a scene, of different objects
in space. These objects will appear to be projected onto the lens, and
the objects at a deeper depth might be hidden by the closer objects.
The idea of BSP trees is to address the hidden object problem.

augmented data structures 9

The BSP tree is an augmented binary tree. We do not need to
make it a search tree since whether or not it is balanced is not a key
issue.

To partition the space, we begin with a "camera angle" which
points towards the objects. We will use this to sort. Begin by drawing
a hyperplane that separates the objects. We do two things to this
hyperplane: first we mark each side with a "+" and a "-" (the "+" side
represents which side is facing the front of the camera), and we also
mark it with a number to represent which hyperplane cut it is. We
then recurse into each region cut into by the hyperplane, and we stop
when each object is in its own region. This process is visualized in
the figure below.

Viewing Angle

+ -

1

+
-

A

2
+ -

3

F

+ -
4

5+
-

E

D

+ -

G

6

+ -

7

C

B

H

To build our tree from this, we treat each hyperplane as a node,
and after placing a node, we recurse into each half of the space cut
by the hyperplane, and repeat the process. When there are no more
hyperplanes and only objects, we place the object as the node, so that
the leaves are objects. For the above figure, the tree built from it is
below.

+

+

+ −

−

−

− +

+

+ +

−

−

2

1

4 A

5

3

6 7−

F G H B C

DE

To paint this as a scene, first, paint the objects furthest back. This
is the idea behind Painter’s Algorithm, which outputs a listing of the
objects in the order in which they should be painted. Simply perform
a traversal in "- +" order. That is, given a non-leaf node x, visit its
"-" subtree before its "+" subtree. When x is a leaf, x represents an
object, which should be projected to the viewing plane and rendered.
For the above tree, this traversal would give us "D-E-F-A-B-C-G-H",
which coincides with the depths of the objects in the figure.

augmented data structures 10

References

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd.
ed.). The MIT Press.

	Introduction
	Combining Red-Black Tree and Linked List
	Order Statistics ADT
	Interval Trees
	Level Linking in Red-Black Trees
	k-d Trees
	Quadtrees
	BSP Trees

