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§1. Introduction

We are asked to estimate a density f on Rd based on an i.i.d. sample
X1, . . . , Xn drawn from f . The estimators we are considering here gener-
alize the standard d-dimensional regular histogram estimate, defined by an
anchor point (in this case, the origin) and bin widths h1, . . . , hd, one bin
width per dimension. For integers i1, . . . , id, we define the rectangular cell

A(i1, . . . , id) =
d∏

j=1

(ijhj , (ij + 1)hj ]

and denote byN(i1, . . . , id) the number of data points in the cellA(i1, . . . , id).
Let A(x) denote the unique cell to which x ∈ Rd belongs, let | · | denote
Lebesgue measure of a set, and let N(x) denote the number of data points
in A(x). Then the regular histogram estimate is

fn(x) =
N(x)

n|A(x)| =
N(x)

n
∏d
j=1 hj

.

It is known that E
{∫
|fn − f |

}
→ 0 whenever the hj ’s are functions of n

only such that maxj hj → 0 and n
∏d
j=1 hj → ∞ (Devroye and Györfi,

1985, p. 20, and Abou-Jaoude (1976a,b)). Of course, the real problem
is to find the best hj ’s. In particular, we are looking for data-based
choices H1, . . . , Hd such that, writing gn for the histogram estimate with
H1, . . . , Hd, and fn for the histogram estimate with h1, . . . , hd, we have

E
{∫
|gn − f |

}
≤ Cn inf

h1,...,hd
E
{∫
|fn − f |

}
+Dn

where Cn is small and Dn is of order smaller than most nonparametric
rates, e.g., Dn = O(

√
logn/n) would be a typical additive term. As the

best error rate over all hj ’s is often (but not always) larger than
√

logn/n,
an inequality of the type given above becomes useful, especially when Cn
is near one or at least remains bounded. To save space, we say that a data-
based bandwidth selection is L1-optimal on a class of densities F if there are
finite constants C and C ′ such that for each f ∈ F , lim supn→∞ Cn ≤ C,
and lim supn→∞Dn/

√
logn/n ≤ C ′. We know of no bin width selection

method that is L1-optimal when F is the class of all densities. This is
striking as for the multivariate kernel estimate, L1-optimal bandwidths for
all densities were developed by the authors (Devroye and Lugosi, 1996,
1997, 2001), based on a combinatorial method. In Devroye and Lugosi
(2001), for d = 1, an attempt at an L1-optimal bin width for histograms
was developed, but it allowed only the selection of an optimal h1 from the
dyadic set {2−k; k = 0,±1,±2, . . .}. The purpose of this paper is to remove
this condition, and to propose an L1-optimal bin width in any dimension
where F is the class of all densities with a finite p-th moment where p
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is any positive number (the constant C ′ depends upon p and d, and C is
universal).

We also extend the results for variable-binwidth histograms. We de-
fine large parametrized families of histogram estimates and show that L1-
optimality may be achieved even within such rich classes.

It should be noted that there is a wealth of material on the his-
togram density estimate. For L1, we refer to Devroye and Györfi (1985),
Abou-Jaoude (1976a, 1976b), Chen and Zhao (1987), Devroye (1987) and
Lugosi and Nobel (1996). For L2, see Freedman and Diaconis (1981),
and Zhao, Krishnaiah and Chen (1990). For the Hellinger distance, see
Kanazawa (1988, 1992, 1993), and Barron, Birgé and Massart (1999). For
the Kullback-Leibler distance, we refer to Rodriguez and Van Ryzin (1985,
1986). For the sup norm convergence, see Kim and Van Ryzin (1975).
For all criteria, there have been attempts at obtaining optimal bin widths
based on various principles. Cross-validation was attempted in an L2 set-
ting by Rudemo (1982). Stone (1985) established its near-optimality for
all bounded densities. Cross-validation is known to fail for densities that
have large peaks (and that are not square integrable), leading even to non-
consistency. For the Hellinger distance, drawing on work by Barron, Birgé
and Massart (1999), Castellan (2000) obtained optimality in a sense close
to our definition for L1-optimality under certain conditions on the density,
including a compact support. Her method is a form of penalized maximum
likelihood criterion. Akaike’s criterion has been used in the design of bin
widths by Taylor (1987), Atilgan (1990), Hall (1990), and Kanazawa (1993).
Complexity minimization was suggested by Hall and Hannan (1988) and
Yu and Speed (1990, 1992). For bin widths based on asymptotic analysis,
we refer to Scott (1979), Lecoutre (1985), Kogure (1987) and Wand (1997).
Birgé and Rozenholc (2002) provide a survey and a comparative simulation.
Leave one out maximum likelihood has not been explicitly attempted, but
it is easy to see that it must yield bins with at least two elements per occu-
pied bin, and thus, the bin width must be larger than the distance between
the largest two order statistics, an observation that immediately points out
the inconsistency of this method for all distributions with larger than ex-
ponential tails. In most of the work cited, L1 optimality was not the goal.
Furthermore, the d-dimensional choice of bandwidths was not considered,
so, to fill this void in the literature, we develop the combinatorial method.

§2. The combinatorial method

Let our density estimates be parametrized by θ ∈ Θ, where θ represents
the vector of bandwidths (h1, . . . , hd). Let fn,θ denote the histogram den-
sity estimate with parameter θ. Let m < n be an integer picked to split the
data into a set X1, . . . , Xn−m used for constructing a density estimate, and
a validation set Xn−m+1, . . . , Xn. To make the notation more transparent,
in the sequel we sometimes write Y1, . . . , Ym for Xn−m+1, . . . , Xn, accord-
ing to which choice is more convenient. The variables in the validation set
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are used to construct an empirical measure µm(A) = (1/m)
∑n
i=m 1[Yi∈A].

Introduce the class of sets

A = {{x : fn−m,θ(x) > fn−m,θ′(x)} : θ ∈ Θ, θ′ ∈ Θ, θ 6= θ′}
(these are the so-called “Yatracos sets”) and define

∆θ = sup
A∈A

∣∣∣∣
∫

A
fn−m,θ − µm(A)

∣∣∣∣ .

We define the minimum distance estimate ψn as any density estimate se-
lected from among those density estimates fn−m,θ with

∆θ < inf
θ∗∈Θ

∆θ∗ + 1/n.

The 1/n here is added to ensure the existence of such a density estimate.
For the minimum distance estimate ψn as defined above, we have

∫
|ψn − f | ≤ 3 inf

θ∈Θ

∫
|fn−m,θ − f |+ 4∆ +

3

n
,

where ∆ = supA∈A
∣∣∫
A f − µm(A)

∣∣ (Devroye and Lugosi, 2001, Theorem
6.4). Note that infθ∈Θ

∫
|fn−m,θ−f | is not much larger than infθ∈Θ

∫
|fn,θ−

f |, that is, holding out m samples does not hurt: indeed, by Theorem 10.2
of Devroye and Lugosi (2001), if 0 < m ≤ n/2, then

infθ∈Θ E{
∫
|fn−m,θ − f |}

infθ∈Θ E{
∫
|fn,θ − f |}

≤ 1 +
2m

n−m + 8

√
m

n
.

This means that by decreasing the sample size to n−m, the performance of
the best estimate in the class cannot deteriorate by more than a constant
factor. If m is small relative to n, the loss in the L1 error is negligible.

Next, we recall a bound for ∆ based upon a technique introduced by
Vapnik and Chervonenkis (1971). Introduce

µ(A) = P{Y1 ∈ A} (A ⊂ Rd).

Consider a class B of subsets of Rd and set ∆ = supA∈B |µm(A)− µ(A)|.
For any set of points ym1 = {y1, . . . , ym} ⊂ Rd, introduce the empirical
Vapnik–Chervonenkis shatter coefficient, defined by

SB(ym1 ) = |{{y1, . . . , ym} ∩ A;A ∈ B}| .
Since Y1, . . . , Ym are random, SB(Y m1 ) becomes a random variable whose
expected value appears in the following form of the Vapnik-Chervonenkis
inequality:

E
{

sup
A∈B
|µm(A)− µ(A)|

}
≤ 2E

{√
log 2SB(Y m1 )

m

}
.

This inequality is proved in Theorem 3.1 of Devroye and Lugosi (2001).
(Note that the form of the inequality given there is slightly different, but
this version is straightforward from that proof.)
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To bound E∆, we use this inequality with B replaced by our A. Since
the class A is random– its definition involves X1, . . . , Xn−m–, we use the
inequality above conditionally, and the independence of (X1, . . . , Xn−m)
and (Y1, . . . , Ym):

E∆ =E {E (∆|X1, . . . , Xn−m)}

≤2E

{
E

{√
log 2SA(Y m1 )

m

∣∣∣X1, . . . , Xn−m

}}

=2E

{√
log 2SA(Y m1 )

m

}

≤2

√
E
{

log 2SA(Y m1 )
}

m

by Jensen’s inequality, where the expected value is now taken with respect
to all random variables Xi, Yj , i = 1, . . . , n −m, j = 1, . . . ,m. Thus, we
readily obtain the following.

Theorem 1. For all n, m ≤ n/2, and f :

E
{∫
|ψn − f |

}
≤3

(
1 +

2m

n−m + 8

√
m

n

)
inf
θ∈Θ

E
{∫
|fn,θ − f |

}

+ 8

√
E
{

log 2SA(Y m1 )
}

m
+

3

n
.

Devroye and Lugosi (2001, Lemma 10.5) showed that for d = 1, and
with h1 ∈ {2k, k = . . . ,−2,−1, 0, 1, 2, 3, . . .},

SA(Y m1 ) ≤ (m+ 1)n2,

uniformly over all X1, . . . , Xn−m and Y1, . . . , Ym. However, this estimate is
not valid if we permit h1 to take values in all of (0,∞). The contribution
of this paper is to provide various bounds for the shatter coefficient.

§3. The shatter coefficient

The next lemma is the key combinatorial result needed to make Theo-
rem 1 useful. Because of technical reasons, we restrict the class of histogram
estimates such that the minimal bin width is not smaller than a parameter
a > 0. Later we will see that the value of a may be chosen very small, say,
of the order of n−2 and that this restriction becomes unimportant, since
the optimal histogram estimates necessarily have bin widths exceeding this
value.

Denote the components of the data vectors Xi by Xi,j (j = 1, . . . , d)
and the components of Yi by Yi,j (j = 1, . . . , d).
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Lemma 1. Assume that Θ = {(h1, . . . , hd) : a ≤ hi, 1 ≤ i ≤ d}, where
0 < a <∞. Then

SA(Y m1 ) ≤ (m+ 1)




d∏

j=1

(
n+ 1 +

1

a

n∑

i=1

|Xi,j |
)


2

.

Proof. It will help a lot to introduce for each Xi (i = 1, . . . , n) its d-
vector of bin numbers, bi = (bi,1, . . . , bi,d), where bi,j is the bin number
for the j-th co-ordinate Xi,j of Xi for a given value of θ ∈ Θ. That is,
if Xi,j ∈ (khj , (k + 1)hj ], then bi,j = k. Set b = (b1, . . . , bn), so that b
is in fact a vector of nd bin numbers. As we vary θ ∈ Θ, we will first
count the number of possible values for b. As we vary h1 only, we note
that the absolute value of the bin number of Xi,1 must lie between 0 and
(|Xi,1|/a)+1. As h1 increases from its minimal value to∞, the bin numbers
bi,1, 1 ≤ i ≤ n, can change at most

n∑

i=1

(
(|Xi,1|/a) + 1

)
= n+

1

a

n∑

i=1

|Xi,1|

times. The number of possible values for (b1,1, . . . , bn,1) is thus not more
than one plus that number. Clearly then, the number of possible values for
the vector b is at most

d∏

j=1

(
n+ 1 +

1

a

n∑

i=1

|Xi,j |
)
.

Consider regions R,R′ of Θ on which the vector b is fixed (and takes
two fixed values, possibly the same). For θ = (h1, . . . , hd) ∈ R, θ′ =
(h′1, . . . , h

′
d) ∈ R′, and Yi, i ≤ m, note that Yi ∈ A(θ, θ′) (i.e., fn−m,θ(Yi) >

fn−m,θ′(Yi)) if and only if

d∏

j=1

hj > c(Yi)
d∏

j=1

h′j

where c(y) is a fixed function of y only. That means that as θ ∈ R, θ′ ∈ R′
are varied, the number of possible values for the vector

(z1, . . . , zm) =
(

1[Y1∈A(θ,θ′)], . . . , 1[Ym∈A(θ,θ′)]

)

is at most m+1 (just let the ratio
∏d
j=1 hj/

∏d
j=1 h

′
j vary from 0 to∞, and

consider passages through the values c(Y1), . . . , c(Ym)). Thus, the shatter
coefficient is not more than m+1 times the square of the number of possible

–5–



values for the vector b:

SA(Y m1 ) ≤ (m+ 1)




d∏

j=1

(
n+ 1 +

1

a

n∑

i=1

|Xi,j |
)


2

.

We have the following corollary of the previous lemma.

Lemma 2. Assume that Θ = {(h1, . . . , hd) : a ≤ hi, 1 ≤ i ≤ d}, where
0 < a <∞. Then, with 0 < m < n,

E {log 2SA(Y m1 )} ≤ (2d+1) log(2n)+2d log
1

a
+2

d∑

j=1

E
{

log

(
max

1≤i≤n
|Xi,j |+ a

)}

Proof. By Lemma 1,

log 2SA(Y m1 ) ≤ log(2m+ 2) + 2
d∑

j=1

log

(
n+ 1 +

1

a

n∑

i=1

|Xi,j |
)

≤ log(2m+ 2) + 2
d∑

j=1

log

(
(n+ 1) +

1

a
n max

1≤i≤n
|Xi,j |

)

≤ (2d+ 1) log(2n) + 2d log
1

a
+ 2

d∑

j=1

log

(
max

1≤i≤n
|Xi,j |+ a

)

as desired.

§4. Small-tailed distributions.

Combining Theorem 1 with Lemma 2 we obtain the following perfor-
mance bound.

Theorem 2. Assume that Θ = {(h1, . . . , hd) : a ≤ hi, 1 ≤ i ≤ d}, where
0 < a <∞. Then, for all n, m ≤ n/2, and f :

E
{∫
|ψn − f |

}
≤ 3

(
1 +

2m

n−m + 8

√
m

n

)
inf
θ∈Θ

E
{∫
|fn,θ − f |

}

+ 8

√
(2d+ 1) log(2n)

m

+ 8

√
2d log 1

a + 2
∑d
j=1 E

{
log
(
max1≤i≤n |Xi,j |+ a

)}

m
+

3

n
.
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As a first example, let G be the class of all densities on [−1, 1]d. For
these densities, by Theorem 2,

E
{∫
|ψn − f |

}
≤ 3

(
1 +

2m

n−m + 8

√
m

n

)
inf
θ∈Θ

E
{∫
|fn,θ − f |

}

+ 8

√
(2d+ 1) log(2n)

m
+ 8

√
(2d) log(1 + 1/a)

m
+

3

n
.

Let us arbitrarily set a = 1/n2 and m = bεnc for ε ∈ (0, 1) fixed. (b·c
stands for integer part.) Then

E
{∫
|ψn − f |

}

≤
(
3 + 6ε/(1− ε) + 24

√
ε+ o(1)

)
inf
θ∈Θ

E
{∫
|fn,θ − f |

}
+ C

√
logn

εn

where C is a constant depending only upon d.
Denote by Θ∗ the set of all parameters (unrestricted by a, as in Θ).

Ideally, we would like to replace the infimum over Θ in Theorem 2 by
the infimum over Θ∗. The next lemma shows that with a = n−2 this
is indeed possible since, if n is sufficiently large, then deterministically,
infθ∈Θ∗−Θ

∫
|fn,θ − f | ≥ 2/3, that is,

3 inf
θ∈Θ∗−Θ

∫
|fn,θ − f | ≥ 2

and thus the infimum over this range is unimportant.

Lemma 3. Let θ = (h1, . . . , hd) be such that mini hi < 1/n2. Then there
exists a constant γ(f) such that for n ≥ γ(f),

∫
|fn,θ − f | ≥ 2/3.

Therefore, for n ≥ γ(f),

inf
θ∈Θ

E
{∫
|fn,θ − f |

}
= inf
θ∈Θ∗

E
{∫
|fn,θ − f |

}
.

Proof. Let Mj be a point with the property P{|X1,j | ≥ Mj} = 1/(3d),
j = 1, . . . , d. Set M = maxj≤dMj . Recall that by absolute continuity of
f , there exists a function R(u) such that if a set A has Lebesgue measure
λ(A) ≤ R(u), then

∫
A f ≤ u. Note that

∫
|fn,θ − f | ≥ 2

∫

fn,θ=0
f

= 2− 2

∫

fn,θ>0
f
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= 2− 2

∫

∃j:|xj |>Mj

f − 2

∫

maxj(|xj |/Mj )≤1,fn,θ>0
f

≥ 2− 2d
1

3d
− 2

∫

maxj(|xj |/Mj )≤1,fn,θ>0
f

≥ 2− 2/3− 2/3

if the Lebesgue measure of the set {maxj(|xj |/Mj) ≤ 1, fn,θ > 0} is less

than R(1/3). But if i denotes the index of a coordinate for which hi < 1/n2,
then the Lebesgue measure may be bounded by

∏

k 6=i
(2Mk)× (2nhi) ≤

2 (2M)d−1

n
≤ R(1/3)

for n ≥ 2(2M)d−1/R(1/3).

Summarizing, we obtain L1 optimality for all densities in G:

Theorem 3. Let ε ∈ (0, 1/2] be fixed and let m = bnεc. Assume the den-
sity f has support in [−1, 1]d, and consider the minimum distance estimate
Ψn based on the restricted set of parameters Θ = {(h1, . . . , hd) : a ≤ hi, 1 ≤
i ≤ d}, where a = n−2. Then for n large enough,

E
{∫
|ψn − f |

}

≤
(
3 + 6ε/(1− ε) + 24

√
ε+ o(1)

)
inf
θ∈Θ∗

E
{∫
|fn,θ − f |

}
+ C

√
logn

εn

where Θ∗ = {(h1, . . . , hd) : hi > 0, 1 ≤ i ≤ d}. The o(1) and C in this
bound do not depend upon the individual density f , but the least n above
which the inequality is true does depend upon f .

In the rest of this section we point out that the restriction to compactly
supported densities is not necessary. In fact, L1-optimality of the same
estimate holds under the only assumption that each marginal of f has a
finite p-th moment for some p > 0. Thus, the only densities excluded from
the next L1-optimality result are those with a truly heavy tail. Note that for
such densities any regular histogram estimate is expected to perform very
poorly. It remains an open question whether an analogue result remains
true without any restriction on f . This is in contrast with the analogue
problem for kernel density estimates for which L1-optimality holds for all
densities, see Devroye and Lugosi (1996).
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Theorem 4. Consider the estimate of Theorem 3 and assume that M =
maxj=1,...,d E|X1,j |p is finite for some p > 0. Then for n large enough,

E
{∫
|ψn − f |

}

≤
(
3 + 6ε/(1− ε) + 24

√
ε+ o(1)

)
inf
θ∈Θ∗

E
{∫
|fn,θ − f |

}

+ C

√
logn

εn
+ C

√
log(Mn)

pεn

where o(1) and C do not depend upon the individual density f , but the
least n above which the inequality is true does depend upon f .

Proof. The result directly follows from Theorem 2 and Lemma 3 just
an appropriate bound for E

{
log
(
max1≤i≤n |Xi,j |+ a

)}
is needed. To this

end, observe that

epE{log(max1≤i≤n |Xi,j |+a)} ≤ E
{
ep log(max1≤i≤n |Xi,j |+a)

}

(by Jensen’s inequality)

≤ E

{
n∑

i=1

ep log(|Xi,j |+a)
}

= nE
{
ep log(|X1,j |+a)

}

= nE
{(
|X1,j |+ a

)p}

≤ n2p (M + ap)

and therefore

E
{

log

(
max

1≤i≤n
|Xi,j |+ a

)}
≤ 1

p
log (n2p (M + ap)) .

Putting the pieces together, we obtain the desired claim.

§5. Transformed histogram estimate

To guarantee L1-optimality, one may artificially avoid heavy-tailed dis-
tributions by transforming the data beforehand. For example, applying the
transformation y := x/(1 + |x|) to each co-ordinate separately, we may
transform the data X1, . . . , Xn to data X ′1, . . . , X

′
n that are supported on

[−1, 1]d. On the transformed data, we apply the combinatorial method with
a = 1/n2. The density of X1 is f and that of X ′1 will be denoted by g. If
ψn is the chosen histogram estimate, then the inverse transformation yields
a density estimate ξn of f . Recall that strictly monotone transformations
leave the L1 distance invariant (see Devroye and Györfi, 1985). Thus by
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Theorem 2 and Lemma 3, for all densities and all n large enough, the above
method picks an estimate ξn with the property

E
{∫
|ξn − f |

}
= E

{∫
|ψn − g|

}

≤ 3

(
1 +

2m

n−m + 8

√
m

n

)
inf
θ∈Θ∗

E
{∫
|fn,θ − f |

}

+ 8

√
(2d+ 1) log(2n)

m
+ 8

√
(2d) log(1 + n2)

m
+

3

n
.

Here Θ∗ denotes the space of all histogram bin widths (h1, . . . , hd) : hi ≥
0, 1 ≤ i ≤ d, and fn,θ is the density corresponding to the transformed
histogram estimate (which is not a histogram estimate). Thus, within the
class of estimates thus described, the combinatorial method is L1 optimal.

§6. Variable bandwidths

Another way of dealing with heavy-tailed densities is to allow bins
to become wider in the tails. Of course, one would like to optimize the
variable bandwidth. The purpose of this section is to explore this direc-
tion. For simplicity, assume that each component of X is concentrated on

[0,∞), and consider bandwidths hj(ρ) =
∑k
`=1 aj,`φ`(ρ), where ρ is the bin

number for the j-th co-ordinate j = 1, . . . , d, the φ` are fixed positive func-
tions, and the aj,` are unknown positive parameters. Such a parametriza-
tion of the bandwidth has been useful in kernel estimates for unimodal
densities (Biau and Devroye, 2002), and, as we will show, works equally
well for histogram estimates. For the j-th co-ordinate, on positive data, if
bins are numbered 0, 1, 2, . . ., the thresholds separating the bins occur at
0, hj(1), hj(1) + hj(2), . . ..

Note that if k = 1 and φ1 ≡ 1 then we recover the case of regular
histograms discussed in the previous sections. If φ` is an increasing function,
then such a choice allows bin widths to grow. One may, for example, take
φ`(ρ) = ρ`−1, ` = 1, . . . , k but any other choice is possible.

Thus, each density estimate is now parametrized by a kd-dimensional
vector of the positive components aj,`. Denote such a vector by θ and
let Θ be the collection of all θ’s. Based on this set of parameters, the
minimum-distance estimate may be defined the same way as in the case of
regular histograms and Theorem 1 remains valid. Once again, the heart of
the matter is the combinatorial argument bounding the shatter coefficient
SA(ym1 ), which is summarized in the next lemma. Once again, we need to
restrict the set Θ to those parameters whose components are not too small.

Lemma 4. Assume that φ`(ρ) ≥ 1 for all ` = 1, . . . , k and positive integer
ρ, and let a > 0. Consider

Θ =
{
θ = (aj,`)j=1,...,d;`=1,...,k : a < aj,` <∞

}
.
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Then
SA(Y m1 ) ≤ (m+ 1)(2nρmax + 1)2kd

where

ρmax =

⌈
1

ka
max

j=1,...,d
max

i=1,...,n
Xi,j

⌉
.

(d·e denotes upper integer part.)

Proof. The proof is an extension of the argument of Lemma 1. Once
again, we start by counting the possible different values of the nd-component
vector b of bin numbers corresponding to the n data points (X1, . . . , Xn) =
(X1, . . . , Xn−m, Y1, . . . , Ym).

First of all observe that by the assumption φ`(ρ) ≥ 1, the maximal bin
number of any of the data points is at most ρmax. Consider any of these
data points, say X1, and concentrate on the first component only. Let ρ
be a positive integer. Observe that the first bin number of Xi equals ρ
(ρ ≤ ρmax) if and only if

ρ−1∑

t=1

h1(t) ≤ Xi,1 <

ρ∑

t=1

h1(t)

or equivalently, since h1(s) =
∑k
`=1 a1,`φ`(s), if

k∑

`=1

a1,`z
−
ρ ≤ Xi,1 <

k∑

`=1

a1,`z
+
ρ

where z−ρ =
∑ρ−1
t=1 h1(t) and z+

ρ =
∑ρ
t=1 h1(t). Thus, as we vary the

parameters a1,`, ` = 1, . . . , k corresponding to the bin widths of the first
component, the vector of n bin numbers for the n data points can take at
most as many values as the number of different contiguous regions defined
by the 2nρmax hyperplanes of the form

k∑

`=1

a1,`z
−
ρ = Xi,1 and

k∑

`=1

a1,`z
+
ρ = Xi,1, i = 1, . . . , n; ρ = 1, . . . , ρmax

in the k-dimensional space of parameters. This number is well-known to
be bounded by

k∑

`=0

(
2nρmax

`

)
≤ (2nρmax + 1)k

(see Schläffli, 1950). Clearly then, the number of possible values of the
vector of all bin numbers, counting now all d components, is at most

(2nρmax + 1)kd.

The rest of the proof is now identical to that of Lemma 1.
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Using Lemma 4, now it is easy to extend all arguments for regular
histogram estimates. For example, it is immediate to obtain the analogue
of Theorem 2 which states that if Θ is as in Lemma 4 then for all n,
m ≤ n/2, and f ,

E
{∫
|ψn − f |

}

≤ 3

(
1 +

2m

n−m + 8

√
m

n

)
inf
θ∈Θ

E
{∫
|fn,θ − f |

}

+ 8

√
log(2m+ 2) + 2kd log 1

ka + 2kdE
{

log
(
maxi,j |Xi,j |+ ka

)}

m
+

3

n
.

Now E
{

log
(
maxi,j |Xi,j |+ a

)}
may be estimated the same way as in the

proof of Theorem 4 to obtain L1-optimality (with respect to the class Θ)
for any density which has a finite p-th moment for some p > 0. It makes
sense to take a = 1/n2 since such a choice will not harm the L1-optimality
and includes all interesting choices of variable bandwidths. Note however
that we cannot take a = 0.
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