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Abstract 

Exact random variate generators were developed to sample Green's functions used in Brownian 

Dynamics (BD) algorithms for the simulations of chemical systems. These algorithms, which use less 

than a kilobyte of memory, provide a useful alternative to the table look-up method that has been used 

in similar work. The cases that are studied with this approach are 1) diffusion-influenced reactions; 2) 

reversible diffusion-influenced reactions and 3) reactions with an intermediate state such as enzymatic 

catalysis. The results are validated by comparison with those obtained by the Independent Reaction 

Times (IRT) method. This work is part of our effort in developing models to understand the role of 

radiation chemistry in the radiation effects on human body and may eventually be included in event-

based models of space radiation risk. 
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87.15.A- Theory, modeling, and computer simulation 
87.15.ak Monte Carlo simulations 
82.37.Np Single molecule reaction kinetics, dissociation, etc. 
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Simulations based on the Green's functions of the diffusion equation (DE) have been used for years to 

study chemical reactions in solutions [1-10]. More recently, this approach has been used in radiation 

chemistry codes to simulate the radiolysis of water and aqueous solutions [11-12], chemical dosimeters 

[13] and to study of interaction of ligand molecules with receptors [14]. The purpose of this work is to 

propose and validate a sampling algorithm of the Green’s function of the diffusion equation (DE), 

which is used to simulate chemistry in non-homogeneous systems. The algorithm is exact for 2-particles 

systems and requires less than 0.15 kilobytes of memory. The cases that are studied with this approach 

are 1) diffusion-influenced reactions; 2) reversible diffusion-influenced reactions and 3) reactions with 

an intermediate state such as enzymatic catalysis. The results are compared with those obtained with the 

independent reaction times (IRT) method. The performance of the algorithm was compared to table 

look-up methods which are the standard method used for this kind of simulations. This algorithm will be 

used in Brownian Dynamics codes to simulate the radiation chemistry of the radiolytic species (such as 

the free radical .OH) created by the interaction of ionizing radiation with water and eventually study 

DNA damage by the indirect effect. 

 

2. Use of the diffusion equation in chemistry 

2.1 Modeling of chemical reactions 

The approach presented in this paper has been used to study complex problems such as reversible 

reactions with an intermediate state, which may be represented as follows [7]: 

 , (1) productsC
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where ka is the association rate constant, kd is the complex dissociation rate constant and ke is the 

products formation rate constant. The units of ka are [length]3[time]-1, and the units of kd and ke are 

[time]-1. As it is well known [8-9; 15], the probability distribution of the separation vector between two 

particles is a Green’s function of the DE. Therefore, the DE for a three-dimensional system with 
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spherical symmetry is widely used to study chemical reactions of particles in solution [10]. This 

equation is [16]: 
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where R is the reaction radius, D is the sum of the diffusion coefficients of the particles, and r0 and r 

are the inter-particles distances at times 0 and t. The initial condition is [9]: 

 , r0>R, (3) )r-(r4 0
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where δ is the Dirac's delta function. The boundary condition of this system at r=R is [7,9]: 

 )r|(*,)r|,(
r

)r|tp(r,
4 00

02 tpktRpkDR da
Rr

−=
∂

∂

=

π . (4) 

 
where p(*,t|r0) is the probability of the pair to be found in the reversibly bound state (*). The time 

evolution of the pair in the reversibly bound state is given by 
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The time evolution of the product state (**) is given by  
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2.2 Green's functions 

 
The solution of the DE for the system described in the previous section (Green's function) is p(r,t|r0). 

It is useful at this point to introduce the functions Erfc(x), W(x,y) and Ω(x)1: 

 ∫
∞

−≡
x

dexErfc ξ
π

ξ 22)( ,
 (7a) 

 , (7b) )()2exp(),( 2 yxErfcyxyyxW ++≡

 . (7c) )()exp()( 2 xErfcxx ≡Ω

 

                                                 
1 These functions may involve the product of a very large and a very small number, which may lead to 
overflow errors and loss of precision. The arguments of these functions can also be complex numbers. 
For complex arguments, the Faddeeva function is used [17]. 
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 The expression of p(r,t|r0) and related functions are quite long. To simplify them, the variables 

4DtR)/-(rr =ρ , 4DtR)/-(r00 =ρ , Dt' α=α , Dt' β=β  and Dt' γ=γ are introduced.  

The Green's function (also called “Brownian propagator”) is given by [7]: 
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where α, β and γ are the roots of a 3rd order polynomial. The coefficients of the polynomial are linked to 

the reaction rate constants as follows: 

 Rkk Da /)/1( +−=++ γβα , (9a) 
 Dkk de /)( +=++ γαβγαβ , (9b) 
 DRkkkk deDa /])/1[( ++−=αβγ , (9c) 
 
and kD=4πRD. Since R>0 and the rate constant are all real and ≥0, at least one of the root (which will 

be α through this text) is real and negative. The roots β and γ are either real or complex conjugates.  

The survival probability of a pair of particles Q(t|r0) is calculated by integrating p(r,t|r0) over the 

space outside the reaction radius R. This calculation yields: 

( ) ( )

( ) ( )0
0

0
0

0
0

0
0

0
2

0

1',
))((

))()(1(

',
))((

))()(1(',
))((

))()(1(1)drr|tp(r,r4)r|Q(t

ρ
αβγ

γαβγαβγρ
γβγαγ
γβγαγ

βρ
βαβγβ
βαβγβ

αρ
αγαβα
αγαβα

π

ErfcR
r

W
r

R

W
r

RW
r

R

R

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−−
+++

+

−
−−
+++

+−
−−
+++

+== ∫
∞

. (10) 

For the simulations, the Green’s function for the dissociation of a reversibly bound particle p(r,t|*) 

and the probabilities of transitions from one state to another p(*,t|r0), p(**,t|r0), Q(t|*), p(*,t|*) and 

p(**,t|*) are also needed. They are given in Appendix I.  

These functions comprise several divisions by the roots and/or differences of the roots, which may 

lead to computational issues. The cases to consider are 1) α≠β≠0, γ=0; 2) α≠0, β=γ≠0; 3) α≠0, β=γ=0 

and 4) α=β=γ. The functions take different forms, which are presented in the supplemental material.  

However, they are rarely an issue since R>0 implies that at least one of the roots is negative and 
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different from 0. For diffusion-controlled reaction (ka>0, kd=ke=0), β=γ=0. The Green's function is 

much simpler in this case [6, 18]: 
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where α=-(ka+4πRD)/(4πR2D). The survival probability of a pair of particles, Q(t|r0), is calculated by 

integrating p(r,t|r0) over space outside the reaction radius R: 
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2.3. Discretization of time 

A simulation is usually done in several time steps. During the simulation, after each time step, the 

state of the pair of particle or the inter-particle distance changes. However, the number of pairs in the 

different states as well as the distribution of distances of the pair at the end of the simulation should 

only depend on the sum of the time steps. In Appendix II, we show that the Green's functions are in 

accordance with this. This property of the Green's function is quite useful for the following reason. The 

values of r are distributed as p(r,Δt1|r0) after the first time step. These values of r become the values of 

r0 for the next sampling. But we know that the values of r sampled after the next time step (Δt2) will be 

distributed as p(r,Δt1+Δt2|r0). Therefore, since the sampling algorithm in the second time step is used 

with different r0, the algorithm is verified simultaneously for a whole range of the parameter r0. The 

property further allows the verification of the algorithm for dissociation, since the distribution of r after 

two time steps comprises the contribution of the dissociated pairs of particles. 

 
 
2.4 Simulations with the independent reaction times (IRT) method 
 
 
A major problem encountered in radiation chemistry simulations is the calculation time. The main 

reason for this is that the number of possible interactions in a system comprising N particles is N(N-1)/2. 

This large number of interactions often makes the problem intractable, even for systems comprising a 
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relatively small number of particles. To overcome this problem, a method named independent reaction 

times (IRT) has been developed about 30 years ago [20-22], and has been widely used to calculate the 

radiolytic yields in aqueous solutions [23-26] and in chemical dosimeters [27-28]. This method is useful 

because it allows the calculation of radiolytic yields much faster than full step-by-step Brownian 

Dynamics simulations. However, the positions of the particles at each time step are not calculated; 

therefore, the extension of the IRT method to problems of interest to radiobiology such as DNA damage 

simulations may be difficult. In this work, the IRT method is used for comparison with the algorithm 

presented in this paper. 

 

3. Methods 

3.1 Sampling of the Green's function with a reflective boundary 

To construct a Brownian Dynamics algorithm it is necessary to generate random variates2 

(corresponding to inter-particle distance) from the Brownian propagator. Before discussing the case of 

diffusion-influenced reactions, an algorithm is proposed to generate random variates from the Green's 

function for the distance between two non-reacting particles, i.e. p(r,t|r0) with ka=0, kd=0 and ke=0. The 

boundary condition for this system is ∂p(r,t|r0)/∂r|r=R=0 (the reflecting boundary condition); 

consequently, this particular Green's function will be noted pref(r,t|r0). As will be seen, the algorithm 

which will be obtained can be modified easily to Brownian propagators used to simulate chemical 

reactions. The distribution to sample is 
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This distribution is normalized, i.e.:  

                                                 
2 The terminology given in the book of Devroye [29] regarding non-uniform random variate generation 
will be used here. 

7

 



 . (14) 1)r|t(r,pr4
R

0ref
2 =∫

∞

drπ

 
The objective is to generate random variates X from f(x)≡4πr2pref(x,t|r0). This probability distribution 

is univariate, but includes four parameters r0, R, D and t. As shown in the supporting document, f(r) can 

be written as a two parameters distribution. However, to avoid introducing more variables, the 

algorithm is given here in its original form. 

Since W≥0, it is clear that f(x)≤h(x), where  
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Therefore, von Neumann's rejection method [29-31] can be used. The rejection method is a well-know 

general technique to generate random variates of the probability distribution p(x), which does not 

require that the cumulative distribution function (the indefinite integral of p(x)) be computable. To use 

this technique, we assume that p(x)≤Cg(x), where C is a proportionality constant such as C≥1 and g(x) is 

a probability distribution for which random variates X distributed as g(x) can be easily generated. To 

generate random variates distributed as p(x), a uniformly distributed random number U between 0 and 1 

and a random variate X distributed as g(x) are generated. The value of X is accepted if the condition 

UCg(X)≤p(X) is verified; otherwise, a new set of U and X are generated until the condition is true. From 

a geometric perspective, points are generated in the 2D plane bounded by the curve Cg(x) and the 

domain of g(x); the points are accepted are those which fall under p(x).  

 

In the actual problem, since f(x) is bounded from above by the first two terms (h), the third (negative) 

term is ignored at this moment. The function h can be rewritten as the sum of four terms, which, after 

rearrangement and truncation to the positive ranges, are: 
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where 1[condition] takes the value 1 when the condition is true, and 0 when it is false. Also define 
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Thus, . It is possible to generate a random variate with density proportional to h 

easily, since h is a mixture of known probability distribution functions. The weights of the contributions 

of h1, h2 and h3+h4 are obtained by integration: 
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where Φ(x) is the normal distribution function: 

 2/)(1)2(x xErfc−=Φ . (19) 

Generating a random variate X with density proportional to h is straightforward, since h1 and h2 are 

the Rayleigh and tail of Rayleigh distributions [29]. Therefore, the following algorithm (given in the 

form of a pseudo-code) can be used:  

 

 

 

 Algorithm 1a 
 Compute p1,p2 and p'. Set s=p1+p2+p'. 
 Generate a uniform [0,1] random variate U 
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 If sU ∈ [0,p1], then set DtE4rX 0 +← , where E is standard exponential3. 
 If sU ∈ (p1, p1+p2], then set DtE4R)-(rr2RX 2

00 ++−← , where E is standard exponential.
 If sU ∈ (p1+p2, s], then let X be a random variate with density proportional to h3+h4. 

 
 

  Return X. 

To generate a random variate with density proportional to h3+h4, it is noted that for 

r≥R. But 
 
is identical to the standard normal density with variance 2Dt centered at r0. Therefore, 

an algorithm based on the rejection method can be used to generate a random variate from h3+h4:  

r)R(h(r)h ' −≤ 234

'
33 hh +

 Algorithm 1b: 
 Repeat { 
  Generate N standard normal4, U uniform on [0,1] 
  Set NDt2rX 0 +← . 
 } Until X>R, or jointly X<R, r0<2R and U≤(2R-r0)/r0. 
 In the former case, return X. 
 In the latter case, return 2R-X. 
 
 
where Repeat {...} Until is a conditional "Do" loop. Finally, the overall algorithm generates pairs 

(X,U) with X having density proportional to h and U uniform [0,1] until Uh(Y)≤f(Y), and returns Y. The 

expected number of iterations is p1+p2+p'. As it was implicitly shown, p'≤1 (Eq. 18c), so the 

contribution from h3+h4 is minor.  

 

3.2 Sampling of the Green's function for diffusion-influenced reactions 

The Green's function for diffusion-influenced reactions is similar to pref(r,t|r0). Because ka>0, α<0 and 

the Green's function is bounded from above by pref(r,t|r0). Therefore, algorithm 1 can be used, 

replacing f(X) in final rejection step by the Green's function for diffusion-influenced reactions.  

 

3.3 Sampling of the Green's function for the general case 

                                                 
3 A standard exponential random variate is distributed as p(x)=exp(-x), x≥0. It can be generated from a 
uniform random number U between 0 and 1 by using E=-log(U).  
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The Green's function for more complex systems such as those used for reactions with an intermediate 

state, considering the range of the parameters used, is also bounded from above by pref(r,t|r0). Therefore, 

algorithm 1 can also be used by replacing f(X) in the final rejection step. However, in addition to 

sampling the propagator p(r,t|r0), the BD algorithm require sampling the Green's function for the 

dissociation of a bounded pair p(r,t|*). This can be done by writing p(r,t|*) in a form suitable for 

rejection sampling, i.e. with a Gaussian function in evidence:  
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where r≥R. The distribution function to sample is 4πr2p(r,t|*), which can be written as the product of 

the functions g(r) and h(r): 
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The function g(r) is a mixture of know probability distributions, for which a sampling algorithm can 

be developed easily. The function h(r) comprises three terms with Ω(x). But since the value of Ω(x) 

ranges from 0 to 1 for x≥0, h(r) can be used as the rejection function. The function g(r) can be written as 

the sum of two functions:  
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The function g(r)=g1(r)+g2(r) is not normalized. However, it is not an issue for sampling since only 

the relative contributions of g1 and g2 are needed. They are calculated by integration: 

                                                                                                                                                                         
4 A standard normal random variate is distributed as p(x)=(2π)-1/2exp(-x2/2). A normal random variate N 
can be generated from two random numbers uniformly distributed between 0 and 1 (U1 and U2) by using 
the Box-Muller method, i.e. 
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Therefore variates X distributed as g(X) can be generated by using the following algorithm: 

 Algorithm 2 
 Compute p1 and p2 
 Generate U uniform on [0,1] 
 If U<p1/(p1+p2) Set )log(4X VDtR −+← , where V is uniform on [0,1] 

 Else set DtNR 2X +← , where N is standard normal. 
 Return X 
 

The sampled values (X) are then used in the rejection function h(X), for which the maximum value 

hmax is needed. But since h(r) is the sum of three terms comprising Ω(x), for which the value ranges 

from 0 to 1, the maximum value of h(r) is given by sum and/or differences of the coefficients. However, 

the sum of the coefficients is 0; thus, the sum of the absolute value of the coefficients, i.e. hmax=|α/(β-

α)(γ-α)|+|β/(γ-β)(α-β)|+|γ/(α-γ)(β-γ)| is used. Therefore, algorithm 2 can be used with a rejection 

method using h(r) and hmax, i.e. the sampled values X are accepted if Vhmax≤ h(X), where V is a random 

number uniformly distributed between 0 and 1. 

3.4 Look-up table methods 

To evaluate the performance of the algorithm, look-up tables were built and used to generate values of 

R. The Green's function p(r,t|r0) is univariate, but with two parameters. By fixing the time step, the 

number of parameters is reduced to one but the tables are different for different values of r0. Therefore 

one dimensional tables were built as in ref. [7], depending on which simulation is done. The table 

should be recalculated for each different value of r0. The dissociation Green's function p(r,t|*) is 

univariate for a fixed time step; therefore, a one-dimensional table can be built using Equation C3b of 

ref. [7]. 

 

3.5 The IRT method 
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The IRT method is widely used in radiation chemistry [23-28]. A detailed description of this method 

is beyond the scope of this paper; therefore, only the most important points will be given here. Briefly, 

knowing the initial positions of the particles in the system, a reaction time is sampled for each pair of 

particles by solving numerically the equation  

U
Dt
Rr

ErfcDt
Dt
Rr

W
r

R
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⎡
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⎛ −
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⎛ −+

4
,

4
1 00

0

α
α

α , (27) 

 

where U is a random number uniformly distributed between 0 and 1. This time is infinite (and 

therefore not considered) if a reaction is not possible. Similarly, a reaction time is obtained for first-

order processes by sampling an exponential distribution with parameter given by the inverse of the 

dissociation rate constant. The reaction times are sorted and the reactions are processed according to the 

time in the list, by deleting reactants and adding reaction products. The reaction time list is updated after 

each reaction. The reactions are done until the final time is reached. With this method, the competition 

between reactions is described via sorting the reaction times, and no provision is made to account for 

spatial correlations that could exist between reactants [24].  

 

4. Results and discussion 

The simulation results are presented in this section. 

4.1 Reflective boundary 

Since ka=kd=ke=0, α=-1/R and β=γ=0. As expected, Q(t|r0)=1 since there are no reactions of 

particles. In Figure 1, the function 4πr2pref(r,t|r0) with parameters R=1 and r0=1.5 is plotted. The region 

r<R is forbidden. 

 

Figure 1 

 

The Brownian propagator has been sampled 1,000,000 times using algorithm 1, and the sampled r 

values were stored in histograms. The number of counts in each histogram “bin” are normalized and 
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plotted as points for comparison with the analytical Green’s functions. The number of histories is 

chosen to ensure results convergence in a reasonable calculation time. A χ2 test was performed using 

10,000, 100,000 and 1,000,000 histories to evaluate if the sampled distribution is different from the 

analytical predictions. In all cases, the χ2 statistics is <110 for 88 degrees of freedom, indicating that the 

distributions are not statistically different if the 95% threshold value is used. However, to avoid a large 

dispersion of the sampled values, 1,000,000 histories are used for all the simulations done in this paper. 

The first calculation is done for t=1 with the initial value of r0=1.5. The calculation for t=2 is done by 

sampling the Green's function using the r values generated by the previous calculations as initial r0. 

Therefore the points at t=2 are the result of two consecutive sampling of the Green's function. Similar 

results may be obtained by sampling the Green's function once with t=2. The results for t=4, 8, 16 and 

32 can be obtained in the same way, either by sampling the Green's function directly or by using 

multiple consecutive sampling with any combination of Δt which gives a total time of t.  

 

4.2 Diffusion-influenced chemical reactions 

In this case, ka>0, kd=ke=0. Since α<-1/R, Q(t|r0)<1, indicating reaction of particles over time. In 

Figure 2a, the function 4πr2p(r,t|r0) (Eq. 12) with R=1, D=1, ka=4πRD (α=-2) and r0=1.5 is plotted. In 

Figure 2b, the average free particle count (given by 2Q(t|r0)) are plotted for ka=1x4πRD (α=-2), 

ka=2x4πRD (α=-3), ka=4x4πRD (α=-5) and ka=100x4πRD (α=-101). Results obtained with the IRT 

method are also shown. 

 

Figure 2 

 

The Green's functions are very similar to those depicted in Figure 1. The maximum of all 

corresponding curves are lower, due to reaction of particles. As in the previous section, 1,000,000 

histories of pair of particles are simulated. In this case, the survival of a pair of particles is assessed at 

each time step by looking if Q(t|r0)<U, where U is a uniformly distributed random number between 0 
14

 



and 1. If a pair reacts, it is considered in a bound state and the Brownian propagator is not sampled 

anymore. Otherwise, a new value of r is obtained by sampling the Brownian propagator using 

algorithm 1. The first calculation is done for t=1 using the initial value of r0=1.5. As in the previous 

section, the calculation for t=2 is done by sampling the Green's function using the r values generated by 

the previous calculations as initial r0 on surviving pairs of particles. Therefore the points at t=2 are the 

result of two consecutive sampling of the Green's function. Similar results (not shown) may be obtained 

by sampling the Green's function once with t=2. The results for t=4, 8, 16 and 32 can also be obtained 

by using multiple sampling of the Green's function, as previously described.  

In the long time limit, Q(t→∞|r0) takes the form 

⎥
⎦

⎤
⎢
⎣

⎡

πα
+

α
+α

−
∞→ Dtr

RrtQ
t

1111~)|(lim
0

0
. (28) 

 

As shown in Figure 2b, the average particle count plateaus at the predicted values for t→∞. In the 

limit of diffusion-controlled reactions (ka→∞), Q(t→∞|r0)→1-R/r0. 

 

4.3 Reversible reaction 

In this section, the case where ka>0, kd>0 and ke=0 is considered. Even if ke=0, it is possible for β 

and γ to be complex conjugates, so the general equations for the Green's functions should be used. 

 

Figure 3 

In Figure 3a, the Green's functions 4πr2p(r,t|r0) (Eq. 8) are shown at t=1, 2, 4, 8, 16 and 32 for R=1, 

D=1, ka=10(4πRD), kd=36, and r0=1.5 (α=-2, β=-6, γ=-3). The Green's functions are very similar to 

those obtained in the previous section. The time discretization property is also verified, i.e. the results at 

t=2 are the simulation of two consecutive sampling of the Green's functions. As in diffusion-controlled 

reactions, the program verifies if the free pairs are in a bound state after a time step by using Q(t|r0). At 

the second (and subsequent) time steps, a bound pair may dissociate with probability Q(t|*). If the pair 

dissociates, a new distance between particles if found by sampling 4πr2p(r,t|*) using algorithm 2. 
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Therefore, the simulation points depicted in Figure 3 for t≥2 include contributions of the sampling of 

the Green's function for the pair in the bound state. In Figure 3b, the average free and reversibly bound 

particle count (given by 2Q(t|r0) and p(*,t|r0)) are plotted as a function of time for ka=5(4πRD), R=1, 

D=1, r0=1.5 and three values of kd. The results from the IRT simulations are also shown; they also 

match the results obtained with the Green’s function with excellent agreement. It should be noted that 

the forward and backward (dissociation) reactions are treated separately by IRT, and that the Green’s 

function given by Equation (8) is not used by IRT.  

As noted by Agmon [3], since the particles diffuse away from each other, the pair will always 

dissociate in the long-time limit. The long-time behavior of the survival probability is given by [6]: 

2/30 )4(
1~)|(lim

Dtk
k

rtQ
d

a

t π∞→
. (29) 

 

4.4 Reversible reaction and enzyme catalysis 

This is the general case with ka>0, kd>0 and ke>0, for which β and γ can be complex conjugates. The 

simulation of these reactions is similar to those of the previous section. In this case, the probabilities for 

the possible states of a pair of particles initially at distance r0 are given by Q(t|r0) (free), p(*,t|r0) 

(reversibly bound) and p(**,t|r0) (reaction). For free pairs, the distance is sampled by using algorithm 

1. Similarly, the state of a reversible bound pair after a time step is determined by using Q(t|*) (free), 

p(*,t|*) (reversibly bound) and p(**,t|*) (reaction). 

 

Figure 4 

 

In Figure 4a, the Green's functions 4πr2p(r,t|r0) (Eq. 8) are show at t=1, 2, 4, 8, 16 and 32 for R=1, 

D=1, ka=14(4πRD), kd=65, ke=1, and r0=1.5 (α=-8, β=-2 and γ=-5). As in previous sections, the data 

shown for t=2 and subsequent times are obtained as the result of several consecutive sampling of the 

Green's functions. Once again, the agreement between results of sampling and analytical Green’s 

functions is excellent at all times values. In Figure 4b, the average count of free, reversibly bound and 
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irreversibly bound particles (given by 2Q(t|r0), p(*,t|r0) and p(**,t|r0)) are plotted for R=1, D=1, 

ka=4πRD, kd=1, r0=1.5 and different values of ke. Results calculated by using the IRT method are also 

shown. The agreement of the results from IRT with the analytical functions is also excellent. In the long 

time limit, as shown in Figure 4b, Q(t→∞|r0)~(R/r0)ke(ka/kD)/(kd+ke(1+ka/kD)). 

 

4.5 Performance and limitations of the algorithms 

Usually, table look-up methods are used to generate samples from the Green's functions of the DE in 

Brownian Dynamics simulations [7,32-33]. In Table 1, the simulation times of the algorithms presented 

in the paper are compared with the simulation obtained with table look-up method. 

 

Table 1 

 

In Table 2, the χ2 values were obtained by comparing the simulation results with the analytical 

Green's function. This calculation is done to evaluate if the simulated distributions are significantly 

different from the expected distributions. The χ2 critical value for 88 degrees of freedom is ~110.8, 

using a probability value of 0.05. Therefore, a χ2 value below the critical value indicates that the 

distributions are not significantly different.  

 

Table 2 

 

The simulations were performed using an Intel Xeon CPU E5430 @ 2.66 GHz. The simulation times 

obtained with our algorithm are to the values obtained with algorithms for sampling the Green's 

functions in 1D [14]. The simulation time for both our algorithm and table methods increases with the 

complexity of the Green's functions. The rate constants for the simulations were chosen such as the 

roots α, β and γ are real. A simulation was also done with complex values of β and γ for comparison. 

The simulation time is significantly higher for this simulation, because the imaginary part of W needs to 
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be calculated5. The simulation time for the table look-up method also increases with the resolution of 

the table. We found that a resolution of 500 and 1000 bins are not sufficient to keep the χ2 values below 

the threshold of 110.8, but it is possible to do so by using 2,000 bins. Increasing the resolution of the 

table to 4,000 bins doesn't yield better results, but the calculation time significantly increases.   

We have tried to evaluate the memory needed by our method and by the look-up tables. The results 

are shown in Table 3. 

Table 3 

The memory usage of the algorithms was done by counting the number of bytes needed by each 

variables used, knowing that double precision number requires 8 bytes of memory. The tables for W 

comprise complex numbers in double precision. The table for the look-up method comprises real 

numbers in double precision. The memory requirement of the table methods are not that high, but it may 

increase quickly if the tables are pre-calculated to account for the different parameters. For example, in 

a system comprising several kind of particles interacting with different reaction rate constants, the tables 

should be calculated for each values of α, β and γ.  

 

4.6 Applicability of the Green's functions 

The Green’s functions used here are exact only for systems comprising 2 particles. The problem 

becomes much more complex when there are more than 2 particles are involved, and the Green's 

functions are no longer exact. If more than two particles are close to each other, the numerical Green's 

function can be obtained numerically, and table look-up methods can be used [33]. If particles are too 

far from each other, the particles will not react and therefore it is not necessary to sample the 

propagator. 
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5 Although the imaginary terms of the terms of the Green's functions cancels, they need to be calculated 
because the coefficients of W are complex. 

 



 The decision is usually based on the “reaction zone” of a particle, which is defined near each particle 

to determine if it is necessary to use the sampling algorithms [32]. The condition r0<[R+8(2Dt)1/2] is 

used in ref. [29] to define the reaction zone.  

If there is an electrostatic interaction between the particles e.g. a Coulomb potential, it is necessary to 

use the solution of the Debye-Smoluchowski equation [34]. However, in systems that are of interest to 

radiobiology, such as the DNA damage by the radical species created during the radiolysis of water, the 

majority of reactions is partially diffusion-controlled and can be simulated with the approach given in 

this paper. The only notable exception is the reaction H++e-
aq→H. [11], for which a numerical 

calculation may be necessary considering the complexity of the analytical Green’s function [34].  

 

5. Conclusion 

The approach based on Green's function is used in many codes to simulate chemical reactions in a 

system comprising particles. The sampling of the Brownian propagators are therefore of great interest 

for such codes. The Green's functions for some cases such as enzymatic catalysis are quite complex; 

however, it is possible to use the relatively simple algorithms presented in this paper to simulate the 

evolution in time and space of pair of particles. In general, the performance of our algorithm is similar 

or better than table methods. Table methods usually necessitate some memory to hold the pre-calculated 

data, which may become problematic when the table has more than one dimension [33].   

 

In radiation chemistry, the IRT method was used to calculate the yields of the radiolytic species in 

solutions [22-26] and also in chemical dosimeters [27-28]. The IRT method is based on the survival 

probability of pair of particles, and the competition between reactions are taken into consideration by 

sorting the sampled reaction time. Although the purpose of this article is not the validation of the IRT 

method, it is interesting to note that our simulation results are in excellent agreement with those 

predicted by IRT. In fact, to our knowledge, the comparison of the predictions of the analytical Green’s 
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functions with the IRT results for 2-particle systems with reversible diffusion-influenced reactions or 

enzyme catalysis has not been attempted before.   

Because the algorithms are simple and use only a few kilobytes of memory, they can possibly be 

implemented on a general-purpose graphic processing unit (GPGPU). GPGPU is a computing device 

operating as a co-processor to the main central process unit (CPU). GPGPUs comprise up to several 

hundred cores and have their own memory. They are used to compute functions which are executed a 

large number of times, but independently on different data. Therefore, the algorithms could be 

implemented on a GPGPU to simulate a chemical system comprising different types of particles. This 

work should be useful for chemistry codes that are based on this approach to study DNA damage, which 

may eventually be included in event-based models of space radiation risk [35]. 
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Appendix I: Green’s function 

The probability for a pair of particles initially at distance r0 to be found in the reversible bound state 

(*) is given by 
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The probability for the pair to have reacted and be in the product state (**) is:
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The Green's function for particles in the reversible bound state is also needed. It can be obtained by 

using the material balance condition kap(r,t|*)= kdp(*,t|r). This yields: 
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The dissociation probability (to the reactant state) is given by integrating (A3) over the space where 

r>R. This calculation gives: 
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The probability of a pair in a reversibly bound state to remain in this state at time t is:
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The probability of a pair in a reversibly bound state to react is given by: 
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The reaction rate constants can also be expressed as a function of α, β and γ: 
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Appendix II: Time discretization equations 

A simulation is usually divided in a finite number of time steps Δt. If the time t is the sum of two time 

steps t=Δt1+Δt2, the following possibilities may occur for a pair of particles initially separated by 

distance r0: i) go at distance r1 during Δt1 and at final distance r during Δt2; ii) go at distance r1 during 

Δt1 and bind in a reversible state (*) during Δt2; iii) go at distance r1 during Δt1 and react to the product 

state (**) during Δt2; iv) reversibly bind during Δt1 and dissociate to the final distance r during Δt2; v) 

reversibly bind during Δt1 and remain in this state during Δt2; vi) reversibly bind during Δt1 and react to 

the product state during Δt2; or vii) react to the product state during Δt1. This can be expressed 

mathematically as follows: 

 , (B1A) )r|tp(*,)*|tp(r,)r|t,p(r)r|tp(r,r4)r|ttp(r, 012101112
2

1021 ΔΔ+ΔΔ=Δ+Δ ∫
∞

dr
R

π

 , (B1B) )r|tp(*,)*|tp(*,)r|t,p(r)r|tp(*,r4)r|ttp(*, 012101112
2

1021 ΔΔ+ΔΔ=Δ+Δ ∫
∞

dr
R

π

 . (B1C) )r|tp(**,)r|tp(*,)*|tp(**,)r|t,p(r)r|tp(**,r4)r|ttp(**, 01012101112
2

1021 Δ+ΔΔ+ΔΔ=Δ+Δ ∫
∞

dr
R

π

 
Similarly, a pair initially in a reversibly bound state (*) can i) dissociate to the distance r1 during Δt1 

and go to the final distance r during Δt2; ii) dissociate to the distance r1 during Δt1 and re-bind reversibly 

during Δt2; iii) dissociate to the distance r1 during Δt1 and react to the product state during Δt2; v) stay 

reversibly bound during Δt1 and go to the final distance r during Δt2; v) stay reversibly bound during Δt1 

and Δt2; vi) stay reversibly bound during Δt1 and react to the product state during Δt2; or vii) react to the 

product state during Δt1. From this the time discretization equations for the pair initially in the 

reversibly bound state are obtained: 

 ,
 

(B2a) )*|tp(*,)*|tp(r,)*|t,p(r)r|tp(r,r4)*|ttp(r, 1211112
2

121 ΔΔ+ΔΔ=Δ+Δ ∫
∞

dr
R

π

 , (B2b) )*|tp(*,)*|tp(*,)*|t,p(r)r|tp(*,r4)*|ttp(*, 1211112
2

121 ΔΔ+ΔΔ=Δ+Δ ∫
∞

dr
R

π

 . (B2c) )*|tp(**,)*|tp(*,)*|tp(**,)*|t,p(r)r|tp(**,r4)*|ttp(**, 11211112
2

121 Δ+ΔΔ+ΔΔ=Δ+Δ ∫
∞

dr
R

π
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It was not possible to prove these equations directly by using the analytic expressions of the Green's 

functions, but they were verified numerically for different values of r, r0, D, Δt1, Δt2, α, β, and γ (see 

supporting Mathematica document). In fact, since the Green’s functions describe Markov processes, it 

immediately follows that Chapman-Kolmogorov type equations do hold [19]. As it was discussed in 

previous work [11,14], these equations offer a way to validate the algorithms presented in this paper, 

since the simulations are usually done in several time steps. 
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Tables 

 
Table 1. Average calculation times for 1,000,000 simulation histories (R=1, D=1) 

 Reflection 
(ka=kd=ke=0) 

Diffusion-
influenced 
reactions 
(ka=4π, 
kd=ke=0) 

Reversible 
reactions 
(ka=40π, 
kd=36, ke=0) 

General case 
(ka=56π, 
kd=65, ke=1) 

General case 
(ka=12π, 
kd=4, ke=5)*  

Our algorithm 30.1 24.0 45.6 41.1 199.2 
Table look-up 
500 bins 24.6 19.6 34.7 32.4 55.9 

1,000 bins 34.7  31.1 57.1 51.2 82.0 

2,000 bins 69.4 66.0 130.1 126.4 182.7 

4,000 bins 218.7 202.2 419.7 424.5 577.3 
*The roots β and γ are complex 

 

Table 2. Maximum χ2 values for the simulations (R=1, D=1) 

 Reflection 
(ka=kd=ke=0) 

Diffusion-
influenced 
reactions 
(ka=4π, 
kd=ke=0) 

Reversible 
reactions 
(ka=40π, 
kd=36, ke=0) 

General case 
(ka=56π, 
kd=65, ke=1) 

General case 
(ka=12π, 
kd=4, ke=5)*  

Our algorithm 106.2 78.5 97.6 100.9 97.2 
Table look-up 
500 bins 113.5 122.7 339.7 145.1 157.0 
1,000 bins 107.9 96.4 145.2 90.0 112.0 
2,000 bins 108.0 103.5 87.7 100.1 89.8 
4,000 bins 107.9 96.0 104.3 98.7 118.9 
*The roots β and γ are complex 

 

Table 3. Memory usage 

 Our algorithm Table look-up 
(500 bins) 

Table look-up 
(1,000 bins) 

Table look-up 
(2,000 bins) 

Table look-up 
(4,000 bins) 

Memory usage <0.15 kB ~30 kB ~60 kB ~120 kB ~240 kB 
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Figure captions 

Figure 1: Reflective Green function 4πr2pref(r,t|r0) (Eq. 16) for D=1, R=1, r0=1.5 and α=-1, at t=1, 2, 
4, 8, 16 and 32. Analytical functions: (⎯); Result of sampling: (■). 
 
Figure 2: a) Green function of the diffusion-influenced reaction 4πr2p(r,t|r0) (Eq. 12) for D=1, R=1, 
r0=1.5 and α=-2 at t=1, 2, 4, 8, 16 and 32. Analytical functions: (⎯); Result of sampling: (■). b) 
Average free particle count 2Q(t|r0) as function of time for D=1, R=1, r0=1.5 and ka=4πRD (⎯), 
2(4πRD) (---), 4(4πRD) (⋅⋅⋅) and 100(4πRD) (⋅⋅⋅). Results from IRT simulation: (■).  
 
Figure 3: a) Green function for reversible reaction 4πr2p(r,t|r0) (Eq. 8) for D=1, R=1, r0=1.5, 
ka=10(4πRD), kd=36 and ke=0 (α=-2, β=-6, γ=-3) at t=1, 2, 4, 8, 16 and 32. Analytical functions: (⎯); 
Result of sampling: (■). b) Average count of free and reversibly bound particles (given by 2Q(t|r0) and 
p(*,t|r0)) as function of time for R=1, r0=1.5, ka=5(4πRD), kd=0.5 (⎯), kd=5 (---) and kd=50 (⋅⋅⋅). 
Results from IRT simulation: (■). 
 
Figure 4: a) Green function for reversible reaction with intermediate state 4πr2p(r,t|r0) (Eq. 8) for R=1, 
r0=1.5, for ka=14(4πRD), kd=65 and ke=1 (α=-8, β=-2 and γ=-5) at t=1, 2, 4, 8, 16 and 32. Analytical 
functions: (⎯); Result of sampling: (■). b) Average count of free, reversibly bound and irreversibly 
bound particles (given by 2Q(t|r0), p(*,t|r0) and p(**,t|r0)) as function of time for D=1, R=1, r0=1.5, 
ka=4πRD, kd=1 and ke=0.1 (⎯), ke=1 (---) and ke=10 (⋅⋅⋅). Results from IRT simulation: (■). 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31


