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Abstract 

 

Several computer codes simulating chemical reactions in particles systems are based on the Green’s 

functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated 

using the exact GFDE, which has also become the gold standard for validating other theoretical models. 

In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-

controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster 

than conventional look-up tables and uses virtually no memory. The simulation results obtained with this 

method are compared with those obtained with the independent reaction times (IRT) method. This work 

is part of our effort in developing models to understand the role of chemical reactions in the radiation 

effects of human body and may eventually be included in event-based models of space radiation risks. 

However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role 

in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical 

networks in time and space as well.  

 

 

 

Physics and Astronomy Classification Scheme (PACS) indexing codes 

87.15.A- Theory, modeling, and computer simulation 

87.15.ak Monte Carlo simulations 

82.37.Np Single molecule reaction kinetics, dissociation, etc. 

87.53.Ay Biophysical mechanisms of interaction 
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1. Introduction 

Simulations based on the Green's functions of the diffusion equation (GFDE) have been widely used to 

the study chemical reactions in solutions [1-13]. More recently, this approach has been used in radiation 

chemistry codes to simulate the radiolysis of water and aqueous solutions [14-15], chemical dosimeters 

[16] and to study of interaction of ligand molecules with receptors [17]. In the radiolysis of water and 

aqueous solutions of interest for biological systems, most reactions are diffusion-controlled and partially 

diffusion-controlled. In radiation chemistry codes, the algorithms usually simulate forward reactions, and 

the possibility of the backward reaction is taken into account by considering the reaction of the products 

as a forward reaction. In other words, the forward and backward components of reversible reactions are 

treated separately. 

In previous work, we have developed exact random number generators to simulate the reversible 

partially diffusion-controlled ABC reaction1, considering the forward and backward reactions together 

[18]. In this paper, the method is extended to the simulation of the reversible partially diffusion-controlled 

ABCD reaction. The structure of this paper is as follows. In the first part, the GFDE and the peculiarities 

for this particular system are presented. This GFDE is considered exact for an isolated pair of particles 

with partially diffusion-controlled ABCD reaction and, therefore, might play a pivotal role in development 

and validation of models comprising many particles. In the second part, we present an exact sampling 

algorithm based on the rejection method for the Green’s functions. In the third part, simulation results are 

presented, and compared with those obtained with the independent reaction times (IRT) method. The 

performance and precision of the algorithm are compared with standard look-up table methods commonly 

used for this type of calculation. The algorithms will eventually be used in Brownian Dynamics codes to 
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simulate the radiation chemistry of the radiolytic species (such as the free radical .OH) created by the 

interaction of ionizing radiation with water and to study DNA damage by the indirect effect. 

 

2. The GFDE for reversible partially diffusion-controlled ABCD reactions 

2.1 General considerations 

The reversible partially diffusion-controlled ABCD reaction can be written 

 DC

k

k

BA 



2

1

, (1) 

where k1 and k2 are the rate constants for the forward and reverse reaction, respectively. The units of k1 

and k2 are [length]3[time]-1. As it is well known [8-9], the probability distribution function of a pair of 

particles such as 𝑝(𝒙𝑨, 𝒙𝑩, 𝑡|𝒙𝑨𝟎 , 𝒙𝑩𝟎) where 𝒙𝑨, 𝒙𝑩, 𝒙𝑨𝟎and 𝒙𝑩𝟎 are the position vectors of the particles 

at time t and t=0, respectively, can be factored as p(x,t|x0)p(X,t|X0), by using the transformation 

 𝑿 = √𝐷𝐵/𝐷𝐴𝒙𝑨 +√𝐷𝐴/𝐷𝐵𝒙𝑩, (2a) 

 𝒙 = 𝒙𝑩 − 𝒙𝑨. (2b) 

 

Here DA and DB are the diffusion coefficients of particles A and B, x and x0 are the relative position 

vectors, and X and X0 are the position vectors of the “center of mass”. This factorization yields two 

diffusion equations, one for the center of mass and one for the relative position vector. This proof is not 

repeated here but we bear in mind that the GFDE provided in the following section represent relative 

position vectors, and that the center of mass diffusion will not be considered. The angular dependency of 

the GFDE will not be considered. 

 

2.2 Green’s functions for the partially diffusion-controlled ABCD reactions 

In a two-particle system, the particles can be either in the form AB or CD at time t. In this paper, the 

notation xi is used for the inter-particle distance for pairs in the form AB, and yi is used for particles in the 

form CD. We now define the Green’s functions p1(x1,t|x0), p2(y1,t|x0), p3(y1,t|y0), and p4(x1,t|y0), which 
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yield the probabilities that the inter-particle distance at time t will be x1 or y1, given that it was initially x0 

or y0. They are solutions of the following diffusion equations: 
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where D1=DA+DB and D2=DC+DD are the sum of the diffusion coefficients of particles. For a pair of 

particles in the initial state AB at separation distance x0, the initial conditions are: 
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The boundary conditions can be written 
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where a1 and a2 are the reaction radii for the forward and backward reactions, The equations are similar 

to the familiar boundary conditions for partially diffusion-controlled reactions, with an added term for the 

contribution of the backward reaction. 

It is useful at this point to introduce the functions Erfc(x), W(x,y) and (x): 
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 )()2exp(),( 2 yxErfcyxyyxW  , (6b) 

 )()exp()( 2 xErfcxx  . (6c) 

 

The following analytical expressions are simplified by using the notation 

 tDaxii 11 4/)(  , (7a) 

 tDayii 22 4/)(  . (7b) 

 

We also define the diffusion control rate constant 
iiD aDk
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The Green’s functions for the pair initially in the AB form with inter-particle distance x0 are [1, 10]: 
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The Green’s functions for the pair initially in the CD form are obtained by interchanging the appropriate 

constants in the corresponding Green’s functions in the AB form. 
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In Eqs. 9 and 11, )|,(p 01ref1
xtx and )|,(p 01ref2

yty  are the well-known Green’s function for free 

diffusion with a reflective boundary condition 
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The reaction probabilities can be obtained by integration of the Green’s functions over all possible exit 

points after reaction, i.e. x1a1 and y1a2. As there are potentially numerous forward and backward 

reactions during the time interval t, the integration results are interpreted as effective reaction 

probabilities. The calculation for the effective forward reaction probability yields: 
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For the effective backward reaction probability, the result is: 
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When 1=2=, √𝜏𝜎− = 1 and √𝜏𝜎+ = 1 + 𝑘1 𝑘𝐷1⁄ + 𝑘2/𝑘𝐷2, there is a division by 0 in p1(x1,t|x0) and in 

p3(y1,t|y0). However, it is still possible to evaluate p1(x1,t|x0) and p3(y1,t|y0) by using the limit 21. A 

short calculation yields (see Mathematica supporting document): 
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2.3 Time discretization equations 

A simulation is usually done in several time steps. Therefore, if a given 2-particle system with specified 

initial conditions is simulated many times, the number of pairs in the states AB and CD, as well as the 

distribution of distances of the pair at the end of the simulation, should only depend on the sum of the 

time steps. This follows from the properties of Markov processes.  

In Appendix A, we show that the Green's functions for a system with specified initial conditions only 

depends of the sum of the time steps. This property was used to validate the simulation algorithms. For 

example, consider a pair AB initially at distance x0. After one time step (t1), the values of x1 are 

distributed as p1(x1,t1|x0). These values of x1 become the initial values for the next time step (t2). But 

according to the theory we know that the values of x2 sampled after the second time step (t2) will be 

distributed as p1(x2,t1+t2|x0). Since the sampling algorithm in the second time step is used with various 

initial values x1, the algorithm is verified simultaneously for a whole range of the parameter x1. The 

property also allows the verification of the algorithm for the interparticle distance distribution in the CD 
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state, as the distribution of y2 after two time steps comprises the contribution of the forward and backward 

reactions. 

 

3. Methods 

3.1 Algorithms for simulating the Green’s functions of the ABCD reactions 

In a previous paper [18], we have developed an algorithm to sample the GFDE for the reversible partially 

diffusion-controlled ABC reaction. Since the Green’s functions for the ABCD reactions are similar to 

those for the ABC reactions, it is possible to adapt the algorithms to sample the Green’s functions for the 

ABCD reaction.  

3.1.1 Sampling of the Green's function with a reflective boundary 

As it was the case for the propagator for the reaction ABC, the function 4𝜋𝑥1
2𝑝1(𝑥1, 𝑡|𝑥0) is a sub-density2 

of 𝑓1(𝑥1) = 4𝜋𝑥1
2𝑝𝑟𝑒𝑓1(𝑥1, 𝑡|𝑥0). Therefore, we will briefly recall the algorithm to generate random 

variates3 for non-reacting particles.  The distribution to sample is 
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This distribution is normalized, i.e.:  
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The objective is to generate random variates X1 from f1(x1). This probability distribution is univariate, 

but includes four parameters x0, a1, D1 and t. As previously shown, f1(x1) can be written as a two-parameter 

                                                 

2 In general, a sub-density means that ∫𝑓(𝑥)𝑑𝑥 = 𝑃, where 0<P<1. In the context of this article, P is the 

probability of the pair to remain in the state AB during the time step. In this case, a random variate with 

density f/P can be generated with probability P. 

3 The terminology given in the book of Devroye [20] for non-uniform random variate generation will be 

used here. 
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distribution. However, to avoid introducing more variables, the algorithm is given here in its original 

form. 

Since W0, it is clear that f1(x1)h(x1), where  

 



















 








 


tD

axx

tD

xx

tDx

x

1

2

101

1

2

01

10

1

1
4

)2(
exp

4

)(
exp

4
)h(x


, x1a1. (19) 

 

Therefore, von Neumann's rejection method [20-21] can be used. The rejection method is a well-known 

general sampling technique to generate random variates of a probability distribution p(x), which does not 

require that the cumulative distribution function (the indefinite integral of p(x)) be computable. To use 

this technique, we assume that p(x)Cg(x), where C is a proportionality constant such as C1 and g(x) is 

a probability distribution for which random variates X distributed as g(x) can be easily generated. To 

generate random variates distributed as p(x), a uniformly distributed random number U between 0 and 1 

and a random variate X distributed as g(x) are generated. The value of X is accepted if the condition 

UCg(X)p(X) is verified; otherwise, a new set of U and X are generated until the condition is true. From 

a geometric perspective, points are generated in the 2D plane bounded by the curve Cg(x) and the domain 

of g(x); the points that are accepted are those which fall under p(x).  

 

In the actual problem, since f1(x1) is bounded from above by the first two terms (h(x1)), the third 

(negative) term is ignored at this moment. The function h(x1) can be written as the sum of four terms 

hi(x1), i=1..4, and truncated to the positive ranges as follows: 
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. (20d) 

 

where 1[condition] takes the value 1 when the condition is true, and 0 when it is false. The first exponential 

of Eq. 19 is (h1+h3), because x1(x1-x0)++x0, where the subscript + indicates the positive part. Similarly, 

the second exponential of Eq. 19 is (h2+h4), because x1(x1-(2a1-x0))++(2a1-x0)+. Since x0a1 and x1a1, 

it follows that x0+x12a1, so that x1(x1-(2a1-x0))+(2a1-x0)+.   

Since 𝑓1(𝑥1) ≤ ℎ𝑡𝑟(𝑥1), where ℎ𝑡𝑟(𝑥1) = ∑ ℎ𝑖(𝑥𝑖)𝑖 , the rejection method can be used. As htr is a 

mixture of known probability distribution functions, it is possible to generate a random variate X1 with 

density proportional to htr. The weights of the contributions of h1, h2 and h3+h4 to htr are obtained by 

integration over xa1: 
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where (z) is the normal distribution function: 

 2/)(1)2(z zErfc . (22) 

 

Since h1 and h2 are the Rayleigh and tail of Rayleigh distributions [20], the following algorithm (given 

in the form of a pseudo-code) can be used:  

 

 Algorithm 1a 

 Compute p1, p2 and p34. Set s=p1+p2+p34. 

 Repeat { 

  Generate a uniform [0,1] random variate U, V 

  If sU  [0,p1], set 𝑋1 ← 𝑥0 +√4𝐷1𝑡𝐸, where E is standard exponential4. 

If sU  (p1, p1+p2], set 𝑋1 ← 2𝑎1 − 𝑥0 +√(𝑥0 − 𝑎1)2 + 4𝐷1𝑡𝐸, where E is standard 

exponential.

 

                                                 

4 A standard exponential random variate is distributed as p(x)=exp(-x), x0. It can be generated from a 

uniform random number U between 0 and 1 by using E=-log(U).  
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If sU

 

 (p1+p2, s], let X1 be a random variate with density proportional to h3+h4 (see Alg. 

1b below). 

 } until Vhtr(X1)f(X1) 

 Return X1. 
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As *
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is identical to the standard normal density with variance 2D1t centered at x0, a random variate 

with density proportional to h3+h4 can be generated by using the rejection method: 

 Algorithm 1b: 

 Repeat { 

  Generate N standard normal5, U uniform on [0,1] 

  Set 𝑋1 ← 𝑥0 +√2𝐷1𝑡N. 

 } Until X1a1, or jointly X1a1, x02a1 and U(2X1-x0)/x0. 

 In the former case, return X1. 

 In the latter case, return 2a1-X1. 

 

 

Algorithm 1a generates pairs (X1,V) with X1 having density proportional to htr and V uniform [0,1] until 

Vhtr(X1)f(X1), and returns X1. The expected number of iterations is p1+p2+p34. As it was implicitly shown, 

p341 (Eq. 20c), and so the contribution from h3+h4 is minor. Algorithm 1b generate random variates X1 

with density proportional to h3+h4. The acceptance conditions of this algorithm arise from the inequality 

)xa(h)(xh 11

*

314 2  . 

3.1.2 Sampling of the Green's function p2(y1,t|x0) 

The distribution function to sample in this case is 4y1
2p2(y1,t|x0). The function W(u,v) can be written 

as:  

 𝑊(𝑢, 𝑣) =
2

√𝜋
exp(−𝑢2)𝑅(𝑢 + 𝑣), (24) 

                                                 

5 A standard normal random variate is distributed as p(x)=(2)-1/2exp(-x2/2). A normal random variate N 

can be generated from two random numbers uniformly distributed between 0 and 1 (U1 and U2) by using 

the Box-Muller method, i.e. )2cos(2lnU-N 21 U

 

[19]. 
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where 

 𝑅(𝑥) = exp(𝑥2) ∫ exp(−𝑡2) 𝑑𝑡
∞

𝑥
= 𝑀(𝑥√2)/√2. (25) 

 M(x) is the classical Mill’s ratio, defined as: 

 𝑀(𝑥) = exp(𝑥2/2) ∫ exp(−𝑡2/2)𝑑𝑡
∞

𝑥
. (26) 

 

The Mill’s ratio is monotonically decreasing and convex on the positive half-line. Gordon [22] showed 

that   
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This property of the Mill’s ratio will be exploited to develop a sampling algorithm. We observe that the 

function to sample (4 y1
2p2(y1,t| x0)) is proportional to the density: 
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Using eq. (24), and dropping the prefactor 2/√𝜋, the density f2(y1) is defined as : 
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where ta  , t4D/b 22a , and t4D/)(c 110 ax  . This distribution is not normalized; however, 

the normalization value is not necessary for the use of the rejection method in this case. Since +>-, and 

the Mill’s ratio is a monotonically decreasing function, the expression inside the rightmost brackets of eq. 

(29) leads to the inequality 
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This inequality can be used to develop a sampling algorithm. Using the Gordon’s upper bound for the 

Mill’s ratio, we can write 
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From this we get the bound 
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It is possible to generate a random variate with a density proportional to g based on the inequality 

        cbxccb-x-exp  2expexp 22 . (33) 

 

This method is efficient for c1. For c<1, rejection from a normal distribution is used. So the following 

rejection algorithm to generate a random variate Y1 with density proportional to f2: 

Algorithm 2: Sampling of a random variate Y1 with density proportional to f2  

Repeat { 

 If c1 { 

Repeat { 

   Generate E1,E2 standard exponentials 

   Set Y1←b+E1/(2c) 

} Until (Y1-b)2<E2 

} else { 

  Repeat { 

   Generate N standard normal 

   Set 2N/cbY1   

} Until Y1b 

} 

 Generate U uniform [0,1]  

} Until Ug(Y1)≤f2(Y1) 

Return Y1 

 

 

3.1.3 Sampling of the Green's function p3(y1,t|y0) and p4(x1,t|y0) 

These Green’s functions can be sampled by using the previous algorithms, by interchanging the 

appropriate parameters and constants in the corresponding Green’s functions. 

 

3.2 Brownian dynamics simulation of the ABCD reaction 

We set up a BD simulation using the Green's functions derived before using a two-step process: First 

we determine whether a reaction occurred during the time step t. In a second step, the positions of the 

particles is determined by sampling. At each time step, the state of the pair (AB or CD) is determined by 

the reaction probabilities PAB→CD(t|x0) and PCD→AB(t|y0) using a uniform random number between 0 

and 1 and by comparing it to PAB→CD(t|x0). If the pair initially in the state AB remains in this state, p1 is 
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sampled using Algorithm 1. If there is a reaction, p2 is sampled using Algorithm 2. For a pair initially in 

the state CD, p3 or p4 are sampled depending again on the occurrence of a reaction. 

 

3.3 Look-up table methods 

To compare the calculation speed and memory usage of our algorithm with standard look-up tables 

methods, we have implemented them as in ref. [1]. They are used to generate the interparticle distances X 

and Y for particles in the state AB and CD respectively. The details are discussed in Appendix B. 

 

3.4 Simulations with the independent reaction times (IRT) method 

 

In a system comprising N particles, the number of pairs of particles is N(N-1)/2. Therefore, as each of 

these pairs can interact, the calculation time for a simulating a system of N particles is approximately 

proportional to ~N2. Since a large number of particles is often considered in radiation chemistry 

simulations, Brownian Dynamics methods usually require a long simulation time, which can be 

problematic.   

To overcome this problem, a method named independent reaction times (IRT) was developed about 30 

years ago [23-25]. This method is approximate, but can be used to simulate for radiation chemistry 

simulations in various conditions of pH and temperature and has been widely used to calculate the 

radiolytic yields in aqueous solutions [26-29] and in chemical dosimeters [30-31]. This method allows 

the calculation of radiolytic yields much faster than full step-by-step Brownian Dynamics simulations. 

However, the positions of the particles at each time step are not calculated; therefore, the extension of the 

IRT method to problems of interest to radiobiology such as DNA damage simulations may be difficult. 

In this work, the IRT method is used for comparison with the algorithm presented in this paper. This 

method is explained in Appendix C. 
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4. Results and discussion 

In the following, we compare Monte Carlo simulation results generated using the algorithms presented in 

section 3 against the analytical solutions derived in section 2 (section 4.1). We also compare our sampling 

method to the IRT method (section 4.2), and comment on the asymptotics (section 4.3) and computational 

performance (section 4.4) of our scheme. 

4.1 Green’s functions of the ABCD reaction 

For the simulation, two particles are initially located at distance x0=2.5, the other parameters being set to 

a1=2, D1=1, k1=5, a2=1, D2=1, and k2=1. For these parameters, 1=4, kD1=8, 1=7/4, 2=1, kD2=4, 

2=2, =5, +=3, and -=3/4.  In Figure 1a, the analytical Green’s functions 4x1
2p1(x1,t|x0) and 1-

4y1
2p2(y1,t|x0) at t = 0.25, 0.5, 1 and 2 time units are illustrated and compared against the simulation 

results. These Green’s functions represent the probability distribution for the pair to be found in the state 

AB at distance x1 or in the state CD at distance y1 at time t. 

 

Figure 1 

 

The Monte-Carlo results are obtained by using the algorithms described in the Methods section, using 

1,000,000 trials. The distances are stored in histograms and normalized. The results for t=0.25 are 

obtained by using the algorithms with single time step. The simulation results are exactly as predicted by 

the analytical Green’s functions. The results for t = 0.5 were obtained by using the Brownian algorithm 

with two time steps of 0.25, i.e. the interparticle distances of the pairs after the first time step are used as 

a starting point for the algorithm during the second time step. This is a consequence of the time 

discretization equation, which allows the simultaneous verification of the algorithms under a wide range 

of parameters. In fact, similar results are obtained by using any combination of positive time steps for 

which the sum is 0.5 (results not shown). Obviously, the same observation applies to the simulation at 
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other time values. We remark that xa1 and ya2, since the inter-particle distance cannot be shorter than 

their reaction radii.  

The survival and reaction probabilities for the pairs in the state AB or CD as a function of time are shown 

in Figure 1b. The parameters used for this simulations are those of the system presented in Figure 1a. The 

asymptotic limit, given by 
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is also plotted.  

4.2 Comparison with the IRT method. 

The IRT method has been validated by many approaches [27,28]. In a recent paper, we compared the IRT 

simulation results with the GFDE for a reaction of type ABC [18]. In the present work, we compare the 

results obtained by the two methods for the reaction ABCD.  

 

Figure 2 

 

In Figure 2, we show the time evolution of the state of  a pair of particles AB initially at position x0=2.5, 

using the parameters a1=2, D1=1, k1=5, a2=1, D2=1 and three values of k2 (k2=0, k2=1 and k2=10), as 

simulated by our algorithms and by the IRT method.  In all cases, the agreement between the results from 

the IRT method and the Green’s function is excellent. As expected, the survival probability in the AB 

form increases with increasing k2. It is important to note here that the distance at which the products are 

placed following a chemical reaction plays a critical role. If the products are not placed at distance a2 after 

a reaction AB→CD, the results provided by IRT do not match the analytical Green’s functions (results 

not shown), because the boundary condition of the GFDE states that the number of reactions AB occurring 

at the reaction radius a1 are equal to number of times that products CD are formed at the reaction radius 

a2. This property is necessary for material balance. The asymptotics (Eq. 36) are also plotted in Figure 2. 
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4.3. Transition 

The long-time asymptotic behavior of the survival probabilities is, in general, ~t-1/2 according to Eq. (36). 

As discussed by Popov and Agmon [10], the asymptotic limit is approached from above if 
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 . (35) 

 

and from below in the opposite case.  At the transition, i.e. when the right and left sides of eq. 35 are 

equal, the long time asymptotic behavior is ~t-3/2. We wanted to see if this transition can be observed from 

the Brownian Dynamics simulations and the IRT method. 

 

We have performed simulations using the Brownian Dynamics described in this paper, as well as by the 

IRT method, using the parameters a1=1, k1=5, a2=4, D2=1, k2=8 and x0=1.625, for D1=0.5, D1=1.0 and 

D1=1.5. The ratio and difference between PAB→CD(t|x0) and PAB→CD(t|) are shown in Figure 3. 

 

Figure 3 

 

For the system considered, a transition occurs for D1=1. For D1>1, the probability decreases 

monotonically, whereas for D1<1, there is a maximum, which appears in Figure 3a. The results are also 

in good agreement with those obtained by the IRT method. At the transition, the long time asymptotic 

behavior is ~t-3/2. To illustrate this dependence, the data shown in Figure 3a are presented on a log-log 

scale in Figure 3b. The slopes of the reaction probabilities follow their respective ~t-1/2 and ~t-3/2 behavior, 

as indicated by the straight lines. However, the IRT results are different from the predicted curves on this 

scale, at least at large time values. The reason for this difference is not clear. We have tried to increase 

the number of trials and the precision of the numbers, but there was no improvement in the results. The 

difference is probably inherent to the IRT method itself. Additionally, as only forward reactions are 

considered, there is no such transition in forward reaction probabilities used in the IRT method. 
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Nevertheless, the IRT method is used for the short time scale of radiation chemistry, and the overall 

difference with the predicted results remains small.  

 

4.4 Performance and limitation of the algorithms 

Usually, table look-up methods are used to generate samples from the GFDE in Brownian Dynamics 

simulations [1, 7, 32-33].We have studied the performance (Table 1), precision (Table 2) and memory 

requirements (Table 3) of our algorithm and table look-up methods. In Table 1, we compare the time 

needed for our algorithm and look-up tables for a time step of 0.1, 0.5, 1, 5 and 10 units, in the same 

simulation conditions (x0=2.5, a2=1, D1=1, k1=5, a2=1, D2=1 and k2=1). The simulations are performed 

using an Intel Xeon CPU E5430 @ 2.66 GHz. Our algorithm is in general faster than the look-up tables, 

but the simulation time for our algorithm increases with t. This may be due to the fact that the number of 

iterations of Algorithm 1 is p1+p2+p34, and p1 and p2 are both proportional to√𝑡 (see section 3.1.1). For 

the look-up table method, the simulation time essentially only depends on the size of the table, as expected. 

 

Table 1 

 

A 2 test is performed using 10,000, 100,000 and 1,000,000 histories to evaluate if the sampled 

distribution is different from the analytical predictions. The critical value of the 2 test for 178 degrees of 

freedom is ~210, using a probability value of 0.05. Therefore, a 2 value below the critical value indicates 

that the distributions are not significantly different.  

 

Table 2 

 

In Table 2, 2 values are shown for our algorithm and for the table look-up methods. For our algorithm, 

the values are all <210, indicating that the distributions are not statistically different. For table look-up 
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methods, many 2 values are higher than this threshold, especially for tables with 500 and 1,000 bins. 

Although the 2 test is quite strict6 these results indicate that a resolution of at least 2,000 bins may be 

necessary for the tables. The apparent decrease of accuracy when the time increases is probably due to 

the fact that at short times, the functions are peaked, meaning that many points used for the comparison 

as well as the GFDE are 0. Since they are counted as 0 they don’t contribute to the 2 values. Obviously 

this in no longer the case when time increases, since the functions become flatter and more values are 

different from 0.  

 

The memory usage of the algorithms is done by counting the number of bytes needed by each variables 

used. Since our algorithm does not require storing of more than a few variables, the memory requirement 

doesn’t exceed 12 kB, as indicated by the Windows Task Manager. For table methods, the tables for p1, 

p2, p3 and p4 are calculated for 200 different values of x0 or y0; therefore, the memory requirement 

increases with the number of bins. The memory usage is in agreement with the fact that a double precision 

number occupies 8 bits in memory. For example, for the tables with 500 bins, the memory requirement is 

45002008 bytes = 3,125 kB (1kB = 1,024 bytes).  

 

Table 3 

 

 

 

4.5 Applicability of the simulation methods 

                                                 

6 The 2 test has its limitations for comparing distributions, especially when the expected frequency is 

low, which happens at the tails of the Green’s functions for small t values. Despite its limitations, we 

decided to use it because it is well known and relatively easy to use. In this work, our algorithms are exact 

and therefore the distribution of the sampled values should not be statistically different from the predicted 

values.  
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The Green’s functions used here are exact only for systems comprising two particles. The problem 

becomes much more complex when more than two particles are involved and the Green's functions are 

no longer exact. If more than two particles are close to each other, the Green's function can be obtained 

numerically, and table look-up methods can be used [33]. If particles are too far from each other, the 

particles do not interact and therefore it is not necessary to sample the propagator of the inter-particle 

distance distribution. The decision to use the sampling algorithm (or not) is often based on the “reaction 

zone”, which is defined near each particle. The condition r0<[R+8(2Dt)1/2] is used in ref. [32] and many 

others to define the reaction zone. It should also be noted that in the IRT method, there is be competition 

between reactions, so that the equations presented in this paper can be strongly incorrect in systems 

comprising more than two particles. 

If there is an electrostatic interaction between the particles, e.g. a Coulomb potential, it is necessary to 

use the Green’s functions of the Debye-Smoluchowski equation [34]. In the reactions occurring during 

the radiolysis of water [11], most reactions of type ABCD involve charged particles on at least one side 

of the reaction. However, the Green’s functions for the ABC and ABCD reactions cover a large number 

of chemical reactions occurring in biological systems. They can also be useful to validate the Green’s 

functions of the Debye-Smoluchowski equation, since they should be equal when there is no electric field 

present. 

 

5. Conclusion 

The GFDE are used in many particle-based chemical simulations codes. The sampling of the Brownian 

propagators is therefore of great interest for such codes. The GFDE for the ABCD reactions are quite 

complex; however, it is possible to use the relatively simple algorithms presented in this paper to simulate 

the evolution in time and space of pairs of particles. In general, the performance of our algorithm is similar 

or better than that of table methods. Table methods usually necessitate an extensive set-up to calculate 

and hold the pre-calculated data, which may be very time and memory consuming, especially when the 
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table has more than one dimension [33] and, as it will be the case in our future work, when large systems 

comprising many types of particles with different reaction channels are simulated.   

This method might be useful for particle-based event-driven simulation schemes of the FPKMC (first-

passage kinetic Monte-Carlo) [13] and GFRD (Green’s functions reaction dynamics) [8]. For example, in 

the GFRD method, simple geometric domains such as spheres are put around at most two particles to 

shield them from the influence of other particles. The pairs of particles are then propagated locally in an 

exact manner by basically sampling times and associated positions up to the time up to which any other 

particle outside the domain is guaranteed not to enter it. By propagating the domains subsequently, an 

event-driven particle-based simulation can be set up that is both exact and efficient, using exact Green’s 

functions in order to skip other diffusion events. Such a scheme naturally gets rid of the problems 

associated with the possible interference of other particles at long times. One of the still pending problems 

of GFRD-like methods is the lack of Green's functions that correctly incorporate the back-reaction; for 

that reason, product particles that dissociate have to be put in contact (from where they reacted), which 

diminishes the performance of the scheme. This scheme would highly benefit from having exact Green's 

functions and associated sampling prescriptions that incorporate both the forward and backward reaction, 

such as the one described in the paper. 

In radiation chemistry, the IRT method has been used to calculate the yields of the radiolytic species in 

solutions [25-29] and also in chemical dosimeters [30-31]. The IRT method is based on the survival 

probability of the pairs of particles in the system, and the competition between reactions are taken into 

consideration by sorting the sampled reaction time. Although the purpose of this article is not the 

validation of the IRT method, it is interesting to note that our simulation results are in excellent agreement 

with those predicted by IRT. In fact, to our knowledge, the comparison of the predictions of the analytical 

Green’s functions with the IRT results for 2-particle systems with reversible diffusion-influenced 

reactions has not been done before. Even if the simulation results obtained by the IRT method fail to yield 

the proper asymptotic long time dependence, the agreement with the GFDE is excellent at short times, 

which is of interest for radiation chemistry codes. 
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Because the algorithms are simple and use only a few kilobytes of memory, they can probably be used 

on a general-purpose graphic processing unit (GPGPU). A GPGPU is a computing device operating as a 

co-processor to the main central processing unit (CPU). GPGPUs comprise up to several hundred cores 

and have their own memory. They are used to compute functions which are executed a large number of 

times, but independently on different data. Therefore, the algorithms could be implemented on a GPGPU 

to simulate a chemical system comprising different types of particles. This work should be useful for 

chemistry codes that are based on this approach to study biochemical interactions occurring in cells, which 

may eventually be included in event-based models of space radiation risks. 
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Appendix A: Time discretization equations 

A simulation is usually divided in a finite number of time steps. However, the final distribution of inter-

particle distributions of distances and states of particles should depend only of the sum of the time steps. 

This property can be expressed mathematically by Chapman-Kolmogorov type equations, which hold for 

Markovian systems. As discussed in previous work [11,17-18], these equations offer a way to validate the 

algorithms presented in this paper. In this Appendix, six equations of this type will be established. If the 

time t is the sum of two time steps t=t1+t2, a pair of particles in the state AB initially separated by distance 

x0 that is found at distance x2 at time t1+t2 can i) Go to the distance x1 during t1 and go to its final distance 

x2 during t2, or ii) React to the state CD at distance y1 during t1 and then react to the state AB to distance 

x2 during t2. Hence, the Green’s functions are linked as follow: 
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Similarly, a pair of particles initially in the state AB at distance x0 that is found later in the state CD at 

distance y2 at time t1+ t2 can: i) Move to x1 during t1 and react to the state CD to distance y2 during t2, or 

ii) React to the state CD at distance y1 during t1 and move to y2 during t2. This leads to the following 

equation: 
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Using the same approach for pairs initially in the state CD at initial distance y0, time discretization for 

p3 and p4 can be obtained: 
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The time discretization equations can also be established for the probabilities of reaction. 
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It was not possible to formally prove eqs. A1-A6 directly by using the analytic expressions of the 

Green's functions in the integrals, but we are able to prove them indirectly by showing that they are 

solutions of their respective diffusion equation and boundary conditions (see supporting document 1). In 

addition, eqs A1-A6 are verified numerically for different values of x0, x2, y0, y2, k1, k2, a1, a2, D1, D2, t1, 

and t2 (see supporting Mathematica document).  
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Appendix B: Look-up table methods 

The look-up table method is the standard technique used to generate random values of the interparticle 

distances X and Y. A brief description is provided here.  

A random number U uniformly distributed between 0 and 1 is generated. For a pair in the AB state 

initially at distance x0, if < ∫ 4𝜋𝑥1
2𝑝1(𝑥1, 𝑡|𝑥0)𝑑𝑥1

∞

𝑎1
, the system remains in the AB state at time t. The 

sampled value X is determined from the equation 

 
X

a

dxxtxpxU

1

1011

2

1 )|,(4 . (B1) 

On the other hand, if 𝑈 ≥ ∫ 4𝜋𝑥1
2𝑝1(𝑥1, 𝑡|𝑥0)𝑑𝑥1

∞

𝑎1
, the system has reacted to the CD state. In this case, 

the value of Y is found by using  

  

 Y

aa

dxxtypydxxtxpxU

21

1012

2

11011

2

1 )|,(4)|,(4  . (B2) 

 

The integrals can be calculated analytically or numerically. However, their analytical forms are too 

complicated to be inverted to find X or Y. Therefore, it is necessary to pre-calculate the tables for an array 

of values of X and Y. The closest value is found by using a binary search algorithm within the array. To 

improve the precision, an interpolation is performed. For a fixed value of t, and considering that the 

parameters a1, D1, k1, a2, D2 and k2 are also fixed for one simulation, the tables are still dependent on the 

initial value x0, and needs to be calculated for several values of x0.  
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Appendix C: The independent reaction times (IRT) method 

A detailed description of the IRT method is beyond the scope of this paper; therefore, only the most 

important points will be given here. Briefly, knowing the initial positions of the particles in the system, a 

reaction time is sampled for each pair of particles by solving the equation numerically 

U
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1 00
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 , (C1) 

 

for t, where r0 is the initial distance between pairs, R is the reaction radius, =-(1+ki/kDi)/R, and U is a 

random number uniformly distributed between 0 and 1. If the time value given by eq. C1 is infinite, it 

indicates that a reaction is not possible. Similarly, a reaction time can be obtained for first-order processes 

(not present in this actual work) by sampling an exponential distribution with parameter given by the 

inverse of the dissociation rate constant. The reaction times are sorted and the reactions are processed 

according to the time in the list, by deleting reactants and adding reaction products at positions are that 

are determined by the position approach described in Clifford et al. [25]. The reaction time list is updated 

after each reaction. It can be mentioned here that in some implementations of IRT, the position of the non-

reacted species may be updated by simple 3D diffusion. However, it is not the case for this work. The 

reactions are done until the final time is reached. With this method, the competition between reactions is 

described via sorting the reaction times [27].  
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Tables 

 

Table 1. Average calculation times (s) for 1,000,000 simulation histories (x0=2.5, a2=1, D1=1, k1=5, 

a2=1, D2=1 and k2=1) 

Time step 0.1 0.5 1 5 10 

Our algorithm 3.6 4.0 5.0 13.4 23.8 

Table look-up 

500 bins 8.1 8.3 8.2 8.2 8.1 

1,000 bins 25.1 24.9 25.0 25.0 25.0 

2,000 bins 42.5 42.7 42.1 42.3 42.7 

5,000 bins 104.5 105.3 105.8 104.7 105.0 

 

 

 

Table 2. Maximum 2 values for the simulations (x0=2.5, a2=1, D1=1, k1=5, a2=1, D2=1 and k2=1) 

Time step 0.1 0.5 1 5 10 

Our algorithm 48.5 54.6 90.9 199.6 193.9 

Table look-up 

500 bins 190.7 547.1 287.4 251.3 212.7 

1,000 bins 80.3 106.3 103.7 164.1 212.2 

2,000 bins 92.4 49.3 80.7 183.3 221.3 

5,000 bins 83.1 64.3 116.2 177.4 163.8 

 

 

Table 3. Memory usage 

 Our algorithm Table look-up 

(500 bins) 

Table look-up 

(1,000 bins) 

Table look-up 

(2,000 bins) 

Table look-up 

(5,000 bins) 

Memory usage ~12 kB ~3,136 kB ~6,336 kB ~12,520 kB ~31,308 kB 
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Figure captions 

Figure 1: a) Green’s functions 4r2p1(x,t|x0) (bottom) and 1-4y2p2(y,t|x0) (top)  for x0=2.5, a2=1, D1=1, 

k1=5, a2=1, D2=1 and k2=1, at 0.25, 0.5, 1 and 2 time units. Analytical functions: (); result of sampling: 

(■). b) Fraction of particles in the state AB (1-PAB→CD(t|x0)) and in the state CD (PAB→CD(t|x0)). The 

time is in arbitrary units. 

 

Figure 2: Probability of the particles to be in the state AB (top) or CD (bottom), assuming that all particles 

are initially in the state AB at distance x0=2.5. The parameters are a2=1, D1=1, k1=5, a2=1, D2=1. The 

curves are plotted for k2=0, k2=1 and k2=10. Analytical functions: (); asymptotics: (---); results from 

IRT simulation: (■). 

 

Figure 3: Ratio PAB→CD(t|x0)/PAB→CD(|x0) (a) and difference PAB→CD(t|x0)-PAB→CD(|x0) (b) of the 

reaction probabilities for a pair initially in the state AB, with the parameters a1=1, k1=5, a2=4, D2=1, 

k2=8, x0=1.625, for D1=0.5, D1=1.0 (transition) and D1=1.5. Simulations performed with the IRT 

methods (dots) are shown as well. 
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Figure 1 
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Figure 2 
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Figure 3 

 

 


