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Claude E. Shannon (1916-2001) is a
highly recognized American mathe-
matician and computer scientist. He
studied electrical engineering and
mathematics at the University of Michi-
gan before going on to complete a
masters and postdoctorate degree at
MIT. The computer science and engi-
neering community increasingly began
to notice his brilliant mind after the
publication of his master’s thesis "A
Symbolic Analysis of Relay and Switch-
ing Circuits", written in 1936. His most
notable and well known publication "A
Mathematical Thoery of Communica-
tion", was published a few years later,
in 1948. Although he worked in a field
in which no Nobel Prize existed, he was
granted numerous prestigious prizes
throughout his career. He passed away
at the age of 84 after a long fight with
alzheimer disease.

Data Compression: The efficient encoding of information.

In many compression methods, input symbols are mapped to
codewords (bit sequences). The set of codewords is called a code. If
all codewords are of equal length, then we have a fixed-length code.
Otherwise, we have a variable-length code. The most important
codes are prefix codes, i.e., codes in which no codeword is the prefix
of another codeword.

If codewords are mapped to binary trees (a 0 corresponding to a
left edge, and a 1 to a right edge), then one can associate each symbol
in a prefix code with a unique leaf. It is noteworthy that the com-
pressed (a coded) sequence can be decoded to yield the input by
repeatedly going down the tree until leaves are reached.

Information Theory

Information Theory1 is the study of information and how it can 1 Charles E. Leiserson, Thomas H. Cor-
men, and Ronald L. Rivest. Introduction
to Algorithms. Cambridge, MA, 2009

be processed and communicated. Not long after beginning work
at the Bell Laboratories, Claude E. Shannon published his paper
"A Mathematical Theory of Communication"2, in 1948, in the Bell 2 Claude E. Shannon. A mathematical

theory of communication. The Bell
System Technical Journal, 1948

Systems Technical Journal.3 This paper quickly gained wide-spread
3 Inrene Woo Adel Magra,
Emma Goune. Information
theory. http://luc.devroye.

org/Magra-Goune-Woo--Shannon+

InformationTheory-LectureNotes-McGillUniversity-2017.

pdf, March 2017. Accessed on 2018-03-
20

recognition as being the ground work for what is now known as
modern day information theory.

The main premise of the paper was an investigation into solving
communication problems, discussing them both in a theorectical
and real life sense. The greatest difference between the two is that in
real life, often times there is noise that can interfere with the mode
of transmission of information, which he called the channel. For
the purpose of this course, we consider a communication system in
which no noise is present.

http://luc.devroye.org/Magra-Goune-Woo--Shannon+InformationTheory-LectureNotes-McGillUniversity-2017.pdf
http://luc.devroye.org/Magra-Goune-Woo--Shannon+InformationTheory-LectureNotes-McGillUniversity-2017.pdf
http://luc.devroye.org/Magra-Goune-Woo--Shannon+InformationTheory-LectureNotes-McGillUniversity-2017.pdf
http://luc.devroye.org/Magra-Goune-Woo--Shannon+InformationTheory-LectureNotes-McGillUniversity-2017.pdf
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Figure 1: Noiseless communication system

Shannon’s greatest concern was the "how" and not the "what"
of information transmission. He did note, however, that in the case
of data compression how well you compress (and how easily) de-
pends on the input you are considering. That being said, he pays
no attention to the actual meaning of the input, stating "...these se-
mantic aspects of communication are irrelevant to the engineering
problem."4 4 Shannon [1948]

The compression ratio, C, is defined by

C =
number of symbols in output
number of symbols in input

Things to note:

1. Input in a communication system is
not limited to words, characters etc.
It can be anything!

2. Output is always binary.

In order to determine the expected length of the output sequence,
Shannon considered every possible input. He assumed that every
input sequence that may have to be compressed has a given proba-
bility pi, where the pi’s sum to one. If the ith input, was given some
encoding of length li bits, then the expected length of the output bit
sequence is Σi pili.

Example:

Corresponding Translation Table:

A binary tree proved to be very useful in representing the encod-
ing of information. The internal nodes of this tree would have no
value, however each leaf would represent a possible input. Every left
edge represents by a 0, and every right edge a 1.

Entropy (Symbol E )

In information theory, entropy is a quantity that measures the
amount of information in a random variable. Thus entropy provides
a theoretical (sometimes inachievable) limit for the efficiency of any
possible encoding.5

5 George Markowsky. Information
theory. https://www.britannica.com/

science/information-theory, June
2017. Accessed on 2018-03-11

The binary entropy is defined as follows

E = Σi pi log2
1
pi
≥ 0,

where pi’s are the probabilities of the input sequences.

https://www.britannica.com/science/information-theory
https://www.britannica.com/science/information-theory
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Shannon faced three problems:

1. Find a binary tree that minimizes Σi pili (solved by his student,
David Huffman).

2. Prove E ≤ min Σi pili, where "min" refers to the minimum over all
binary trees. (Thus, the expected length of the output, regardless
of the comparison method, is at least E .)

3. Prove Σi pili ≤ E+1, for some binary tree. (This reassures us, since
we can come close to the lowerbound, E .)

We will first prove (2) E ≤ minΣi pili.

Proof. Recall Kraft’s inequality, which is valid for all binary trees:

∑ 1
2`i
≤ 1

By Taylor’s series expansion, loge x ≤ x− 1. Now observe that:

∑
i

pi`i = ∑
i

pi log2 2`i (1)

= ∑
i

pi log2(2
`i pi

1
pi
) (2)

= ∑
i

pi log2
1
pi

+ ∑
i

pi log2(pi2`i ) (3)

= E − (log2 e)∑
i

pi loge

(
1

pi2`i

)
(4)

≥ E − (log2 e)∑
i

pi

(
1

pi2`i
− 1

)
(5)

= E . (6)

We have shown that ∑i pili ≥ E . We must now exhibit a compres-
sion method with E + 1 ≥ ∑i pi`i.

Proof. We take `i =
⌈
log2(

1
pi
)
⌉

so we have,

∑
i

1
2`i
≤∑

i

1

2log2
1
pi

≤∑
i

pi ≤ 1.

So, Kraft’s inequality holds, By ordering the lengths li from small
to large, and assigning the li’s to leaves in a binary tree from left to
right, one can find a code with the given li’s. This code is called the
Shannon-Fano code.
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Now,

∑
i

pi`i ≤∑
i

pi(1 + log2
1
pi
) = 1 + E .

Huffman Tree

A Huffman tree is a binary tree that minimizes Σi pili where pi is
the weight of leaf i and li is the distance from leaf i to the root. It has
the following properties:

1. Two inputs with smallest pi value are furthest from the root.

2. Every internal node has 2 children.

3. Two inputs with smallest pi value can safely be made siblings.

It is important to note that Huffman trees are not unique!

The Hu-Tucker algorithm is a greedy algorithm designed to output
the Huffman tree given a set of inputs and their pi’s. It has time
complexity O(n log n).

Setup:
Let PQ be a binary heap holding pairs (i, pi) with the smallest key

pi near the root . Assuming that there are n leaves, we can reserve
n− 1 interval nodes in an array of total size 2n− 1. Let us use left[i]
and right[i] to denote the children of node i. Node 1 is the root.

HuffmanTree

1 MAKENULL(PQ)
2 for i = n to 2n− 1 do
3 left[i]=right[i]= nil;
4 INSERT((i, pi), PQ);

for i = n down to 1 do
6 (a, pa) = DELETEMIN(PQ);
7 (b, pb) = DELETEMIN(PQ);
8 left[i]= a;
9 right[i]= b;

10 INSERT((i, (pa + pb)), PQ);
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Example: How to construct a Huffman tree

Examples

We will now show different methods of coding and see how they
compare with Shannon’s lower bound.
Suppose our input is x1, x2, ..., xn where xi are uniformly random
elements of {1,2,3}. There are, therefore, 3n equally likely input se-
quences of length n. Note that E= log2 3n = n log2 3 ≈ 1.57n.

1) (Fixed width length).
We use two bits per input symbol using the fixed width code:

1→ 01, 2→ 10, 3→ 11.

So the length of the output is 2n which is not optimal. There is room
for a smaller expected output length.
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2) (Huffman code).
Consider the Huffman code where symbols are coded symbol by
symbol using a Huffman tree prefix code:

1→ 0, 2→ 10, 3→ 11.

The expected output length is 5
3 n, since

∑ pili = 1
3 (1) +

1
3 (2) +

1
3 (2) =

5
3 .

Thus, the expected output length is 5
3 n, which is considerably larger

than E≈ 1.57n.

3)
Let’s now make groups of fixed length d. Each group of d is an input
symbol coded by a Huffman code.

The expected output length in number of bits will be n
d times the

expected length of the Huffman tree code for one group, which we
know is ≤ 1 + log2 3d. So the overall expected length is

≤ n
d ·

⌈
log2 3d⌉ ≤ n

d (1 + d log2 3) = n(log2 3 + 1
d ).

Finally, by choosing d large enough, we can get arbitrarily close to
E . We cannot take d too large though, because computing the Huff-
man code would require too much space as the Huffman tree has 3d

leaves.
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