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Introduction

The two-parameter form of the generalized inverse gaussian distribution (or GIG) has density

A w 1
flx)==x 1exp(—§ (:1}—!—;)), x> 0.

There are two parameters, A € R, and w > 0. It seems to have been introduced for the first time by
a French statistician, Etienne Halphen, in 1941 (see Seshadri, 1997, and Morlat, 1956). Ole Barndorff-
Nielsen (see Barndorfl-Nielsen and Halgreen, 1977) coined the name generalized inverse Gaussian distribu-

proportional to

tion. It is also known as the Sichel distribution, named after Herbert Sichel, who studied its properties.
Its statistical properties are discussed by Bent Jgrgensen (1982) and Eberlein and von Hammerstein
(2002).

There is a three-parameter version that is equivalent up to a change of scale. The density can be

written explicitly as
(a/b)P/? 2 exp (_ax—l— b/x) >0,
2K, (v /ab) 2

where a,b > 0 and p € R are the parameters, and K, is a modified Bessel function of the second kind.
The case b = 0 is excluded, since then we must have a > 0 and p > 0 which corresponds to a standard
gamma law. The case a = 0 is also excluded because then we must have p < 0 and b > 0, and this
reduces to the inverse of a gamma distribution. We will only consider the two-parameter version, because
if X follows the three-parameter law with parameters (p, a,b), then \/a_/bX follows the two parameter
law with A = p and w = Vab.

The inverse Gaussian and gamma distributions are special cases of the generalized inverse Gaus-
sian distribution for p = —1/2 and b = 0, respectively. The moment generating function and all moments
are expressed in function of the Bessel functions of the second kind.

For the inverse gaussian, there is a clever trick by Michael, Schucany and Haas (1976) which
replaces = + 1/x by y, and makes use of the fact that the transformed density can be transformed back if
one is careful. That idea does not quite work for GIG variate generation, but it is almost possible to do
so. Indeed, there is a simple uniformly efficient generator. Recently, other competing approaches have
emerged for the inverse gaussian law—see, e.g., Lesosky and Horrocks (2003).



A transformed GIG distribution

The following “trick” helps in a large number of examples. If X is GIG or modified GIG with
parameters (\,w), then Y = log X has a log-concave density proportional to

Y1 ey
»(y) def exp <)\y — w%) =exp (A\y —wcoshy), y € R.

From this, we rediscover that if X is a ¢IG (A,w) random variable then 1/X is a GIG (—\,w) random
variable. Hence, one only needs to consider A > 0.

This density has a unique mode at the solution m of
sinhm = —,
w

which can be written explicitly as a solution of a quadratic equation,
=1 A +4/1+ %
m =log | — ik

It is convenient to normalize. We define

Y(x) = log (%) , x €R.

Inversely,
o(m +z) = p(m)e?® | z e R.

We note that 1(0) = 0, ¢(z) <0, and % is concave. More explicitly,
Y(x) = Ax — w (cosh(m + ) — coshm)

= Az — w (coshm cosh z + sinh m sinh z — coshm)

= —A(sinhz — z) — Vw2 + A2 (coshz — 1),
and

Y (x) = —=X(coshz — 1) — Vw2 4+ A2 sinh z.
In summary, if we can generate Y with density proportional to e¥ [and such Y will be called a transformed
GIG random variable in this paper], then

A [ A2
exp(m+Y) = (;—i— 1+E> e

has the ¢1G distribution with parameter (A, w) when A > 0.



History

Rather than doing an individual job on this particular family of densities, we recall that all log-
concave densities for which the density is available in black box format, and for which the location of
the mode (or a mode) is known, one can generate random variates by the rejection method thanks to a
universal inequality given in Devroye (1984). That method breaks down when one only knows the density
up to a normalization constant. In the cases of a GIG distribution, we know that

1
@) ¢(y), y €R,
is a bona fide density. Given that one has access to the Bessel function of the second kind in a computer
library, this could be used, and the discussion would end here.

However, this is not a wise decision if one does not know the error tolerance of the program that
computes the Bessel function. Others have attempted to deal with the GIG distribution directly, such as
Atkinson (1979, 1982) and Dagpunar (1989). Knowledge of the normalization constant was not necessary.
Adaptive rejection sampling (Gilks, 1992, Gilks and Wild, 1992, 1993) or its modifications (Leydold and
Hoérmann, 2000, 2011, or Hormann, Leydold and Derflinger, 2004) can lead to fast algorithms, but a
generally applicable complexity analysis is often lacking. The most recent method of Botts, Hérmann
and Leydold (2011) mentions a generator based on transformed density rejection, which seems to be
the industry standard today. It is called Tinflex. The fundamental question remains whether expected
complexity of the algorithm is uniformly bounded over all choices of the parameter.

Even as recently as 2009, approximations of the inverse of the GiG distribution function were
advocated (Lai, 2009). Others point out a myriad of ways of obtaining the GIG distribution as a limit of
a stochastic process (see, e.g. Eberlein and von Hammerstein, 2002). In this respect, it is useful that the
GIG law is infinitely divisible. Generating random variates as a limit of a process is a time-honored way
of doing things, but it is precisely this that we wish to avoid. A survey of the software available for the
cIG distribution was published by Breymann and Lithi (2011).

We will work out, by way of example, how one can approach the design in general in the absence
of a normalization constant, and give useful theorems for further applications. Some ideas were already
implicitly mentioned in section 7.2.6 of Devroye (1986), and in particular in Theorem 2.6 (page 299)
and the algorithm on page 301. The coverage in the present paper is tighter, incorporates the modern
transformation ideas, and has a considerably improved analysis. In particular, when applied to the
(transformed) GIG distribution, the algorithm is particularly solid and has uniformly bounded expected
complexity over the entire parameter range.



The design of a rejection method for a log-concave density

Given a log-concave function that is proportional to a density, normalize it as in the previous
section by centering at the mode m and making the value there 1. This yields a log-concave density with
mode at 0 that is proportional to the function exp(¢(z)), z € R, with ¥(0) = 0. After generating a
random variate X with the latter density, it suffices to return m 4+ X. It is assumed that we have ¢ and
1)’ available in black box format. We assume also that 1) is continuous.

Let p > 0 be a design parameter. We will see why a value in the range [1/2,2] is good. Let
s,t > 0 be chosen in such a way that
P(=s) =9(t) = —p.
Since v is continuous and concave and exp(t) is integrable, such s and ¢ exist and are unique. By
concavity of ¥, the following bound applies in general:
1
V(@) < { () +(a—t)¥' (1)
oV (=8)+(z+5)¢'(—s)
We apply the right exponential tail inequality on [t/,00), and the left exponential tail inequality on
(—o0, —s'], where

D(t) + (¢ =)' (t) = 0,9(=s) + (=5 + 8)¢(=s) = 0,

ie.,

! _ _ ¢(t) ! _ ’QZ)(—S)
t=t O _s+¢,(_5)
We summarize:
1 if —s' <z <t
V@) < y(a) L HOHV W) g sy

e¢(—5)+($+5)¢l(—5) lf T < _5/.
This design method has been known and applied in numerous papers, such as in the references mentioned
earlier.



1.2

Figure 1. The function ¢ and its three-piece hat function are shown. Note that the concave
function v has a peak at 0 and is normalized to have 1(0) = 0.The example is the transformed GIG
density with (A\,w) = (2,7).
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Figure 2. The function exp(t) and its three-piece hat function are shown on real scales. Note that
the log-concave function exp(¢) has a peak at 0 and is normalized to have (0) = 1. The example
is the transformed GIG density with (A\,w) = (2,7).

We first recall the rejection method with two exponential caps (see Devroye (1986) or Hérmann,
Leydold and Derflinger (2004)). To apply it, we need to compute [ x over the three intervals of interest:

/

def ¢ 1
= d =
P /—oo x(w) du P'(—s)’




[Algorithm for log-concave densities of the form exp(%))]
Input: functions ¢, v’ must be available.
[Set-up]
Choose p > 0.
Let s,t >0 be such that ¥(—s) =¢(t) = —p.
Compute (1, ¢,0,€) = (—(t), —!(£), ~v(—s), ¥/(—s))
set (pr) = (1/6,1/¢)
Compute t' =t — 1y
Compute s’ = s — pf
Compute g=1t+s.
[Generation]
Repeat Generate U,V,W uniformly on [0,1].
If U<q/(p+q+7) then set X = —s' +qV
else if U< (¢+7)/(p+q+7r) then set X =t +rlog(1/V)
else set X = —s' —plog(1/V)
Until Wix(X) < exp(¢)(X)), where
X(@) = g (@) + Ty oo (2)e @D 1y (w)e0HEts)
Return X (X has density proportional to ev.)

We prove the uniform performance bound in Theorem 1 below. Note that the special case p =1
has already been dealt with in the literature. See, e.g., Hérmann, Leydold and Derflinger (2004), or
Hoérmann (1994, 1995). For every log-concave density, the rejection method requires not more than about
1.58 iterations on average. As with the method of Devroye (1984), where a bound of 4 was obtained,
we assume that the mode m of the log-concave density is known and that the density can be computed
in black box format. The requirement that the normalization constant of the density is known is now
dropped, but on the other hand, it is assumed that the derivative of the density is also available in black
box format. It is the latter condition that permits us to improve the uniform rejection constant.

THEOREM 1. The expected number of iterations for the algorithm above, designed with parameter p > 0

is bounded from above by
max(1, p)

1l—e P’
The minimal value of this bound, attained at p =1, is

c - = 1.5810767068693264. ..

e —




PROOF. Since ¢ is concave and ¥ (0) = 0, we have

bl@) > S%(8),0 S v <tand Yla) > —t(-s),~s <z <0,

. v(0) ¥(=s)
<Y P N(—s) > T8 _ P
P(t) < : tandd;(s)_ - ;
Thus,
t t " "
/mez/awwM: < (1-et0) =L 1)
0 0 —(t) p
A similar set of bounds applies to the left of the origin:
0 S
/ e?(@) dy > - x (1 — e_p) .
—s p
We also have
/X(m)dm =p+qg+r
S S .
Y'(=s) —'(t)
1 p p 1
=—+t- +s— +
Y'(=s) —'(t) P'(=s)  —¢'()
1—p 1—p
= ttts+—tt
P'(=s) —'(t)
R s M ipp <
| t+s ifp>1
= (t+ s)max(1,1/p).
The expected number of iterations is
[x@)de _ (t+s)max(L,1/p) _ max(l,p)

fed’(f':) der — HTS x (1—eP) 1—eP

Discussion

The algorithm of the previous section can be automated and improved. Automation has been
the theme in the work of Hérmann, Leydold, and Derflinger (2004). Their software is capable of gener-
ating random variates in many situations, and includes the log-concave family, but also numerous other
interesting families of densities.

Improvements come from using table methods and gridding to create finer partitions for bounding,
either statically or dynamically (adaptively). In that sense, the algorithm of the previous section gives
an upper bound for the most primitive set-up. One can in general get the rejection constant to converge

to one.

For particular distributions, the main problem in the application is the determination of s,¢ > 0
such that



It is rare that the inverse of ¥ would be available. An example would be the transformed GIG random
variable with parameter A = 0. In that case, m = 0, and t > 0 is the solution of

Y(x) = —w(coshz — 1),z € R.
We obtain
t:—s:1+£+ (1+p/w)? —1.
In many cases, the Newton-Raphson algorithm will converge quickly. For example, for a solution ¢ > 0

of ¥(t) = —p, start with ¢y > 0. Then iterate using

toy =t _Ylta) +p
n-+ n 1[}’(%)
If 4'(t) < 0 for all t > 0, then the concavity and continuity of + imply that ¢, — t as n — oco. For the
solution s > 0 of ¢¥(—s) = —p, start with sg < 0. Then iterate using
Y(—sp) +p
P'(—sn)

Sp4+1 = Sn +

However, it is more useful to have explicit values for s and ¢. The onus then is to show that with
these choices, one has uniformly bounded rejection constants over all densities in the family. We will
illustrate this first on the transformed G1G distribution and then on the gamma distribution.

Application to the GiG distribution

For the transformed GIG law with general (\,w), the equation
P(t) = —A(sinht — t) — vV w? + A2 (cosht — 1) = —p
is nonlinear and has no explicit solution. It is convenient to rewrite it by grouping terms differently:

b(t) = — (\/w2 T2 A) (cosht —1) — A (el — 1 —t)
def —a(cosht — 1) —)\(et —1-1t).

Here oo = Vw2 + A2 — ) is a positive parameter, and in fact, both terms in the last representation are

nonpositive for all values of ¢ and the parameters, and are concave in ¢ with mode at 0.

The choice of s > 0 and ¢ > 0 we propose is as follows:

If —(1) €[1/2,2], then set t=1

else if —(1) > 2, then set t = +/2/(a+ \)

else [if —¢(1) < 1/2], then set t =log(4/(a+ 2X))
If —(—1) € [1/2,2] then set s=1

else if —(—1) > 2, then set s = ,/4/(acoshl+ \)

else [if —¢(—1) <1/2], then set s = min (%,log (1—1—%—1—,/;12—1—%))

— 10 —



The proof of the uniform speed of the rejection algorithm with this choice of (s,t) (Theorem 2) is given

in the Appendix.

THEOREM 2. [UNIFORM BOUNDEDNESS] With the above choice for (t, s), the expected number of iterations
in the rejection method is not more than

1
e <1 — exp(—0.34114777 . ..

71 _ee_e> = 3.459655. ..

For the sake of completeness, we summarize the random variate generator in its entirety.

[Generator for the GIG distribution with parameters w >0, > 0]
[Functions needed]
Define ¢ (z) = —a(coshx — 1) — A(e® —x — 1)
Define ®/(z) = —asinhx — \(e¥ — 1)
[Set-up]
Set a=+vwZ+ A2 -\
If —¢(1) € [1/2,2], then set t=1
else if —(1) > 2, then set t = +/2/(a+ \)
else [if —¢(1) < 1/2], then set t =log(4/(a+ 2X))
If —¢(—1) €[1/2,2], then set s=1
else if —(—1) > 2, then set s=4/4/(acoshl+ \)

else [if —i(—1) < 1/2], then set s = min (%,log (1 + é + ,/a—12 + %))

Compute (1, ¢,6,€) = (—b(t), — (1), —(—s), ¥/(~s))
set (p,7) = (1/6,1/0)
Compute t' =t —1rp
Compute s’ = s — pd
Compute g =t + s’
[Generation]
Repeat Generate U,V,W uniformly on [0,1].

If U<q/(p+q+7r) then set X = —s' +qV

else if U< (q+7)/(p+q+7) then set X =t +rlog(1/V)

else set X = —s —plog(1/V)
Until Wix(X) < exp(¢(X)), where

X(@) = gy (@) + L o0y (@)e 1@ 410 oy (w)e T8 Ts)

2
Return <% +4/1+ %) eX

— 11 —



Another example: the gamma density

It is a daring undertaking to attempt to publish a gamma random variate generator in 2011,
considering that tens if not hundreds of generators have been published world-wide since the 1970s. Most
of the recent generators have uniformly bounded expected complexities. The gamma distribution of
parameter a > 0 has density

xa—le—:c

f(iﬁ)zw

It is log-concave if and only if @ > 1. This bifurcation has also resulted, historically, in a dichotomy

,x > 0.

in generation methods. The case a < 1 is relatively unimportant because of the property (see Devroye,
1986) that for all a > 0,

L1
Go=UaGaq1,
where £ denotes equality in distribution, U is uniform [0, 1], and G, is a gamma (a) random variable. It
is nevertheless refreshing to know that there is one method that works for all cases using the log-concave

method explained in the present note. While not the fastest method, it offers the advantage of simple
error-free coding and best of all, a design that is not gamma-specific but rather more general.

Set
Y =log(Ga/a),

or, inversely, G, = ae” . This is the exponential transformation that also worked fine for the genetically
close GIG distribution. The objective is to generate Y and return G, = ae¥ . The random variable Y is
supported on R, and has density given by

exp (ay + aloga — aeY)

ply) = )

This log-concave function reaches a peak at the origin, and thus fits in our framework. We have

P() def _(y) _ La(+y—e)

(0)

This is a particularly fine formula, to which we could apply our method with the ideal design constant

p = 1. The nonlinear equation

P(y) =a(l+y—e’)=—p
is easy to solve numerically by the Newton-Raphson method. Alternatively, one can try to propose
explicit values for ¢ and s that give respectable p values.

We propose the choices

(t,5) = <\/§\/§) ifa>1,

(log(l—i—%),%) ifa < 1.
These lead to a rejection constant that is uniformly bounded over all values of the parameter a (see
Theorem 3 below).

For the sake of completeness, the gamma algorithm is given in its entirety—this is just a replay
of the general algorithm with 1) replaced by a(1 +y — €¥) and ¢’ replaced by a(1 — e¥).

— 12 —



[Set-up]
If a>1 then set s:t:\/g
else set s=1/a, tzlog(l—l—%)

Set P = Sapr -

Set r= m.
Set t/ =t+ra(l+t—exp(t)).
Set s’ =5 —pa(—1+ s+ exp(—s)).
Set q=1t'+5.
[Generation]
Repeat Generate U,V,W uniformly on [0,1].
If U<q/(p+q+r) then set Y =—5' +qV
else if U< (q+7)/(p+q+7r) then set Y =t +rlog(1/V)
else set Y = —s —plog(1/V)
Until Y € [-s/,#] and logW < a(l +Y —exp(Y))
or Y >t and logW <a((—t+Y +1)exp(t) — exp(Y))
or Y < —s and logW <a((s+Y +1)exp(—s) — exp(Y))
Return X = aexp(Y) (Y has density proportional to e¥, and X £ Gy.)

THEOREM 3. For the given choices of t and s we have the following inequalities: if a > 1, then
—2.96 < ¥(t) < —1,—1 < ¢(—s) < —0.76,

and if a < 1,
—1<y(t)<—-14+1log2 < —0.306,—1 < (—s) —1+1/e < —0.632.

Therefore, the maximal expected number of iterations over all values of a is not more than

2.96 1
max <1 2060 ] 6_0.30().) =3.7934. ...

PRrOOF. Theorem 3 consists of eight inequalities. For a > 1, the choice t = s = /2/a means that the
maximal value taken by these parameters is at most v/2. Taylor’s series with remainder implies that for

0<z<V2,
ZII2 [0 thge\/i

T—l-z——F¢€
(& T 6

5 C [0,0.6927],

and thus,
t? t2
P(t) =a(l +t—exp(t)) €a [—E —0.69t3, —5]

—[~1-0.69v2a, —1} C[-1-1.38, 1] C [-2.96, 1.

— 13 —



For—\/ESxSO,

2 a3
xT
I I e
e x 2 S |: 6 70:| )
and thus,
2 28
P(—s) =a(l — s —exp(—s)) €a {——2 5t e ] =[-1,-1+1t/6] C [-1,—-0.76].

Now consider a < 1. The choice t = log(1 + 1/a) yields
P(t) =a(l +t—exp(t)) = allog(l+1/a) —1/a) = =1 + alog(l +1/a) € [-1,—1 + log 2].
Finally, setting s = 1/a yields

PY(—=s)=a(l —1/a—exp(—1/a)) = =1+ a(l —exp(—1/a)) € [-1,-1+4+1/e].OJ

(—s,0) (t,0)
T
0.8 _
0.6 _
0.4
(—s,9(~5)) t<— exp(—p) (t(t))
0.2 _
0
[ I I I I [ 1
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Figure 3. The function exp(%)) and its three-piece hat function are shown for the gamma (1) (expo-
nential) density.

— 14 —
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