
Available online at www.sciencedirect.com

t
⃝

r

K

t

w

p

o
t

t
r

ScienceDirect

Mathematics and Computers in Simulation 181 (2021) 51–56
www.elsevier.com/locate/matcom

Original articles

Random variate generation for the truncated negative gamma
distribution✩

Luc Devroye∗

School of Computer Science, McGill University, Canada

Received 4 January 2019; received in revised form 21 August 2020; accepted 1 September 2020
Available online 12 September 2020

Abstract

We provide a uniformly efficient and simple random variate generator for the truncated negative gamma distribution restricted
o any interval.
c 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Random variate generation; Simulation; Monte Carlo method; Expected time analysis

1. Introduction

In this note, we derive a uniformly fast random variate generator for the family of densities that are proportional
o

f (x) = x−λ exp (−x) , x ∈ [s, t),

here 0 < s < t ≤ ∞ and λ ≥ 1 are the parameters. For λ < 1, we obtain the standard gamma (1 − λ)
distribution, for which many good algorithms are available (see [2], [6] and [4]). For this reason we will call this
the negative gamma family. Since it must be a density, we cannot have s = 0.

This distribution appears in the astrophysics literature where it is known as the power law with cut-off, or the
ower law with exponential cut-off. Our nomenclature stresses the tight connection with the gamma distribution.

Deriving uniformly fast algorithms for multi-parameter families of distributions becomes harder as the number
f parameters grows. With three parameters, λ, s and t , one must be very careful. Our method is based on the fact
hat after an exponential transformation, the distribution is log-concave on its support.

The algorithms here are designed for situations in which one or more of the parameters change on each call. If
hey are static, then there are various other methods that should be considered, including table methods and adaptive
ejection sampling [5].

✩ Research sponsored by NSERC Grant A3456.
∗ Correspondence to: School of Computer Science, McGill University, 3480 University Street, Montreal, Canada H3A 2K6.

E-mail address: lucdevroye@gmail.com.
https://doi.org/10.1016/j.matcom.2020.09.005
0378-4754/ c⃝ 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

http://www.elsevier.com/locate/matcom
https://doi.org/10.1016/j.matcom.2020.09.005
http://www.elsevier.com/locate/matcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2020.09.005&domain=pdf
mailto:lucdevroye@gmail.com
https://doi.org/10.1016/j.matcom.2020.09.005


L. Devroye Mathematics and Computers in Simulation 181 (2021) 51–56

T

R

2. A transformed negative gamma distribution

The following “trick” helps in a large number of examples. If X is negative gamma, then Y = log(X/s) has a
log-concave density proportional to

exp
(
−(λ − 1)(y + log s) − sey) , y ∈ [0, log(t/s)).

It is understood that when t = ∞, then the support of this density is [0, ∞). This density has a unique mode at the
origin, is monotonically decreasing on the positive halfline, and is log-concave. It is convenient to normalize so that
the value of the function we will be dealing with is 1 at the origin. So, Y has density proportional to exp(h(y)), where

h(y) = −(λ − 1)y − s
(
ey

− 1
)
, y ∈ [0, log(t/s)).

We recall that all log-concave densities for which the density is available in black box format, and for which the
location of the mode (or a mode) is known, one can generate random variates by the rejection method thanks
to a universal inequality given in [1]. That method breaks down when one only knows the density up to a
normalization constant. In this case, our normalization constant involves the incomplete gamma integral, for which
only approximations are known. One can get around the unknown normalization constant quite easily—the path to
that was sketched in section 7.2.6 of Devroye [2], and in particular in Theorem 2.6 (page 299) and the algorithm on
page 301, but indirectly also in the work of Hörmann et al. [6], and Leydold and Hörmann [7,8]), some automated
methods worked out in the more recent papers of Devroye [3,4]). However, universal algorithms are never as efficient
as specific designs.

Let z > 0 be fixed. We will only use the following two inequalities in the rejection method:

h(y) ≤

{
0 for all y ≥ 0,

h(z) + (y − z)h′(z) = h(z) − (y − z) ((λ − 1) + sez) if y ≥ z.

For general log-concave densities, Leydold and Hörmann [7,8] and indirectly Devroye [3,4] establish that the
exponential tail should start when h(y) ≈ −1. Doing so leads quite easily to the correct recipe for a uniformly
fast algorithm. A useful choice of the threshold z is obtained as the minimum of three values. Define

z0 = log(t/s),

z1 = log
(

1 +
1
2s

)
z2 =

1
2(λ − 1)

(which is ∞ if λ = 1).

hen set

z = min (z0, z1, z2) , w = argmin (z0, z1, z2) .

ejection will be based on

eh(y)
≤ eg(y) def

=

{
1 0 ≤ y ≤ z,
exp (h(z) − a(y − z)) if z ≤ y.

where we define

a def
= (λ − 1) + sez .

We first establish that this is uniformly fast. We did not attempt to optimize the rejection constant. Slightly moving
z can improve the bound of Theorem 1:

Theorem 1. Let N be the number of loops in the rejection method based on the above inequality. Then

sup
0<s≤t≤∞

λ≥1

E{N } ≤ e + 2.
52



L. Devroye Mathematics and Computers in Simulation 181 (2021) 51–56

T

I
w

T

3

T

Proof. Observe that the integral under the dominating curve eg is

z +
eh(z)

a
1[w>0].

he integral of eh over [0, z] is at least z exp(h(z)). Thus,

E{N } ≤
z +

eh(z)

a 1[w>0]

z exp(h(z))
= exp (−h(z)) +

1
az

1[w>0]
def
= I + I I.

f z = z1, then az ≥ sz1ez1 = (s + 1/2) log
(
1 +

1
2s

)
≥

1
2 . If z = z2, then az ≥ (λ − 1)z2 = 1/2. So, I I ≤ 2. Now,

e always have

−h(z) = (λ − 1)z + s
(
ez

− 1
)

≤ (λ − 1)z2 + s
(
ez1 − 1

)
= 1.

herefore, E{N } ≤ e + 2. □

. The rejection algorithm for our example

To apply the rejection method, we need the integrals of eg over [0, z] and [z, ∞), respectively. The former is z.
he latter is given by

b def
=

1
a

eh(z)
=

1
a

exp
(
−(λ − 1)z − s

(
ez

− 1
))

.

Furthermore, we note that a random variate with density proportional to eg on [z, ∞) is simply generated as z+E/a,
where E is a standard exponential random variable. Finally, in the algorithm below, if W is a candidate point
generated from eh , and V is a uniform [0, 1] random variable, then we replace the rejection step V eh(W )

≤ eg(W ) by
the condition E∗ > h(W ) − g(W ), where we used the fact that V is distributed as e−E∗

, where E∗ is exponentially
distributed (see the various lines that involve E∗). This leads to the following rejection algorithm.

[Algorithm for the negative gamma density on [s, t] of parameter λ ≥ 1.]

[Set-up]

z0 ← log(t/s)

z1 ← log(1 + 1/(2s))

z2 ←
1

2(λ−1)
(∞ if λ = 1)

z ← min (z0, z1, z2)

w ← argmin (z0, z1, z2)

a← (λ− 1) + sez

b← 1
a exp (−(λ− 1)z − s (ez − 1))

[Generation]

if w = 0 then repeat

W ← zU, where U is uniform [0, 1]

generate an exponential random variable E∗

Accept ← [E∗ > (λ− 1)W + s
(

eW − 1
)

]

until Accept

else repeat

if V < z/(z + b) (where V is uniform on [0, 1])

then W ← zU, where U is uniform [0, 1]

generate an exponential random variable E∗

Accept ← [E∗ > (λ− 1)W + s
(

eW − 1
)

]

else W ← z + E/a, where E is exponential

generate an exponential random variable E∗

Accept ← [W ≤ log(t/s)]

and [E∗ > sez
(

eW−z − 1− (W − z)
)

]

until Accept

return X ← seW
53



L. Devroye Mathematics and Computers in Simulation 181 (2021) 51–56

b
a

h

w
o
r

T

O
b

4. A special case: λ = 1

For the one parameter density proportional to

f (x) =
1
x

e−x , x ≥ s > 0,

the algorithm becomes much simpler:
[Algorithm for the negative gamma density on [s,∞) of parameter λ = 1.]

[Set-up]

z ← log(1 + 1/s)

b← 1
(s+1)e

[Generation]

repeat

if V < z/(z + b) (where V is uniform on [0, 1])

then W ← zU, where U is uniform [0, 1]

generate an exponential random variable E∗

Accept ← [E∗ > s
(

eW − 1
)

]

else W ← z + E/(s+ 1), where E is exponential

generate an exponential random variable E∗

Accept ← [E∗ > (s+ 1)
(

eW−z − 1− (W − z)
)

]

until Accept

return X ← seW

In the algorithm above, we tacitly replaced z1 by the choice of z given in the first line of the algorithm. One can
verify that the bounding method used in Theorem 1 gives the better estimate E{N } ≤ e + 1.

5. The gamma density with parameter in (0, 1]

There are many methods for generating gamma random variables with arbitrary parameters. We are interested
though in the case of gamma random variables with parameter b = 1 − λ ∈ (0, 1], i.e., having density

x−λe−x

Γ (1 − λ)
,

ut restricted to the interval [s, t] ⊆ [0, ∞). This is a three parameter family of distributions. The purpose is, once
gain, to derive a uniformly fast rejection method.

First we note that the transformed random variable

Y = Xb

as density proportional to

exp
(
−y1/b) , y ≥ 0,

hen X is gamma (b). It is much simpler to deal with Y , as its density is monotonically decreasing and log-concave
n the positive halfline. We note that this same transformation has also been suggested by Tanizaki [10]. We will
estrict Y to [sb, tb]. Note that the density of Y is proportional to exp(h(y)) where

h(y) = s − y1/b.

his normalized form has h(sb) = 0, which facilitates the further development. Set

z0 = tb,

z1 = (1 + s)b,

z = min(z0, z1).

n [sb, z], we will apply rejection with as bounding curve 1. On [z, tb], if this interval is not empty, we use the
ound

h(y) ≤ h(z) − a(y − z),
54



L. Devroye Mathematics and Computers in Simulation 181 (2021) 51–56

P

T

I

with a = −h′(z) = (1/b)z(1/b)−1. The algorithm is as follows:
[Algorithm for the negative gamma density on [s, t] of parameter λ ∈ [0, 1).]

[Set-up]

b← 1− λ

z0 ← tb

z1 ← (1 + s)b

z ← min (z0, z1)

w ← argmin (z0, z1)

a← (1/b)z(1/b)−1

γ ← 1
a exp

(

s− z1/b
)

[Generation]

if w = 0 then repeat

W ← sb + (tb − sb)U, where U is uniform [0, 1]

generate an exponential random variable E∗

Accept ← [E∗ > W 1/b − s]

until Accept

else repeat

if V < (z − sb)/((z − sb) + γ) (where V is uniform on [0, 1])

then W ← sb + (z − sb)U, where U is uniform [0, 1]

generate an exponential random variable E∗

Accept ← [E∗ > W 1/b − s]

else W ← z + E/a, where E is exponential

generate an exponential random variable E∗

Accept ← [W ≤ tb]

and [E∗ > W 1/b − z1/b − a(W − z)]

until Accept

return X ←W 1/b

Theorem 2. Let N be the number of loops in the rejection method based on the above algorithm. Then

sup
0≤s≤t≤∞

λ∈[0,1)

E{N } ≤
e2

e − 1
.

roof. Observe that the integral under the dominating curve eh is

z − sb
+

eh(z)

a
1[w>0].

he integral of eh over [sb, z] is at least (z − sb) exp(h(z)). Thus,

E{N } ≤
z − sb

+
eh(z)

a 1[w>0]

(z − sb) exp(h(z))
= exp (−h(z)) +

1
a(z − sb)

1[w>0]
def
= I + I I.

f z = z1, then

a(z − sb) =
z1/b−1

1 (z1 − sb)
b

=
(s + 1)((1 + s)b

− sb)
b(s + 1)b

=
s + 1

b

(
1 −

1
(1 + 1/s)b

)
≥

s + 1
(1 − exp(−b/(s + 1))) .
b
55



L. Devroye Mathematics and Computers in Simulation 181 (2021) 51–56

S

A

a
M
b

R

Since s + 1 ≥ b, the expression is at least (e − 1)/e. So, I I ≤ e/(e − 1). Now, we always have

−h(z) = z1/b
− s ≤ z1/b

1 − s = 1.

o, I ≤ e. □

cknowledgements

The distribution was pointed out to me by astrophyscist B.T. Ravishankar of the Indian Institute of Space Science
nd Technology, and UR Rao Satellite Centre, who needed a fast generator for it in order to generalize the work of
agdziarz and Zdziarski [9]. Ravishankar implemented and successfully tested all algorithms shown in this note,

ut declined having his name as coauthor of the paper. The author would also like to thank both referees.

eferences
[1] L. Devroye, A simple algorithm for generating random variates with a log-concave density, Computing 33 (1984) 247–257.
[2] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.
[3] L. Devroye, A note on generating random variables with log-concave densities, Statist. Probab. Lett. 82 (2012) 1035–1039.
[4] L. Devroye, Random variate generation for the generalized inverse Gaussian distribution, Stat. Comput. 24 (2014) 239–246.
[5] W.R. Gilks, P. Wild, Adaptive rejection sampling for Gibbs sampling, Appl. Stat. 42 (1992) 337–348.
[6] W. Hörmann, J. Leydold, G. Derflinger, Automatic Nonuniform Random Variate Generation, Springer-Verlag, Berlin, 2004.
[7] J. Leydold, W. Hörmann, Black box algorithms for generating non-uniform continuous random variates, in: W. Jansen, J.G. Bethlehem

(Eds.), Compstat 2000, 2000, pp. 53–54.
[8] J. Leydold, W. Hörmann, Universal algorithms as an alternative for generating non-uniform continuous random variates, in: G.I. Schuler,

P.D. Spanos (Eds.), Monte Carlo Simulation, 2001, pp. 177–183.
[9] P. Magdziarz, A.A. Zdziarski, Angle-dependent Compton reflection of X-rays and gamma-rays, Mon. Not. R. Astron. Soc. 273 (1995)

837–848.
[10] H. Tanizaki, A simple gamma random number generator for arbitrary shape parameters, Econ. Bull. 3 (2008) 1–10.
56

http://refhub.elsevier.com/S0378-4754(20)30313-X/sb1
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb2
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb3
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb4
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb5
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb6
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb7
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb7
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb7
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb8
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb8
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb8
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb9
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb9
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb9
http://refhub.elsevier.com/S0378-4754(20)30313-X/sb10

	Random variate generation for the truncated negative gamma distribution
	Introduction
	A transformed negative gamma distribution
	The rejection algorithm for our example
	A special case: = 1
	The gamma density with parameter in (0,1]
	Acknowledgements
	References


