
Copulas with Prescribed Correlation Matrix

Luc Devroye and Gérard Letac

Abstract Consider the convex set Rn of semi positive definite matrices of order n
with diagonal .1; : : : ; 1/: If ! is a distribution in Rn with second moments, denote
by R.!/ 2 Rn its correlation matrix. Denote by Cn the set of distributions in Œ0; 1"n

with all margins uniform on Œ0; 1" (called copulas). The paper proves that! 7! R.!/
is a surjection from Cn on Rn if n ! 9: It also studies the Gaussian copulas ! such
that R.!/ D R for a given R 2 Rn:

1 Foreword

Marc Yor was also an explorer in the jungle of probability distributions, either
in discovering a new species, or in landing on an unexpected simple law after a
difficult trip on stochastic calculus: we remember his enthousiam after proving that!R1
0 exp.2B.t/" 2st/dt

"!1
is gamma distributed with shape parameter s (‘The first

natural occurrence of a gamma distribution which is not a chi square!’). Although
the authors have been rather inclined to deal with discrete time, common discussions
with Marc were about laws in any dimension. Here are some remarks—actually
initially coming from financial mathematics—where the beta-gamma algebra (a
term coined by Marc) has a role.

2 Introduction

The set of symmetric positive semi-definite matrices .rij/1"i;j"n of order n such that
the diagonal elements rii are equal to 1 for all i D 1; : : : ; n is denoted by Rn.
Given a random variable .X1; : : : ;Xn/ onRn with distribution! such that the second
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586 L. Devroye and G. Letac

moments of the X0
is exist, its correlation matrix

R.!/ D .rij/1"i;j"n 2 Rn

is defined by rij as the correlation of Xi and Xj if i < j, and rii D 1. A copula is
a probability ! on Œ0; 1"n such that Xi is uniform on Œ0; 1" for i D 1; : : : ; n when
.X1; : : : ;Xn/ # !. We consider the following problem: given R 2 Rn, does there
exist a copula! such that R.!/ D R‹ The aim of this note is to show that the answer
is yes if n ! 9. The present authors believe that this limit n D 9 is a real obstruction
and that for n $ 10 there exists R 2 Rn such that there is no copula ! such that
R.!/ D R.

Section 3 gives some general facts about the convex setRn. Section 4 proves that
if k $ 1=2, if 2 ! n ! 5 and if R 2 Rn there exists a distribution ! on Œ0; 1"n such
that

Xi # ˇk;k.dx/ D
1

B.k; k/
xk!1.1 " x/k!11.0;1/.x/dx (1)

if .X1; : : : ;Xn/ # !. This is an extension of the previous statement since ˇk;k is
the uniform distribution if k D 1. Section 5 proves the remainder of the theorem,
namely for 6 ! n ! 9. Section 6 considers the useful and classical Gaussian copulas
and explains why there are R 2 Rn that cannot be the correlation matrix of any
Gaussian copula. The present paper is both a simplification and an extension of the
arXiv paper [1].

3 Extreme Points of Rn

The setRn is a convex part of the linear space of symmetric matrices of order n. It is
clearly closed and if R D .rij/1"i;j"n 2 Rcn we have jrijj ! 1: this shows that Rn is
compact. More specifically,Rn is in the affine subspace of dimension n.n" 1/=2 of
the symmetric matrices of order n with diagonal .1; : : : ; 1/. Its extreme points have
been described in [8]. In particular we have

Theorem 1 If an extreme point ofRn has rank r then r.rC 1/=2 ! n.

We vizualize this statement:
r 1 2 3 4 5 . . .
r.rC1/
2

1 3 6 10 15 . . .

• Case n D 2. As a consequence the extreme points of R2 are of rank one. They
are nothing but the two matrices

#
1 1

1 1

$
;

#
1 "1

"1 1

$
:
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Fig. 1 The space of the three
off-diagonal correlation
coefficients of a correlation
matrix is a convex subset of
Œ0; 1"3

This comes from the fact R 2 R2 of rank one has the form R D AAt where
At D .a1; a2/: since rii D 1 this implies that a21 D a22 D 1.

• Case n $ 3. Figure 1 below displays the acceptable values of .x; y; z/ when

R.x; y; z/ D

2

4
1 z y
z 1 x
y x 1

3

5 (2)

is positive definite. Its boundary is the part in jxj; jyj; jzj ! 1 of the Steiner surface
1 " x2 " y2 " z2 C 2xyz D 0.

Proposition 1 Let n $ 3. Then R D .rij/1"i;j"n 2 Rn has rank 2 if and only if there
exists n distinct numbers ˛1; : : : ; ˛n such that rij D cos.˛i " ˛j/.
Proof )W Since R has rank 2 there are two independent vectors A and B of Rn such
that R D AAt C BBt. Writing At D .a1; : : : ; an/ and Bt D .b1; : : : ; bn/ the fact
that rii D 1 implies that a2i C b2i D 1. Taking ai D cos˛i and bi D sin ˛i gives
rij D cos.˛i " ˛j/. (W Since only differences ˛i " ˛j appear in rij D cos.˛i " ˛j/
without loss of generality we take ˛n D 0 we define At D .cos˛1; : : : ; cos˛n!1; 1/
and Bt D .sin ˛1; : : : ; sin ˛n!1; 1/ and R D AAt C BBt is easily checked.!
• Case n $ 6.

Proposition 2 Let n $ 6. Then R D .rij/1"i;j"n 2 Rn has rank 3 if and only if
there exist v1; : : : ; vn on the unit sphere S2 of R3 such that for all i < j we have
rij D hvi; vji and such that the system v1; : : : ; vn generates R3.
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588 L. Devroye and G. Letac

Proof The direct proof is quite analogous to Proposition 1: there exist A;B;C 2 Rn

such that R D AAt C BBt C CCt. and such that A;B;C are independent. Writing

ŒA;B;C" D

2

664

a1 b1 c1
a2 b2 c2
: : : : : : : : :

an bn cn

3

775 (3)

the desired vectors are vti D .ai; bi; ci/. The converse is similar.!
The following proposition explains the importance of the extreme points of Rn

for our problem.

Proposition 3 Let X D .X1; : : : ;Xn/ # ! and Y D .Y1; : : : ;Yn/ # # be two
random variables of Rn such that for all i D 1; : : : ; n we have Xi # Yi and Xi has
second moments and are not Dirac. Then for all $ 2 .0; 1/ we have

R.$!C .1 " $/#/ D $R.!/C .1 " $/R.#/:

Proof Xi # Yi implies that the mean mi and the dispersion %i of Xi and Yi are the
same. Denote D D diag.%1; : : : ; %n/. Since the Xi are not Dirac, D is invertible.
Denote by

†.!/ D .E..Xi " mi/.Xj " mj//1"i;j"n D DR.!/D

the covariance matrix of !. Define Z D .Z1; : : : ;Zn/ by Z D X with probability
$ and Z D Y with probability .1 " $/. Thus Z # $!C .1 " $/#. Here again the
mean and the dispersion of Zi are mi and %i. Finally the covariance matrix of Z is
†.$!C .1 " $/#/ D $†.!/C .1 " $/†.#/ which gives

R.$!C .1 " $/#/ D D!1†.$!C .1 " $/#/D!1

D $D!1†.!/D!1 C .1 " $/D!1†.#/D!1

D $R.!/C .1 " $/R.#/:

!
Corollary 1 Let #1; : : : ; #n a sequence of probabilities on R having second mo-
ments and denote by M the set of probabilities! onRn such that for all i D 1; : : : ; n
we have Xi # #i, with .X1; : : : ;Xn/ # !. Then the map from M to Rn defined by
! 7! R.!/ is surjective if and only if for any extreme point R of Rn there exists a
! 2 M such that R D R.!/.

Proof ) comes from the definition. (W Since the convex set Rn has dimension
N D n.n " 1/=2, the Caratheodory theorem implies that if R 2 Rn then there exists
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N C 1 extreme points R0; : : : ;RN ofRn and non negative numbers .$i/NiD0 of sum 1
such that

R D $0R0 C % % % C $NRN :

From the hypothesis, for j D 0; : : : ;N there exists !j 2 M such that R.!j/ D Rj.
Define finally

! D $0!0 C % % % C $N!N

and apply Proposition 3, we get that R D R.!/ as desired.!
Comments: With the notation of Corollary 1 and the result of Proposition 3, the
map ! 7! R.!/ from M to Rn is affine. Consider now the case where for all
i D 1; : : : ; n, the probability #i is concentrated on a finite number of atoms. In
this particular case M is a polytope, and therefore its image R.M/ is a polytope
contained in Rn. For n D 3 clearly R3 is not a polytope (see Fig. 1) and therefore
there exists a R 2 R3 which is not in R.M/: with discrete margins, you cannot reach
an arbitrary correlation matrix.

4 The Case 3 ! n ! 5 and the Gasper Distribution

In this section we prove (Proposition 5) that if #1 D : : : D #n D ˇkk as defined
by (1) and with k $ 1=2, if M is defined as in Corollary 1 and if R 2 Rn has rank
2 one can find ! 2 M such that R D R.!/. The corollary of this Proposition 1
will be that for any R 2 Rn with 3 ! n ! 5 one can find ! such that R.!/ D R
and such that the margins of ! are ˇkk. Proposition 4 relies on the existence of a
special distributionˆk;r called the Gasper distribution in the plane that we are going
to describe.

Definition Let k $ 1=2. Let D > 0 such that D2 # ˇ1;k! 1
2
(if k > 1

2
) and D # ı1

if k D 1
2
. We assume that D is independent of ‚, uniformly distributed on .0; 2&/.

Let r 2 ."1; 1/ and ˛ 2 .0;&/ such that r D cos˛. The Gasper distribution ˆk;r is
the distribution of .D cos‚;D cos.‚ " ˛//.
Proposition 4 If .X1;X2/ # ˆk;r then X1 and X2 have distribution #k.dx/ D
1

B.k;k/ .1 " x2/k!11.!1;1/.x/dx and correlation r.

Proof Clearly X1 # "X1 and for seeing that X1 # #k enough is to prove that

E.X2s1 / D
21!2k

B.k; k/

Z 1

!1
x2s.1 " x2/k!1dx (4)
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The right-hand side of (4) is

22!2k

B.k; k/

Z 1

0

x2s.1" x2/k!1dx D 21!2k
'.sC 1

2
/'.2k/

'.sC 1
2
C k/'.k/

:

The left-hand side of (4) is

E.D2s/E..cos2 ‚/s/ D '.sC 1/'.kC 1
2
/

'.sC kC 1
2
/

& '.sC 1
2
/p

&'.sC 1/
:

Using the duplication formula '.k/'.k C 1
2
/ D 21!2k

p
& '.2k/ proves (4). Since

‚ is uniform one has cos.‚ " ˛/ # cos‚ and X1 # X2. For showing that the
correlation of .X1;X2/ is r D cos˛ we observe that

E.X21/ D E.D2/E.cos2 ‚/ D 1

2kC 1

E.X1X2/ D E.D2/E.cos‚ cos.‚ " ˛// D cos˛
2kC 1

:!

Comments: It is worthwhile to say a few things about this Gasper distribution. It
is essentially considered in two celebrated papers by George Gasper [3] and [4]. If
k D 1

2
then ˆ1

2 ;r
is concentrated on the ellipse Er D Ecos˛ parameterized by the

circle as

( 7! .x.(/; y.(// D .cos (; cos.( " ˛//

Er D f.x; y/I .y " xr/2 D .1 " x2/.1 " r2/g D f.x; y/I).x; y; z/ D 0g

where

).x; y; r/ D det

2

4
1 r y
r 1 x
y x 1

3

5 D 1 " x2 " y2 " r2 C 2xyr

(Compare with (2)). Now denote by Ur D f.x; y/I).x; y; r/ > 0g the interior of the
convex hull of Er and assume that k > 1

2
. Then Gasper shows that

ˆr;k.dx; dy/ D
2k " 1

2&
.1 " r2/

1
4! k

2).x; y; r/k!
3
2 1Ur.x; y/ dxdy:

The Gasper distribution *k;r appears as a Lancaster distribution (see [7]) for the
pair .#k; #k/. More specifically consider the sequence .Qn/

1
nD0 of the orthonormal
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polynomials for the weight #k. Thus Qn is the Jacobi polynomial Pk!1;k!1
n normal-

ized such that

Z 1

!1
Q2n.x/#k.dx/ D 1:

For 1=2 < k denote

K.x; y; z/ D
1X

nD0

Qn.x/Qn.y/Qn.z/
Qn.1/

:

This series converges if jxj; jyj; jzj < 1 and its sum is zero when .x; y/ is not in the
interior Ur of the ellipse Er. With this notation we have

*k;r.dx; dy/ D K.x; y; r/#k.dx/#k.dy/:

This result is essentially due to [3] (with credits to Sonine, Gegenbauer and Moller).
See [5, 6] for details.

Proposition 5 Let ˛1; : : : ; ˛n which are distinct modulo & . Let

R D .cos.˛i " ˛j/1"i;j"n 2 Rn

and consider the two-dimensional plane H ' Rn generated by c D
.cos˛1; : : : ; cos˛n/ and s D .sin ˛1; : : : ; sin ˛n/. Consider the random variable
X D .X1; : : : ;Xn/ concentrated on H such that .X1;X2/ # ˆk; cos.˛1!˛2/ and denote
by ! the distribution of X. Then

• For 1 ! i < j ! n we have .Xi;Xj/ # ˆk; cos.˛i!˛j/
• R D R.!/.

Proof Recall that R 2 Rn from Proposition 1. Since X 2 H there exists A;B
such that for all i D 1; : : : ; n one has Xi D A cos˛i C B sin ˛i. From the fact
that .X1;X2/ # ˆk;cos.˛1!˛2/ we can claim the existence of a .‚;D/ such that ‚
is uniform on the circle and is independent of D > 0 such that D2 # ˇ1;k! 1

2
and

such that

.X1;X2/ # D cos.‚ " ˛1/;D cos.‚ " ˛2//:

From an elementary calculation this leads to saying that .A;B/ # .D cos‚;D sin‚/
and finally that

.X1; : : : ;Xn/ # .D cos.‚ " ˛1/; : : : ;D cos.‚ " ˛n//:

From Proposition 4 this proves the results.!
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Conclusion: The previous proposition has shown that for k $ 1
2
and for any

extremal point R of Rn there exists a distribution !R in ."1; 1/n with margins #k
and correlation matrix R. From Corollary 1 above, since an arbitrary R 2 Rn is
a convex combination R D $0R0 C % % % C $nRn of extreme points Ri of Rn the
distribution ! D $0!R0 C % % % C $n!Rn has margins #k and correlation R.

Since #k is the affine transformation of ˇk;k by u 7! x D 2u " 1 this implies that
there exists also a distribution in .0; 1/k with margins ˇk;k and correlation matrix
R. Since ˇ1;1 is the uniform distribution on .0; 1/ a corollary is the existence of a
copula with arbitrary correlation matrix R.

Example To illustrate Proposition 5 consider the case n D 3 and R 2 R3 defined by

R D

2

64
1 " 1

2
" 1
2

" 1
2

1 " 1
2

" 1
2

" 1
2

1

3

75

which is an extreme point corresponding to ˛1 D 0; ˛2 D 2&=3 D "˛3. This
example is important since, as we are going to observe in Sect. 6, it is not possible
to find a Gaussian copula having R as correlation matrix. Recall now a celebrated
result:

Archimedes Theorem: If X is uniformly distributed on the unit sphere S of the
three-dimensional Euclidean space E and if… is an orthogonal projection of E on a
one-dimensional line F ' E then….X/ is uniform on the diameter with end points
S \ F.

Proof While we learnt a different proof in ’classe de Première’ in the middle of the
fifties, here is a computational proof: let Z # N.0; idE/. Then X # Z=kZk. Choose
orthonormal coordinates .x1; x2; x3/ such that F is the x1 axis. As a consequence of
Z D .Z1;Z2;Z3/ we have X21 # Z21=.Z

1
1 C Z22 C Z23/ and since the Z

2
i are chi square

independent with one degree of freedom, this implies that X21 # ˇ1=2;1 which leads
quickly to X1 uniformly distributed on ."1; 1/since X1 # "X1.!

Proposition 5 offers a construction (see Fig. 2) of a distribution in C D Œ"1; 1"3
with uniform margins #1 on ."1; 1/ as a distribution concentrated on the plane P of
equation xC yC z D 1. The intersection C \ P is a regular hexagon. Introduce the
disc D inscribed in the hexagon C \ P and the sphere S admitting the boundary of
D as one of its grand circles. Now consider the uniform distribution on S. Denote
by ! its orthogonal projection ! on D. Actually any orthogonal projection of ! on
a diameter of D is uniform on this diameter, from Archimedes Theorem. Apply this
to the three diagonals of the hexagon C\P W this proves that the three margins of !
are the uniform measure #1.
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Copulas with Prescribed Correlation Matrix 593

Fig. 2 Illustration of our construction. First take a point uniformly on the surface of the ball.
Project it to the plane shown (so that it falls in the circle). The three coordinates of that point are
each uniformly distributed on Œ!1; 1"

5 The Case 6 ! n ! 9

Proposition 6 Let n $ 6 and let A;B;C be three independent vectors of Rn such
that R D ŒA;B;C"ŒAt;Bt;Ct"t D AAt C BBt C CCt is a correlation matrix. Let
Y D .U;V;W/ be uniformly distributed on the unit sphere S2 ' R3 and let ! be
the distribution of X D AU C BV C CW in Rn. Then R.!/ D R and the marginal
distributions of ! are #1, the uniform distribution in ."1; 1/.
Proof From Archimedes Theorem, U;V and W have distribution #1. Further-
more, since the distribution of .U;V/ is invariant by rotation, then .U;V/ #
.D cos‚;D sin‚/ where D D

p
U2 C V2 is independent of ‚ uniform on the

circle. This implies that E.UV/ D 0. Since E.U2/ D 1=3 the covariance matrix
of .U;V;W/ is I3=3. From this remark, and using the fact that AU C BV C CW is
centered, the covariance matrix of AU C BV C CW is

E..AU C BV C CW/.AU C BV C CW/t/ D R=3

and this proves R.!/ D R. Finally, using the representation (4) of the matrix
ŒA;B;C" and denoting vi D .ai; bi; ci/ we see that the component Xi of AU C BV C
CW is aiU C biV C ciW D hvi;Yi. Since kvik2 D 1 the random variable Xi is
the orthogonal projection of Y on Rvi and is uniform on ("1; 1) from Archimedes
Theorem.!
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Comments: The above proposition finishes the proof of the fact that for n ! 9,
and if R is an extreme point of Rn then it is the correlation of some copula. From
Proposition 3 this completes the proof that any R 2 Rn is the correlation of a copula
for n ! 9. The fact that this result can be extended to n $ 10 is doubtful, since
there are R 2 R10 of the form AAt C BBt CCCt CDDt where A;B;C;D 2 R10 and
the technique of the proof of Proposition 6 seems to indicate that it is impossible. A
similar phenomenon seems to occur if we want to construct a distribution ! in R6
such that R.!/ has rank 3 and such that the margins of ! are ˇ1=2;1=2.

Accordingly, we conjecture the existence of R 2 R10 which cannot be the
correlation of a copula, and we conjecture the existence of R 2 R6 which cannot be
the correlation of a distribution whose margins are the arsine distribution.

6 Gaussian Copulas

In this section, we explore the simplest idea for building a copula on Œ0; 1"n with
a non trivial variance: select a Gaussian random variable .X1; : : : ;Xn/ # N.0;R/
where R 2 Rn, introduce the distribution function

ˆ.x/ D 1p
2&

Z x

!1
e!t2=2dt

of N.0; 1/ and observe that the law ! of .U1; : : : ;Un/ D .ˆ.X1/; : : : ; ˆ.Xn// is a
copula. A!which can be obtained in that way is called a Gaussian copula. However
its correlation R# D R.!/ is not equal to R except in trivial cases.

Therefore this section considers the map from Rn to itself defined by R 7! R#.
This map is not surjective: in particular, in comments following Proposition 7 we
exhibit a correlation matrix which cannot be the correlation of a Gaussian copula.
First we compute R# by brute force (Proposition 7), getting a result of [2]. We
make also two remarks about the expectation of f1.X/f2.Y/ when .X;Y/ is centered
Gaussian (Propositions 8 and 9). Proposition 10 leads to a more elegant proof of
Proposition 7 by using Hermite polynomials.

Proposition 7 Let R D .rij/1"i;j"n be a correlation matrix, let

.X1; : : : ;Xn/ # N.0;R/

and let ! be the law of .U1; : : : ;Un/ D .ˆ.X1/; : : : ; ˆ.Xn//. Then

R.!/ D R# D .g.rij//1"i;j"n
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where

g.r/ D 6

&
arcsin

r
2
: (5)

Proof We begin with a standard calculation. We start with .X;Y/ centered Gaussian
with covariance

†r D
#
1 r
r 1

$
: (6)

We now compute the quadruple integral

f .r/ D E.ˆ.X/ˆ.Y// D
Z

R4
e! 1

2 .u
2Cv2C 1

1!r2
.x2!2rxyCy2//1u<x;v<y

dxdydudv

.2&/2
p
1 " r2

:

Performing the change of variables .x; y; u; v/ 7! .x; y; x" u; y" v/ D .x; y; t; s/ we
get

f .r/ D 1p
4 " r2

Z 1

0

Z 1

0

e! 1
2 .t

2Cs2/g.r; t; s/
dtds
2&

with

g.r; t; s/ D
r
4" r2

1 " r2

Z

R2
e
xtCys! 1

2.1!r2/
..2!r2/x2!2rxyC.2!r2/y2/ dxdy

2&
:

Consider

A D 1

1 " r2

#
2 " r2 "r

"r 2 " r2

$
; B D 1

4 " r2

#
2 " r2 r

r 2 " r2

$
:

Then B D A!1, detA D 4!r2

1!r2 and detB D 1!r2

4!r2 . Therefore g.r; t; s/ is the Laplace
transform of a centered random Gaussian random variable with covariance matrix
B. We get

g.r; t; s/ D e
1

2.4!r2/
..2!r2/t2C2rtsC.2!r2/s2/

and therefore

f .r/ D 1p
4 " r2

Z 1

0

Z 1

0

e
! 1
2.4!r2/

.2t2!2rtsC2s2/ dtds
2&

:

Now we use the fact that if .T; S/ is a Gaussian centered random variable with
correlation coefficient cos˛ with 0 < ˛ < & then Pr.T > 0; S > 0/ is explicit. For
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computing it, just introduce S0 # N.0; 1/ independent of T observe that .T; S/ #
.T;T cos˛ C S0 sin ˛/ and finally write .T; S0/ D .D cos‚;D sin‚/ where D > 0
and‚ are independent and where ‚ is uniform on .0; 2&/. This leads to

Pr.T > 0; S > 0/ D Pr.cos‚ > 0; cos.‚ " ˛/ > 0/ D & " ˛
2&

:

We apply this principle to the above integral which can be seen as

Pr.T > 0; S > 0/ D f .r/

when .T; S/ # N.0;
#
2 r
r 2

$
/. The correlation coefficient of .T; S/ is here cos˛ D r

2

and we finally get

f .r/ D 1

2&
.& " arg cos

r
2
/ D 1

2
" 1

2&
arg cos

r
2
:

Now we consider the function

g.r/ D 12E..ˆ.X/" 1=2/.ˆ.Y/" 1=2// D 12f .r/" 3 D 6

&
arg sin

r
2

and the function T.x/ D 2
p
3.ˆ.x/ " 1=2/. Thus the random variables T.X/ and

T.Y/ are uniform on ."
p
3;
p
3/ with mean 0, variance 1 and correlation g.r/. This

implies that the correlation between ˆ.X/ and ˆ.Y/ is g.r/. Coming back to the
initial .X1; : : : ;Xn/ the correlation between ˆ.Xi/ and ˆ.Xj/ is g.r/.!
Comments: The function g is odd and increasing since g0.r/ D 6

&
p
4!r2

. Thus we

have jg.r/j < r < 1. It satisfies g.0/ D 0, g.˙1/ D ˙1, g0.0/ D 3
&
and g0.1/ D

2
p
3

&
. Finally for "1 < + < 1 we have

+ D g.r/, r D 2 sin
&+

6
:

Calculation shows that for "1 < + < 1 we have 0 ! j2 sin &+
6

" +j ! 0:0180 : : :
therefore the two functions are quite close. It is useful to picture g and its inverse
function in Fig. 3. Observe also that if + D "1=2 we get

r D "2 sin &
12

D "
p
3 " 1p
2

D "0:51 : : : < "1=2:

An important consequence is the fact that since r < "1=2 the matrix R.r; r; r/
of (2) is not a correlation matrix and therefore the correlation matrix R." 1

2
;" 1

2
;" 1

2
/

cannot be the correlation matrix of a Gaussian copula. Falk [2] makes essentially a
similar observation.
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Fig. 3 Graphs of + D g.r/ D 6
&
arg sin r

2
and r D g!1.+/ D 2 sin &+

6

In the sequel, we proceed to a more general study of the correlation between
f1.Y1/ and f2.Y2/when .Y1;Y2/ # N.0;†r/ as defined in (6).We thank Ivan Nourdin
for a shorter proof of the following proposition:

Proposition 8 Given any r 2 Œ"1; 1" consider the Gaussian random variable
.Y1;Y2/ # N.0;†r/. Consider two probabilities #1 and #2 on R with respective
distribution functions G1 and G2. Then the correlation of G1.Y1/ and G2.Y2/ is a
continuous increasing function of r.

Proof We use the fact that if f 2 C2.R2/ then

d
dr

E. f .Y1;Y2// D E. @2

@y1@y2
f .Y1;Y2// (7)

To see this recall that if X # N.0; 1/ then an integration by parts gives

E.X'.X// D E.' 0.X//: (8)
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Writing Y2 D rY1 C
p
1 " r2Y3 where Y1 and Y3 are independent N.0; 1/ we get

d
dr

E. f .Y1;Y2// D E..Y1 " rp
1 " r2

Y3/
@

@y2
f .Y1;Y2// (9)

D E.Y1
@

@y2
f .Y1;Y2// " rp

1 " r2
E.Y3

@

@y2
f .Y1;Y2//

D E.Y1
@

@y2
f .Y1;Y2// " rE. @

2

@y22
f .Y1;Y2// (10)

D E.
@2

@y1@y2
f .Y1;Y2// (11)

In this sequence of equalities (9) is derivation inside an integral, (10) is the
application of (8) to '.Y3/ D @

@y2
f .Y1; rY1C

p
1 " r2Y3// and (11) is the application

of (8) to '.Y1/ D @
@y2

f .Y1; rY1 C
p
1 " r2Y3// which satisfies

' 0.Y1/ D
@2

@y1@y2
f .Y1;Y2/C r

@2

@y22
f .Y1;Y2/:

The application of (7) to the proof of Proposition 1 is clear: if G1 andG2 are smooth
enough, we take f .y1; y2/ as G1.y1/G2.y2/. If not we use an approximation.!.
Corollary 2 Given two probability distributions !1 and !2 on the real line having
second moments with respective distribution functions F1 and F2. Given any
r 2 Œ"1; 1" consider the Gaussian random variable .Y1;Y2/ # N.0;†r/. Then
.X1;X2/ D F!1

1 .ˆ.Y1//;F
!1
1 .ˆ.Y2// has a correlation

+ D g!1;!2 .r/

which is a continuous increasing function on Œ"1; 1". In particular if g!1;!2 ."1/ D a
and g!1;!2 .1/ D b and if a ! + ! b there exists a unique r D f!1;!2 .+/ 2 Œ"1; 1"
such that .X1;X2/ has correlation +.

Proposition 9 Let .X;Y/ be a centered Gaussian variable of R2 with covariance
matrix †r and let f W R ! R be a function such that E. f .X// D 0 and E. f .X/2/ D
1. Then E. f .X/f .Y// D r for all "1 ! r ! 1 if and only if f .x/ D ˙x.

Proof Write r D cos˛ with 0 ! ˛ ! & . If X;Z are independent centered real
Gaussian random variables with variance 1, then Y D X cos˛ C Z sin˛ is centered
with variance 1, .X;Y/ is Gaussian and E.XY/ D cos˛. Therefore we rewrite this as

cos˛ D
Z

R2
f .x/f .x cos˛ C z sin ˛/e! 1

2 .x
2Cz2/ dxdz

2&
(12)

rangle D
Z 1

0

+e! +2

2

%
1

2&

Z &

!&
f .+ cos (/f .+ cos.˛ " (//d(

&
d+ (13)
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where we have used polar coordinates x D + cos ( and z D + sin ( for the second
equality. This equality is established for 0 ! ˛ ! & but it is still correct when we
change ˛ into "˛. Now we introduce the Fourier coefficients for n in the set Z of
relative integers:

Ofn.+/ D
1

2&

Z &

!&
f .+ cos (/e!in(d(:

Since f is real we have the Hermitian symmetry Of!n.+/ D Ofn.+/. Expanding the
periodic function (13) in Fourier series and considering the Fourier coefficients of
˛ 7! cos˛ we get for n ¤ ˙1

Z 1

0

+e! +2

2 Of 2n .+/d+ D 0 (14)

and
R1
0 +e! +2

2 Of 2˙1.+/d+ D 1
2
. Hermitian symmetry implies that Of 20 .+/ is real and

since
R1
0 +e! +2

2 Of 20 .+/d+ D 0 we get that Of 20 .+/ D 0 for almost all + > 0. This is
saying that for almost all + > 0 we have

Z &

!&
f .+ cos (/d( D 0: (15)

Since ( 7! f .+ cos (/ is a real even function we have

f .+ cos (/ #
1X

nD1
an.+/ cos n(

and the real number an.+/ is equal to 2Ofn.+/ and to 2Of!n.+/ which are therefore real
numbers. Using (14) they are zero for all n ¤ ˙1 and we get almost everywhere
that f .+ cos (/ D a1.+/ cos ( or f .+u/ D a1.+/u for all "1 ! u ! 1. To conclude
we write

a1.+/u D f .+u/ D f .+1
+

+1
u/ D a1.+1/

+

+1
u

where u is small enough such that j +
+1
uj ! 1. This implies a1.+/

+
D a1.+1/

+1
which is

a constant c by the principle of separation of variables. Therefore f .x/ D cx almost
everywhere and E. f .X/2/ D 1 implies that c D ˙1.!

For computing expressions like E. f1.Y1/f2.Y2// when .Y1;Y2/ # N.0;†r/ we
use the classical fact below:

Proposition 10 Let .Y1;Y2/ # N.0;†r/. Let f1 and f2 be real measurable functions
such that E. fi.Yi/2/ is finite for i D 1; 2. Consider the Hermite polynomials .Hk/

1
kD0
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defined by the generating function

ext!
t2
2 D

1X

kD0
Hk.x/

tk

kŠ

and the expansions

f1.x/ D
1X

kD1
ak
Hk.x/p

kŠ
; f2.x/ D

1X

kD1
bk
Hk.x/p

kŠ
:

Then for all "1 ! r ! 1

E. f1.Y1/f2.Y2// D
1X

kD1
akbkrk:

Proof Let us compute

E.eY1 t! t2
2 eY2s!

s2
2 / D

1X

kD0

1X

mD0

tk

kŠ
sm

mŠ
E.Hk.Y1/Hm.Y2//:

For this, we use the usual procedure and first write r D cos ( with 0 ! ( ! & .
If Y1;Y3 are independent centered real Gaussian random variables with variance 1,
then Y2 D Y1 cos ( C Y3 sin ( is centered with variance 1, .Y1;Y2/ is Gaussian and
E.Y1Y2/ D cos ( . Furthermore a simple calculation using the definition of Y2 gives

E.eY1 t! t2
2 eY2 s!

s2
2 / D ets cos (

This shows that E.Hk.Y1/Hm.Y2// D 0 if k ¤ m and that E.Hk.Y1/Hk.Y2// D
kŠ cosk ( . From this we get the result.!
Corollary 3 Let pn $ 0 such that

P1
nD1 pn D 1 and consider the generating func-

tion g.r/ D P1
nD1 pnr

n. Let R D .rij/1"i;j"d in Rn. Then R# D .g.rij//1"i;j"d is the
covariance matrix of the random variable . f .X1/; : : : ; f .Xd// where .X1; : : : ;Xd/ is
centered Gaussian with covariance R and where

f .x/ D
1X

nD1
-n
p
pn

Hn.x/p
nŠ

with fixed -n D ˙1.
Example We have seen an example of such a function f with f .x/ D T.x/ D
2
p
3.ˆ.x/ " 1=2/ and

g.r/ D 6

&
arg sin

r
2
D 3

&

1X

nD0
.
1

2
/n

1

4nnŠ
r2nC1

2nC 1
:
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Thus p2nC1 D 3
&
. 1
2
/n

1
4nnŠ

1
2nC1 and p2n D 0. For computing -n we have really to

compute

-n

p
pnp
nŠ

D E.T.X/
Hn.X/
nŠ

/

For this we watch the coefficient of tn in the power expansion of

E.T.X/eXt! t2
2 /

For this we need

E.ˆ.X/eXt! t2
2 / D 1 "ˆ." tp

2
/ D 1

2
C 1

2
p
&

1X

nD0

."1/n
4nnŠ

t2nC1

2nC 1

E.T.X/eXt! t2
2 / D

r
3

&

1X

nD0

."1/n
4nnŠ

t2nC1

2nC 1

Therefore

-2nC1

p
p2nC1p

.2nC 1/Š
D
r
3

&

."1/n
4nnŠ

1

2nC 1

which shows that -2nC1 D ."1/n.
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