
The expected bit complexity of the von Neumann

rejection algorithm

Luc Devroye∗and Claude Gravel†

March 10, 2016

Abstract

In 1952, von Neumann introduced the rejection method for random variate gen-

eration. We revisit this algorithm when we have a source of perfect bits at our

disposal. In this random bit model, there are universal lower bounds for generating

a random variate with a given density to within an accuracy ϵ derived by Knuth and

Yao, and refined by the authors. In general, von Neumann’s method fails in this

model. We propose a modification that insures proper behavior for all Riemann-

integrable densities on compact sets, and show that the expected number of random

bits needed behaves optimally with respect to universal lower bounds. In particular,

we introduce the notion of an oracle that evaluates the supremum and infimum of

a function on any rectangle of Rd, and develop a quadtree-style extension of the

classical rejection method.

Keywords: random number generation, random bit model, von Neumann sam-

pling algorithm, tree-based algorithms, random sampling, entropy

AMS subject classifications: 65C10 Random number generation, 68Q25

Analysis of algorithms and problem complexity, 68Q30 Algorithmic information the-

ory, 68Q87 Probability in computer science (algorithm analysis, random structures,

phase transitions, etc.), 68W20 Randomized algorithms, 68W40 Analysis of algo-

rithms

1 Introduction

The purpose of this paper is to discuss von Neumann’s [10] rejection method to generate

a random variable X under the random bit model. In this model, we have access to

∗School of Computer Science, McGill University, Canada
†Department of Computer Science and Operations Research, Université de Montréal, Canada

1

an infinite sequence of independent random Bernoulli(1/2) bits, and are interested in

the complexity as measured by the number of bits used until halting. For integer-value

random variables X, the entire story is known. Knuth and Yao [9] obtained lower bounds

on the expected number of bits for the exact simulation of X, and exhibited optimal

algorithms. On the other hand, for random variables X with a density on Rd, no exact

algorithm exists, since any output of an algorithm delivers a function of a (possibly

random) number of random bits. Thus, it is necessary to introduce the notion of an

ϵ-approximation (see section 3) using Wasserstein L∞-distance (Devroye and Gravel [4]

and Rachev and Rüschendorf [11]).

A naive application of the rejection method—one of the most often used methods in

simulation—leads to errors and inconsistencies. To deal with this, we introduce the notion

of an oracle that computes the supremum and infimum of a function over any rectangles

of Rd (see section 4). The oracle can be used in conjunction with a quadtree partition of

the space to design a rejection algorithm that is guaranteed to deliver an ϵ-approximation

(sections 4 and 5). We show that is valid whenever f is Riemann-integrable and derive

expected complexity bounds (in terms of the number of random bits consumed) that are

close to the universal lower bounds of [4].

We believe that random number generation libraries should offer the possibility of

specifying any ϵ—no matter how small—as an input. Current practice entirely disregards

the effects of approximations. In this paper and a companion paper [4], we take a first

small step towards this goal. Applications in physics (see [8] who requires and develops

ϵ-accurate normal generators), quantum computing (see Brassard, Devroye, and Gravel

[6]), and other areas of science demand very precise computations. Much more is needed of

course, especially when many random variables are combined in scientific computation—

how does an ϵ-approximation propagate through a system, for example?

2 The discrete case

Consider two probability vectors (pi)i∈Z, and (qi)i∈Z, where

sup
i∈Z

pi
qi
≤ C

for a finite constant C. Then von Neumann’s rejection method can be reformulated as

follows, if C is explicitly known:

The algorithm is at the beginning of the next page.

2

Algorithm 1 Von Neumann’s method for discrete distributions in the random bit model

1: repeat

2: Generate X according to (q1, q2, . . .). {In the random bit model, the Knuth-Yao or

Han-Hoshi algorithm can be used here to generate X.}
3: Generate U uniformly on [0, 1].

4: if UCqX ≤ pX then

5: return X {Exit}
6: end if

7: end repeat

The expected number of iterations in this algorithm is C. The returned random

variable, X, has distribution (pi)i∈Z. Knuth and Yao [9] showed that to generate X, the

expected number of random bits required by any algorithm is at least the entropy of X,

E(X)
def
=
∑
i∈Z

qi log2

(
1

qi

)
.

They also exhibited an algorithm that requires an expected number of bits not exceeding

E(X) + 2. Note that given X, the decision

UCqX ≤ pX

can be made using 2 expected random bits because to decide U ≤ pX/CqX given X

follows a geometric law with parameter 1/2; we compare the ith bit of U with the ith bit

of pX/CqX until both don’t agree for integers i > 0 (see, e.g., Devroye and Gravel [4]).

The expected number of random bits needed by this implementation is not more than

C
(
E(X) + 2

)
.

This is usually quite far from the lower bound of Knuth and Yao,
∑

i∈Z pi log2
1
pi
. It is

worth to mention an application of the rejection method in the bit model to the sim-

ulation of physical phenomena and to communication complexity in Brassard, Devroye,

and Gravel [6]. The remainder of the paper is concerned with the case in which X has

a density f . Since such X cannot be generated exactly by any algorithm, it has to be

approximated in some manner by a discrete random variable, and thus we require an

appropriate—and as it turns out, nontrivial—generalization of Algorithm 1.

3 Bisection algorithm

The building block for continuous random generation is the bisection algorithm, which is

mathematically equivalent to an algorithm given in Devroye and Gravel [4]. We develop

3

a version here that is convenient for later use. The analysis of Theorem 1 below is new.

Consider an algorithm for generating a random variable X with density f on Rd that

has the following property: for a given ϵ > 0, it outputs a random variable Xϵ ∈ Rd—an

ϵ-approximation of X—such that there exists a coupling of (X,Xϵ) with

ess sup ∥X −Xϵ∥ ≤ ϵ,

where ∥·∥ is the L∞-distance in Rd. It is understood that necessarily, Xϵ is discret since it

is a function of a (random) finite number of random bits. We call Xϵ an ϵ-approximation

of X.

Devroye and Gravel [4] showed that if Tϵ is the random number of bits needed by any

algorithm for generating such an approximation Xϵ, then

E(Tϵ) ≥ E(f) + d log2

(
1

ϵ

)
− d, (1)

where E(f) is the differential entropy of f ,

E(f) =
∫

f log2

(
1

f

)
.

The lower bound is valid under a technical condition known as Rényi’s condition (see

Rényi [12] and Csiszàr [2]), namely that the entropy of the discrete random variable ⌊X⌋,
which takes values on the grid of all integer-valued vectors of Rd, be finite. The lower

bound (1) serves as a guide to calibrate and compare the rejection algorithms presented

in this paper. It is especially crucial to match its main term, d log2
(
1
ϵ

)
, without an extra

multiplicative constant.

We require an auxiliary set of results on bisection algorithms for generating a random

variate that is an ϵ-approximation of a random variable X with a continuous (not neces-

sarily absolutely continuous) distribution function G on a compact interval [a, b] of length

L
def
= |b− a|. The bisection Algorithm 2 assumes that we have access to both G and G−1.

The algorithm is at the beginning of the next page.

4

Algorithm 2 The bisection algorithm in the random bit model (Devroye and Gravel [4])

1: J ← [G(a), G(b)] = [0, 1]

2: repeat

3: if |I| def= b− a ≤ 2ϵ then

4: Xϵ ← a+b
2

5: return Xϵ {Exit}
6: else

7: B ← random unbiased bit.

8: z ← G−1
(

G(a)+G(b)
2

)
.

9: if B = 0 then

10: I ← [a, z]

11: J ←
[
G(a), G(a)+G(b)

2

]
=
[
G(a), G(z)

]
12: else

13: I ← [z, b]

14: J ←
[
G(a)+G(b)

2 , G(b)
]
=
[
G(z), G(b)

]
15: end if

16: end if

17: end repeat

Theorem 1. For the bisection Algorithm 2 applied to any distribution with support on

an interval of length L, and halted as soon as an interval of length less than or equal to

2ϵ is reached, we have

(i) If Xϵ denotes the center of the halting interval, then there exists a coupling between

X and Xϵ such that ∥X −Xϵ∥ ≤ ϵ.

(ii) If Tϵ denotes the number of bits used, then

E(Tϵ) ≤ 3 + log+2

(
L

2ϵ

)
,

where log+2 (x) = max{0, log2(x)}.

Remark 1. We note here that in general this bound cannot be improved by more than

3 bits. Just consider the uniform distribution on [0, L]. Since all intervals have length to
L
2i after i were used, we have

Tϵ = min

{
i ≥ 0 :

L

2i
≤ 2ϵ

}
= max

{
0,

⌈
log2

L

2ϵ

⌉}
.

5

Proof of Theorem 1. The bisection method yields, very naturally, a full binary tree, i.e.,

one in which all internal nodes have two children. Each internal node corresponds to a

subinterval of [a, b] of length greater than 2ϵ, the root represents the original interval [a, b]

of length L, and leaves represent intervals of length less than or equal to 2ϵ that cause an

exit.

Upon exit, the random variable Xϵ can be coupled with X such that ∥X −Xϵ∥ ≤ ϵ,

because at every iteration, the random binary choice picks the correct interval, [a, z] or

[z, b], with the correct probability 1/2. One could thus define X as the limit of I when

the algorithm is run without halting. Since Xϵ is the midpoint of an interval of length at

most 2ϵ that also contains X, we must have ∥X −Xϵ∥ ≤ ϵ. This shows part (i).

To prove part (ii), let us denote the set of leaves by L, and the set of internal nodes

(i.e., all non-leaf nodes) by I. The depth of node u is denoted by d(u). It is of course

possible that I and L are both infinite. However, one has that in all cases,∑
u∈L

1

2d(u)
≤ 1,

because the leaves form a non-overlapping covering of [a, b] so that the bisection method—

a random walk started at the root and halted when a leaf is reached—always stops. Also,

E(Tϵ) =
∑
u∈L

d(u)

2d(u)
.

In the next chain of inequalities, we define

Nℓ =
∑
v∈I

1{d(v)=ℓ}, ℓ ≥ 0,

i.e., the number of internal nodes at depth ℓ in the tree. Using Kraft’s inequality (see,

e.g., Cover and Thomas [1]), which states that for any binary tree,∑
u∈L

1

2d(u)
≤ 1,

we have, with A(u) denoting the set of ancestors u and D(v) denoting the set of descen-

dants of v, that, since d(u) =
∑

1{v ∈ A(u) \ {u}},

E(Tϵ) =
∑
u∈L

∑
v∈A(u)

v ̸=u

1

2d(v)
1

2d(u)−d(v)

=
∑
v∈I

1

2d(v)

∑
u∈D(v)

u∈L

1

2d(u)−d(v)

6

≤
∑
v∈I

1

2d(v)
(by Kraft’s inequality)

=

∞∑
ℓ=0

Nℓ

2ℓ
.

Observe that at depth ℓ, all intervals associated with nodes are disjoint, and thus, since

each interval node corresponds to an interval strictly larger than 2ϵ,

Nℓ <
L

2ϵ
.

Also, Nℓ ≤ 2ℓ because we have a binary tree. Hence,

Nℓ ≤ min
{
⌊L/2ϵ⌋, 2ℓ

}
.

We deduce, using

ℓ0 = max

{
0,

⌈
log2

L

2ϵ

⌉}
,

that

∞∑
ℓ=0

Nℓ

2ℓ
≤

ℓ0∑
ℓ=0

1 +
∞∑

ℓ=ℓ0+1

⌊
L

2ϵ

⌋
1

2ℓ

= ℓ0 + 1 +

⌊
L

2ϵ

⌋
1

2ℓ0

≤ log+2

(
L

2ϵ

)
+ 3.

To see this, treat the cases L < 2ϵ and L ≥ 2ϵ separately.

4 A rejection algorithm for densities with compact

support

In this section, we assume that f is Riemann-integrable and supported on [0, 1]d. Note

that this is equivalent to the assumption that f is almost-everywhere continuous, bounded,

and supported on [0, 1]d. Our algorithm requires an oracle—a black box—that for any

closed rectangle R ⊆ Rd gives

sup
x∈R

f(x) and inf
x∈R

f(x).

If R = {x}, then that oracle coincides with a standard function evaluation. Without the

possibility of computing infimum and supremum of the density f over compact subinter-

vals of the domain of f , sampling absolutely continuous distribution using the rejection

7

method seems to be impossible in total generality. We will also track complexity in terms

of the number of uses of the oracle before halting, and call it Tϵ. One use of the oracle

reveals

C
def
= sup

x∈[0,1]d
f(x),

which is a finite number by assumption (Riemann-integrable functions are bounded by

definition). At once, we have a simple bound for applying the rejection method: f(x) ≤ C.

Algorithm 3 shows the original algorithm by von Neumann [10] (see also Devroye [3]) of

the standard rejection algorithm.

Algorithm 3 Von Neumann’s original rejection algorithm

1: repeat

2: Generate X uniformly on [0, 1]d.

3: Generate U uniformly on [0, 1].

4: if UC ≤ f(X) then

5: return X

6: end if

7: end repeat

Since we cannot generate X and U with infinite precision, at least two modifications

are needed. One modification is to take into account the precision ϵ desired for X, and

another modification is to take into account that bits of U are generated sequentially.

Appendix B, which is in this article for pedagogical purpose, gives more insights on

wrong and naive modifications that someone could be tempted to do. We can consider

the initial rectangle

R0 = [0, 1]d × [0, C],

and its 2d+1 child rectangles defined by the 2d+1 quadrants centered at the center x0 of

R0:

x0 =
(1
2
,
1

2
, . . . ,

1

2
,
C

2

)
.

In the data structure literature, such a partition, when applied recursively, leads to a

quadtree (see, e.g., Samet [13]). Any subsequent rectangle can be split again about its

center point, and so forth, in the manner of infinite quadtree Q on R0 ⊆ Rd as illustrated

by Figures 1 and 2.

The figures are at the beginning of the next page.

8

2 3

4

1

7

18

19

10

11

12 13

8

9

14

15

16 17

5 6

0 1

0

C

Figure 1: Decomposition of [0, 1]× [0, C] into its quadtree tree structure.

1312111014158916177

65

1918

432

1

Figure 2: Quadtree for decomposition on Figure 1.

In von Neumann’s algorithm, deciding if UC ≤ f(X) for (X,U) ∈ R0 is equivalent to

finding a rectangle R in the quadtree Q with the property that either

R ⊆
{
(x, y) ∈ R0 : y ≤ f(x)

}
(we accept since UC ≤ f(X))

or

R ⊆
{
(x, y) ∈ R0 : y > f(x)

}
(we reject since UC > f(X)).

9

However, this must be done carefully, without overlapping rectangles. Thus, we must

trim Q, and associate the exiting rectangles R with the leaves. Thus,{
(x, y) ∈ R0 : y ≤ f(x)

}
=
∪
{R : R is an accepting rectangle}, (2)

and {
(x, y) ∈ R0 : y > f(x)

}
=
∪
{R : R is a rejecting rectangle}. (3)

Below, we will see that Riemann-integrability of f suffices for this decomposition.

When a rejecting rectangle is found, the procedure is repeated. When an accepting

rectangle is found, say,
d∏

i=1

[ai, bi]× [α, β],

it suffices to generate Xϵ ∈
∏d

i=1 [ai, bi] such that

∥X⋆ −Xϵ∥ ≤ ϵ (4)

where X⋆ is uniform on
∏d

i=1 [ai, bi] and coupled with Xϵ. It is easy to see by the triangle

inequality that Xϵ is then coupled with X having density f such that

∥X −Xϵ∥ ≤ ϵ.

To achieve (4), use bisection for each dimension separately. By Theorem 1, the expected

number of bits needed is bounded by

3 +

d∑
i=1

log+2

(
bi − ai

ϵ

)
= 3 +

d∑
i=1

bi−ai>ϵ

log2

(
bi − ai

ϵ

)

≤ 3 + d log2

(
1

ϵ

)
for ϵ ≤ 1. If ϵ > 1, then bisection requires no bit, so that we conclude that the expected

number of bits does not exceed

3 + d log+2

(
1

ϵ

)
.

We note that the checks

R ⊆ {(x, y) ∈ Rd × R : f(x) ≤ y} (5)

and

R ⊆ {(x, y) ∈ Rd × R : f(x) > y} (6)

10

can be carried out using our oracle. Let

f+ = sup
{
f(x) : (x, y) ∈ R for some y

}
,

f− = inf
{
f(x) : (x, y) ∈ R for some y

}
,

y− = inf{y : (x, y) ∈ R for some x
}
,

y+ = sup{y : (x, y) ∈ R for some x
}
.

Then (5) holds if f+ ≤ y−, and (6) holds if f− ≥ y+.

Algorithm 4 Generation of an ϵ-approximate random variable with density on [0, 1]d

1: R← [0, 1]d ×
[
0, supx∈[0,1]d f(x)

]
2: Decision← None

3: repeat

4: Call the oracle that returns infx∈R⋆ f(x) and supx∈R⋆ f(x) which are in turn used

by the following branching statement. {Here and below R⋆ denotes the projection

of R onto Rd, i.e., R⋆ = {x : (x, y) ∈ R for some y}.}
5: if R ⊆ {(x, y) ∈ Rd × R : f(x) ≤ y} then
6: Decision← Accept

7: else if R ⊆ {(x, y) ∈ Rd × R : f(x) > y} then
8: Decision← Reject

9: else

10: x⋆ ← center of R

11: Select one vertex v of R uniformly at random and replace R by the rectangle

with v and x⋆ as opposing vertices.

12: end if

13: until Decision ̸= None

14: if Decision = Reject then

15: Goto line (1) {Restart the algorithm an average of supx∈[0,1]d f(x) times.}
16: else

17: Use bisection to generate an ϵ-approximation Xϵ of a uniform variable in R⋆.

18: return Xϵ

19: end if

Theorem 2. Let f be a Riemann-integrable density on [0, 1]d. Then the quadtree Q

partitions R0
def
= [0, 1]d × [0, sup f] in a collection of leaf rectangles R for which (2) and

(3) hold. Thus, Algorithm 4 halts with probability one and delivers an ϵ-approxiation Xϵ

of X, a random variable with density f .

11

Proof of Theorem 2. Let T be the number of iterations of the algorithm before halting.

In other words, T is the depth of the leaf rectangle R reached by randomly walking down

the quadtree. That walk costs T (d+ 1) random bits. We show that

lim
k→∞

P{T > k} = 0,

and thus, (2) and (3) must hold. In the partition of R0 into 2(d+1)k level-k rectangles

(each of Lebesgue measure 1
2k

1
2k
· · · 1

2k
C
2k
), there areNk cells R—those for which we cannot

decide—that are “visited” by f , i.e. for which

sup
(x,y)∈R

f(x) ≥ inf{y : (x, y) ∈ R for some x}

and

inf
(x,y)∈R

f(x) ≤ sup{y : (x, y) ∈ R for some x}.

Then

P{T > k} = Nk

2(d+1)k
.

For every rectangle R, let us define its projection, R⋆, onto Rd, i.e.

R⋆ = {x : (x, y) ∈ R for some y}.

Then, for a fixed dimension, we can group the 2k cells R⋆ with the same projection

and verify that of these 2k cells, at most(
supx∈R⋆ f(x)− infx∈R⋆ f(x)

C

)
2k + 2

are visited by f . Since there are 2dk rectangles R⋆, let P⋆
k be the collection of all projec-

tions R⋆, and then

Nk ≤
∑

R⋆∈P⋆
k

((
supx∈R⋆ f(x)− infx∈R⋆ f(x)

C

)
2k + 2

)

=

(
I+ − I−

)
C

2(d+1)k + 2 · 2dk,

where we use the Riemann approximations I+ and I− of the integral of f :

I+k =
∑

R⋆∈P⋆
k

(
sup
x∈R⋆

f(x)
)
λ(R⋆),

I−k =
∑

R⋆∈P⋆
k

(
inf

x∈R⋆
f(x)

)
λ(R⋆),

12

λ(R⋆) = Lebesgue measure of R⋆ =
1

2dk
.

Therefore,

P{T > k} ≤ 2

2k
+

I+k − I−k
C

.

Since f is Riemann-integrable, this tends to 0 as k →∞.

We call f a monotone density on [0, 1]d if it decreases along at least one of the dimen-

sions, i.e., there exists i ∈ {1, . . . , d} such that for all vectors (x1, . . . , xi, . . . , xd) ∈ [0, 1]d,

(x1, . . . , x
′
i, . . . , xd) ∈ [0, 1]d, xi ≤ x′

i, then f(x1, . . . , xi, . . . , xd) ≥ f(x1, . . . , x
′
i, . . . , xd). As

before, let Nk be the number of cells at level k that are visited by f . Then,

Nk ≤ 2 · 2k · 2(d−1)k

because the domain of f is divided into 2dk cells and the 2k cells along the ith dimension

give rise to a walk. This walk along the ith is at most of length 2 · 2k as illustrated on

Figure 3.

We have

P{T > k} = Nk

2(d+1)k
≤ 2

2k
, k ≥ 0,

and thus,

E(T) =
∞∑
k=0

P{T > k} ≤ 4.

In other words, for monotone densities, the inner loop of the algorithm has a uniform

performance guarantee.

For a complete analysis of algorithm A, we need to consider the total number N of

trials before deciding. The number of uses of the oracle is given by

N∑
i=1

Ti,

where Ti is the number of iterations in the i-th trial—these Ti’s are i.i.d. The number of

random bits used is

(d+ 1)

N∑
i=1

Ti

during the first phase (the decision phase), and is bounded by

3 + d log+2

(
1

2ϵ

)

13

0 1

C

2
k
cells

2
k
c
e
ll
s

f

Figure 3: The number of cells visited by the monotone curve f is at most 2 · 2k cells.

in the second phase (the bisection phase). Since E(N) = C = supx∈[0,1]d f(x), we see

that the expected number of uses of the oracle is

CE(T)

and that the expected number of random bits required is bounded from above by

(d+ 1)CE(T) + 3 + d log+2

(
1

2ϵ

)
.

As noted earlier, for any coordinate-wise monotone density on [0, 1]d,

E(T) ≤ 4.

However, for general Riemann-integrable densities we cannot insure that E(T) converges.

We will address that point below.

14

Theorem 3. Let f be a Riemann-integrable density on [0, 1]d, with C
def
= supx∈[0,1]d f(x).

1. If f is monotone in at least one coordinate, then the expected number of uses of the

oracle is not more than

4C,

and the expected number of bits needed to generate an ϵ-approximation Xϵ is not

more than

4C(d+ 1) + 3 + d log+2

(
1

2ϵ

)
.

2. If I+k and I−k are the Riemann approximation of
∫
f for regular grids of size 2dk

i.e., each coordinate is split into 2k equal intervals, then the expected number of uses

of the oracle is not more than

4C +A(f),

where

A(f) def
=

∞∑
k=0

(
I+k − I−k

)
,

and the expected number of random bits used by Algorithm 4 is not more than

4C(d+ 1) + (d+ 1)A(f) + 3 + d log+2

(
1

2ϵ

)
.

Proof of Theorem 3. Just recall the estimates of E(T) obtained above and recall the upper

bound P{T > k} in terms of I+k − I−k .

Remark 2. Part (2) of the Theorem 3 is only useful if A(f) < ∞. For most densities,

A(f) < ∞, as can be seen from this simple sufficient condition. Let the modulus of

continuity be

ω(δ) = sup
∥x−y∥≤δ

|f(x)− f(y)|, δ > 0.

We have A(f) <∞ if

∞∑
k=0

ω

(√
d

2k

)
<∞

because

I+k − I−k =
1

2dk

∑
R⋆∈P⋆

k

(
sup
x∈R⋆

f(x)− inf
x∈R⋆

f(x)

)

≤ 1

2dk

∑
R⋆∈P⋆

k

sup
x,x′∈R⋆

|f(x)− f(x′)|

15

≤ ω

(√
d

2k

)
.

It suffices that as δ ↓ 0, ω(δ) = O
(
1/log1+α(δ−1)

)
or ω(δ) = O(δα) for some α > 0.

Remark 3. The number of bits used by our algorithm behaves as d log+2
(
1
ϵ

)
+O(1) as

ϵ ↓ 0, and thus matches the lower bound mentioned earlier.

5 A rejection algorithm for densities with non-compact

support

In general, we use von Neumann’s rejection method when we know a density g for which

random variate generation is “easy”, and can verify that

sup
x∈R

f(x)

g(x)
= C <∞,

where C is a known constant:

Algorithm 5 General rejection algorithm

repeat

Generate X with density g

Generate U uniformly on [0, 1]

if Cg(X)U < f(X) then

return X {Exit: X is accepted}
end if

end repeat

The expected number of iterations of Algorithm 5 is C. We offer a generalization of

Algorithm 5 for this situation under a certain number of assumptions. Assume for now

that d = 1, and that we can compute both G and G−1, where G is the c.d.f. for g. Assume

furthermore that we have an oracle for

sup
x∈R

f(x)

g(x)
and inf

x∈R

f(x)

g(x)

for all intervals R of R. One may be able to work things out with oracles for sup f , inf f ,

sup g, and inf g as well but we opt to take the more convenient approach.

Define C = supx∈R
f(x)
g(x) , which is known thanks to our oracle. The goal is to decompose{

(x, y) : y ≤ f(x)
}
,

16

as before, into regions for which random variate generation is “easy”. For a bounded

density on [0, 1], we are content with the rectangles. This can be mimicked by transforming

the x-axis with

x 7→ G(x)

since G is monotone and continuous. Using this transformation, we note that if X has

density g, then G(X) is uniform on [0, 1]. Furthermore, note that if u = G(x), then

f ◦G−1(u)

g ◦G−1(u)
=

f(x)

g(x)

def
= f̃(u),

where f̃ is a density on [0, 1] on which we can use our sup-inf oracle. Since f̃ ≤ C, we can

use the quadtree method of Algorithm 4 to select a rectangle Ri with probability λ(Ri)

in the decomposition{
(u, v) : v ≤ f̃(u), u ∈ [0, 1]

}
=
∪
i∈N

{
Ri : Ri is an accepting rectangle

}
.

This decomposition is valid, and the procedure halts with probability one, if f̃ is Riemann-

integrable. Put differently, it works if

f̃(u) =
f ◦G−1(u)

g ◦G−1(u)
, 0 < u < 1,

is Riemann-integrable. The expected number of bits required in the decision phase of the

algorithm (selecting a leaf of the quadtree) is bounded as in Theorem 3, when applied to

f̃ . It is bounded by

∆
def
= 2

(
4C +

∞∑
k=0

(
I+k − I−k

))
,

where I+k and I−k are the Riemann approximation of
∫ 1

0
f̃(u)du for a grid of 2k equal

intervals that partition [0, 1].

We only need to analyze the second phase—the method to generate an ϵ-approximation

once a rectangle R has been selected, i.e., the method that starts by accepting rectangle

R = [u1, u2]× [v1, v2] ⊆ [0, 1]× [0, C] as illustrated by Figure 4 and outputs Xϵ such that

∥Xϵ −G−1(U)∥ ≤ ϵ where X, Xϵ are coupled and (U, V) is uniform in R. This can

be achieved by bisection, noting that G−1(U) has distribution function G restricted to

[G−1(u1), G
−1(u2)].

A figure illustrating the principle is at the beginning of the next page.

17

1

C

f̃

f

Cg

x 7−→ G(x) = u
y 7−→

y

g(x) = v

(x, y)

(u, v)

R

u1 u2u1+u2

2

v1

v2

50% 50%

G−1(u1) G−1(u2)
G−1

(

u1+u2

2

)

Q

Figure 4: An accepting uniform random rectangle R and the bisection of its back-

transformation Q: (u, v) ∈ R if and only if (x, y) ∈ Q.

Remark 4. Note that with x1 = G−1(u1) and x2 = G−1(u2), we have

λ(R) = (u2 − u1)(v2 − v1) =

∫ u2

u1

(v2 − v1)du =

∫ x2

x1

(v2 − v1)(g(x)dx) = λ(Q).

Also if (u, v) is such that v < f̃(u), then the corresponding (x, y) point is such that

y = vg(x) < f̃(u)g(x) =

(
f(x)

g(x)

)
g(x) = f(x),

and similarly for v > f̃(u).

The inversion Algorithm 6 of Devroye and Gravel [4], which is extension of a similar

method for the discrete case first proposed by Han and Hoshi [7] is summarized as follows:

The algorithm is at the beginning of the next page.

18

Algorithm 6 Inversion/Bisection

Input: u1, u2 such that u2 > u1 {u2 − u1 is the width of an accepting rectangle.}
1: x1 ← G−1(u1)

2: x2 ← G−1(u2)

3: repeat

4: if |x2 − x1| ≤ 2ϵ then

5: Xϵ ← x1+x2

2 {Midpoint}
6: return Xϵ

7: else

8: γ ← u1+u2

2

9: B ← random unbiased bit {To choose a random side.}
10: if B = 0 then

11: u2 ← γ

12: x2 ← G−1(u2)

13: else

14: u1 ← γ

15: x1 ← G−1(u1)

16: end if

17: end if

18: end repeat

This algorithm picks a uniform subinterval and, if permitted to run forever, would

produce a random variable with distribution function G restricted to [G−1(u1), G
−1(u2)]

as is illustrated in Figure 4. So, for random variate generation, we only replace line (17)

of Algorithm 4 by Algorithm 6 where [u1, u2] = R∗, and note that elsewhere in Algorithm

4, f must be replaced by f̃ .

Theorem 4. The expected number of bits used by Algorithm 6 is not more than

3 +
∑
j∈Z

F (Ij) log2

(
1

F (Ij)

)
,

where Ij = [2ϵj, 2ϵ(j + 1)), and F
(
[a, b)

) def
= F (b) − F (a). In particular, if that sum is

finite for ϵ = 1 and if
∫
f log2

(
1/f

)
> −∞, then, as ϵ ↓ 0, the expected number of bits

does not exceed

log2

(
1

ϵ

)
+

∫
f log2

(
1

ϵ

)
+ 5 + o(1).

Remark 5. Theorem 4 establishes that Algorithm 6 is optimal to within an additive

19

constant. In particular, its main term, log2
(
1/ϵ
)
, and second term, the differential entropy∫

f log2
(
1/f

)
, match the lower bound.

Remark 6. The expected number of bits required in the decision phase of the algorithm,

∆, is finite under smoothness conditions on f̃ . It depends also on C, but clearly not on ϵ.

Proof of Theorem 4. Let us denote an accepting rectangle Ri and its projection by R⋆
i .

So, if R⋆
i = [ui, vi], then Ri = [ui, vi] × [αi, αi + Cqi], where 0 ≤ αi ≤ αi + Cqi ≤ C,

qi ∈ [0, 1]. The probability mass of Ri is pi
def
= (vi − ui)Cqi.

By the mapping G−1, Ri gets mapped to a contiguous region Qi, of projection

Q⋆
i

def
= [ai, bi], with

ai = G−1(ui) , bi = G−1(vi),

and thus,

vi − ui =

∫ bi

ai

g = G(Q⋆
i) =

pi
Cqi

.

Here we use the notation G([ai, bi]) = G(bi)−G(ai). We also note that for all x,∑
i: x∈Q⋆

i

Cqig(x) = f(x).

Define a regular 2ϵ-grid on R with intervals I = [2ϵj, 2ϵ(j + 1)) for all j ∈ Z.
If we exit with rectangleRi, then the bisection phase of the algorithm takes an expected

number of bits bounded by

3 +
∑
j∈Z

ξji log2

(
1

ξji

)
,

where

ξji =
G
(
Ij ∩Q⋆

i

)
G(Q⋆

i)
, j ∈ Z

is a probability vector in j. This result is due to the observation that the bisection method

is equivalent to the algorithm analyzed by Devroye and Gravel [4] and Gravel [5] in the

context of the discrete distribution algorithm by Han and Hoshi [7]. Thus, the expected

number of bits, averaged over all Ri, is not more than

3 +
∑
i∈Z

pi
∑
j∈Z

ξji log2

(
1

ξji

)
. (7)

By the concavity of u log2
(
1/u
)
in u, we have by Jensen’s inequality that (7) is not more

than

3 +
∑
j∈Z

(∑
i∈Z

piξji

)
log2

(
1∑

i∈Z piξji

)
.

20

But

∑
i∈Z

piξji =
∑
i∈Z

pi
G
(
Ij ∩Q⋆

i

)
G(Q⋆

i)

=
∑
i∈Z

CqiG(Ij ∩Q⋆
i)

=
∑
i∈Z

Cqi

∫
Ij

1{x∈Q⋆
i }g(x)dx

=

∫
Ij

(∑
i∈Z

Cqi1{x∈Q⋆
i }

)
g(x)dx

=

∫
Ij

f(x)dx

def
= F (Ij),

where F is the distribution function of f , and F (Ij) = F (bj)−F (aj). Thus the expected

number of bits in the bisection phase does not exceed

3 +
∑
j∈Z

F (Ij) log2

(
1

F (Ij)

)
. (8)

In the last term, we recognize the entropy defined by the probability vector
(
F (Ij)

)
j∈Z.

A theorem due to Csiszár [2] established that if
(
F (Ij)

)
j∈Z has a finite entropy for

some ϵ > 0, and
∫
f log2

(
1/f

)
> −∞, then as ϵ ↓ 0,

(8) ≤
∫

f log2
1

f
+ log2

1

ϵ
+ 5 + o(1).

The “5” can be replaced by “3” if in addition f is bounded and decreasing on its support,

[0,∞) (see Gravel and Devroye [4]).

6 Conclusion and outlook

The extension of our results to dimensions greater than one for densities with unbounded

support should pose no big problems. With the oracles introduced in our modification of

von Neumann’s method, we believe that it is impossible to design a rejection algorithm for

densities that are not Riemann-integrable, so the question of the design of a universally

valid rejection algorithm under the random bit model remains open.

21

Acknowledgment

The authors would like to thank all three referees for their feedback. They are invited to

Luc’s house for drinks if they wish to come out of the closet. Luc Devroye’s research was

supported by an NSERC Discovery Grant. Claude Gravel thanks Gilles Brassard.

References

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New-

York, 1991.

[2] I. Csiszár, Some remarks on the dimension and entropy of random variables, Acta

Mathematica Academiae Scientiarum Hungarica, 12 (1961), pp. 399–408.

[3] L. Devroye, Non-Uniform Random Variate Generation, Springer, New York, 1986.

[4] L. Devroye and C. Gravel, Sampling with arbitrary precision, 2015. http:

//arxiv.org/abs/1502.02539.

[5] C. Gravel, Échantillonnage de distributions non uniformes en précision arbitraire

et protocoles d’échantillonnage exact distribué des distributions discrètes quantiques,

PhD thesis, Université de Montréal, 2015. https://papyrus.bib.umontreal.ca/

xmlui/handle/1866/12337.

[6] G. Brassard, L. Devroye and C. Gravel, Exact classical simulation of the

quantum-mechanical GHZ distribution, IEEE Transactions on Information Theory,

62 (2016), pp. 876–890.

[7] T. S. Han and M. Hoshi, Interval algorithm for random number generation, IEEE

Transactions on Information Theory, 43 (1997), pp. 599–611.

[8] C. F. F. Karney, Sampling exactly from the normal distribution, ACM Trans.

Math. Softw., 42 (2016), pp. 1–14.

[9] D. E. Knuth and A. C.-C. Yao, The complexity of nonuniform random number

generation, in Algorithms and Complexity: New Directions and Recent Results.,

J. F. Traub, ed., New York, 1976, Carnegie-Mellon University, Computer Science

Department, Academic Press, pp. 357–428. Reprinted in Knuth’s Selected Papers on

Analysis of Algorithms (CSLI, 2000).

[10] J. von Neumann, Various techniques used in connection with random digits. Monte

Carlo Methods, National Bureau of Standards, 12 (1951), pp. 36–38.

22

[11] S. T. Rachev and L. Rüschendorf, Mass Transportation Problems: Volume 1:

Theory, Springer (Probability and Its Applications), 1998.

[12] A. Rényi, On the dimension and entropy of probability distributions, Acta Mathe-

matica Academiae Scientiarum Hungarica, 10 (1959), pp. 193–215.

[13] H. Samet, Foundations of Multidimensional and Metric Data Structures, Morgan

Kaufmann, Elsevier/Morgan Kaufmann, San Mateo, 2006.

A Riemann integrability and the sup/inf oracle

In this section, we contruct a family of densities that are not Riemann-integrable for which

the oracle is useless. Let δ ∈ [0, 1/3) be a parameter, and let Iδ ⊆ [0, 1] be a Cantor-like

set constructed below. Setting

fδ(x) =
1

λ(Iδ)
1{x∈Iδ},

where λ is the Lebesgue measure, we have (see below) λ(Iδ) = (1 − 3δ)/(1 − 2δ). The

Lebesgue measure of the set of discontinuities is 1− λ(Iδ) and is zero only if δ = 0. The

case of δ = 0 corresponds to the usual uniform density on [0, 1] that is Riemann-integrable.

All cases of δ ∈ (0, 1/3) are Lebesgue integrable but not Riemann-integrable because the

set of discontinuities is non-zero and yet possess a cumulative distribution function. For

every ϵ > 0 and every x ∈ Iδ we have

inf
[x−ϵ,x+ϵ]

f(x) = 0,

and

sup
[x−ϵ,x+ϵ]

f(x) =
1− 2δ

1− 3δ
.

Since these boundaries are invariant under changes of ϵ, Algorithm 4, when used for

rejection, say, from a uniform density, has an infinite loop with positive probability.

It is, therefore, essential that Riemann-integrable densities are considered as that the

supremum and infimum returned by the oracle over given small intervals converge to each

other as intervals shrink.

For the construction of Iδ, we recursively remove middle open subintervals of geomet-

rically decreasing sizes. Let Ij,k ⊂ [0, 1] for j ∈ N \ {0} and k = 0, . . . , 2j − 1 be the

2j closed subintervals that are left once the middle parts are removed from the previous

subintervals Ij−1,k with k = 0 corresponding to the leftmost subinterval and so on. Ini-

tially, I0,0 = [0, 1]. For all j ∈ N \ {0} and k ∈ {0, . . . , 2j − 1}, the length of a removed

23

middle part is δj . For all j ∈ N \ {0}, the total length not removed at the j-th step is

2jλ(Ij,0) because the subintervals are of the same length. Let Iδ be the limiting subset

of [0, 1] that is left, i.e.,

Iδ =

∞∩
j=1

2j−1∪
k=0

Ij,k.

We compute λ(Iδ) as follows:

λ(I) = lim
j→∞

2j−1∑
k=0

λ(Ij,k) (by the definition of Iδ)

= lim
j→∞

2jλ(Ij,0),

λ(I1,0) =
1

2
− δ

2
,

λ(Ij,0) =
1

2
λ(Ij−1,0)−

δj

2

=
1

2j
− δ

2j
− δ2

2j−1
− . . .− δj

2
for j ≥ 1,

and therefore

2jλ(Ij,0) = 1− δ

j−1∑
i=0

(2δ)i = 1− δ

(
(2δ)j − 1

2δ − 1

)
,

so that

λ(Iδ) =
1− 3δ

1− 2δ
.

B A naive modification to the general rejection method

that is incorrect

A trivial, but incorrect, modification to Algorithm 3 would be:

1: repeat

2: By bisection, generate Xϵ on [0, 1]d such that Xϵ is an ϵ-approximation of X.

3: Generate U uniformly on [0, 1].

4: Decide “U ≤ 1
C f(Xϵ)” by using two bits in expected value.

5: If the condition from the previous line is satisfied, then return Xϵ.

6: end repeat

This attempt leads to failure. Let A be the support of Xϵ, which is necessarily con-

tained in a fixed countable subset of [0, 1]d. Then given any Riemann-integrable density

24

g, take a finite subset A⋆ of A, and modify g on A⋆ by setting

f(x) =

{
g(x) if x /∈ A⋆,

C if x ∈ A⋆.

We have that f is still a Riemann-integrable density bounded by C (and its set of dis-

continuities is of measure 0 because A⋆ is countable) but since f(Xϵ) = C if Xϵ ∈ A⋆, we

accept all Xϵ ∈ A⋆, regardless of the density g we started with. Since P{Xϵ ∈ A⋆} > 0,

we make an error with positive probability.

If we set

f(x) =

{
g(x) if x /∈ A,

0 if x ∈ A,

then g is no longer Riemann-integrable, and in that case, f(Xϵ) = 0 with probability one,

and therefore, the algorithm loops forever, regardless of the choice of g.

This simple example shows the necessity of the oracle and of the condition of Riemann-

integrability.

25

