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Abstract. We find conditions for the connectivity of inhomogeneous random

graphs with intermediate density. Our results generalize the classical result for

G(n, p), when p = c logn/n. We draw n independent points Xi from a general

distribution on a separable metric space, and let their indices form the vertex set

of a graph. An edge (i, j) is added with probability min(1, κ(Xi, Xj) logn/n),

where κ ≥ 0 is a fixed kernel. We show that, under reasonably weak assumptions,

the connectivity threshold of the model can be determined.

1. Introduction

We study the connectivity of inhomogeneous random graphs, where edges are

present independently but with unequal edge occupation probabilities. A discrete

version of the model was introduced by Söderberg [17]. The sparse case (when the

number of edges is linear in the number n of vertices) was studied in substantial detail

in the seminal paper by Bollobás, Janson and Riordan [2], where various results have

been proved, including the critical value for the emergence of a giant component,

and bounds on the connected component sizes in the super and subcritical regimes.

The dense case (when the number of edges is quadratic in n) has developed into a

deep and beautiful theory of graph limits started by Lovász and Szegedy [13] and

further studied in depth by Borgs, Chayes, Lovász, Sós and Vesztergombi [3, 4] and

by Bollobás, Borgs, Chayes and Riordan [1] among others.

Models with intermediate density (a number of edges that is more than linear

but less than quadratic in n) can be obtained by defining the edge probabilities

with a different scaling. Although there are connections to the other cases they lead

to very different properties. The intermediate density case has not received much

attention but it is of particular interest since it is the natural setting to study the

transition for connectivity and other related properties.

1.1. The model. In this paper we follow the notation from [2] with some minor

changes. We also use the following standard notation: we write ( · )+ for the positive

part, f = O(g) if f/g is bounded and f = o(g) if f/g → 0. We say that a sequence

Date: October 18, 2012.

2010 Mathematics Subject Classification. 60C05, 05C80.

Key words and phrases. random graphs, connectivity threshold.

The research of the first author was sponsored by NSERC Grant A3456.

1



2 LUC DEVROYE AND NICOLAS FRAIMAN

of events holds with high probability, if it holds with probability tending to 1 as

n→∞.

Let S be a separable metric space and µ a Borel probability measure on S. Let

X1, . . . , Xn be µ-distributed independent random variables on S. In what follows,

X denotes another variable independent of X1, . . . , Xn with the same distribution.

Let κ : S × S → R
+ a non-negative symmetric integrable kernel, κ ≥ 0 and

κ ∈ L1(S × S, µ⊗ µ).

Definition 1. The (intermediate) inhomogeneous random graph with kernel κ

is the random graph G(n, κ) = (Vn, En) where the vertex set is Vn = {1, . . . , n}
and we connect each pair of vertices i, j ∈ Vn independently with probability

pij = min{1, κ(Xi, Xj)pn} where pn = log n/n.

Definition 2. Let

λ(x) =

∫
S
κ(x, y)dµ(y) and λ2(x) =

(∫
S
κ(x, y)2dµ(y)

)1/2

.

We call λ∗ = ess inf λ(x) the isolation parameter.

Definition 3. A kernel κ on (S, µ) is reducible if there exists a set A ⊂ S with

0 < µ(A) < 1 such that κ = 0 almost everywhere on A × Ac. Otherwise κ is

irreducible.

If κ is reducible then we cannot expect the whole graph G(n, κ) to be connected

since almost surely there are no edges between the sets A = {i : Xi ∈ A} and Ac.

Hence, we shall restrict our attention to the irreducible case.

1.2. Results. The main result we prove is a generalization of the classical result of

Erdős and Renyi [8],[9] for G(n, p) stated below.

Theorem 1. If κ is irreducible, continuous (µ ⊗ µ)-almost everywhere and λ2 ∈
L∞(S, µ) then

lim
n→∞

P (G(n, κ) is connected) =

{
0 if λ∗ < 1,

1 if λ∗ > 1.

Note that changing the kernel in a set of µ⊗ µ measure zero defines the same

graph G(n, κ) almost surely. Therefore what we actually need is that there is a

version of κ (i.e., κ̃ such that κ̃ = κ almost everywhere) that is continuous almost

everywhere.

The theorem is proved in two parts. In Section 2 we prove that when λ∗ < 1

the graph G(n, κ) is disconnected with high probability. We prove this under milder

conditions for the kernel κ using the second moment method. In Section 3 we

prove that when λ∗ > 1 we have connectivity with high probability. To prove this

we start by showing that every component should be at least of linear size using

concentration inequalities. Then we use a discretization argument to prove that any

two such components must meet.



CONNECTIVITY OF INHOMOGENEOUS RANDOM GRAPHS 3

If G is a group acting transitively on S with invariant measure µ and κ is

an invariant kernel, we say we are in the homogeneous case. We can specialize

Theorem 1 for this case. Since there exists g ∈ G such that gx = z then we have

λ(x) =
∫
S κ(gx, gy)dµ(y) =

∫
S κ(z, w)dµ(w) = λ(z) = λ∗ thus λ(x) and λ2(x) are

independent of x ∈ S. Here κ ∈ L2(S × S, µ ⊗ µ) is enough to guarantee that

λ2 ∈ L∞(S, µ). Therefore we have the following

Corollary 2. If κ ∈ L2(S × S, µ⊗ µ) is homogeneous, irreducible and continuous

(µ⊗ µ)-almost everywhere then

lim
n→∞

P (G(n, κ) is connected) =

{
0 if λ∗ < 1,

1 if λ∗ > 1.

The Erdős-Renyi random graph and the random bipartite graph are both

particular cases in which S has only one or two points respectively. Another example

is given by taking S = [0, 1) with Lebesgue measure µ, and κ(x, y) = h(x− y) for a

periodic even function. In general, we can take κ(x, y) = f(d(x, y)) where d is an

invariant metric with corresponding Haar measure µ. However, the random geometric

graph introduced by Gilbert [10] whose connectivity threshold was determined by

Penrose [15] (and other properties were studied in depth in the monograph [16]) is

not included in this Corollary because it cannot be represented with a fixed κ in L2.

2. Occurrence of isolated vertices

In this Section we prove that the graph is disconnected with high probability

when λ∗ < 1. We prove it by showing that in this case with high probability isolated

vertices are going to exist on the graph. The technique is based on the second

moment method.

Theorem 3. If λ2 ∈ L2(S, µ) and λ∗ < 1 then G(n, κ) is disconnected with high

probability.

Proof. Let N be the number of isolated vertices. We can write N =
∑n
i=1 Ii where

Ii is the indicator that vertex i is isolated. Since λ∗ < 1 there exists ε > 0 such that

the set B = {x ∈ S : λ(x) < 1− ε} has measure µ(B) > 0. We are focusing only on

the points that lie in B. Define NB =
∑n
i=1 Yi where Yi is the indicator that vertex

i is isolated and Xi ∈ B. Clearly N ≥ NB. We show that limn→∞P (NB > 0) = 1

using the second moment method. By the Cauchy–Schwarz inequality we have that

P (NB > 0) ≥ E (NB)
2

E (N2
B)

.

Since E (NB) = nE (Y1) and E
(
N2
B
)

= E (NB) + n(n− 1)E (Y1Y2), we are done if

lim
n→∞

nE (Y1) =∞ and lim sup
n→∞

E (Y1Y2)

E (Y1)E (Y2)
≤ 1.
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For the first limit consider

E (Y1) = E

1[X1∈B]

n∏
j=2

1[(1,j)/∈En]


=

∫
B

n∏
j=2

E

((
1− κ(Xj , x)pn

)
+

)
dµ(x)

=

∫
B
E

((
1− κ(X,x)pn

)
+

)n−1
dµ(x)

≥
∫
B

(1− λ(x)pn)n−1dµ(x)(1)

≥ (1− (1− ε)pn)n−1µ(B).

Therefore,

lim
n→∞

nE (Y1) ≥ lim
n→∞

n(1− (1− ε)pn)n−1µ(B)

= lim
n→∞

ne−(1−ε)npnµ(B)

= lim
n→∞

nεµ(B) =∞.

The proof is completed with the next Lemma. �

Lemma 1. If λ2 ∈ L2(S, µ) then E (Y1Y2) ≤ (1 + o(1))E (Y1)E (Y2).

Proof. Define the “good” set G = {x ∈ S : λ2(x) ≤
√
n/ log2 n} and let G be the

event that both X1 ∈ G and X2 ∈ G. Then,

E (Y1Y2) = E (Y1Y21Gc) +E (Y1Y21G) .

For the first term, note that for i 6= j we have

E (Yif(Xj)) ≤ E

1[Xi∈B]
∏
` 6=i,j

1[(i,`)/∈En]f(Xj)

 ≤ E (Yi)E (f(Xj)) .

Therefore,

E (Y1Y21Gc) ≤ E
(
Y11[X2 /∈G]

)
+E

(
Y21[X1 /∈G]

)
≤ E (Y1)P (X2 /∈ G) +E (Y2)P (X1 /∈ G) .

Using Chebyshev’s inequality

P (X /∈ G) = P
(
λ2(X) >

√
n/ log2 n

)
≤ ‖λ2‖

2
2 log4 n

n
= o(nε−1),

since we have E
(
λ2(X)2

)
=
∫
S λ(x)2dµ(x) = ‖λ2‖22 <∞. Thus, we have that

E (Y1Y21Gc) ≤ o(1)E (Y1)E (Y2) .

Now for the second term, for Y1Y2 = 1 no vertex i > 2 can be adjacent to 1 or 2 so

(2) E (Y1Y21G) ≤
∫
G

∫
G
E

((
1− κ(X,x)pn

)
+

(
1− κ(X, y)pn

)
+

)n−2
dµ(x)dµ(y).
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We can bound the integrand by

E

((
1− κ(X,x)pn

)
+

(
1− κ(X, y)pn

)
+

)
≤ E

(
exp

(
−
(
κ(X,x) + κ(X, y)

)
pn

))
≤ E

(
1−

(
κ(X,x) + κ(X, y)

)
pn +

1

2

(
κ(X,x) + κ(X, y)

)2
p2n

)
= 1−

(
λ(x) + λ(y)

)
pn +

1

2
E

((
κ(X,x) + κ(X, y)

)2)
p2n.(3)

Since λ2(x) =
√
E (κ(X,x)2), by the Cauchy–Schwarz inequality, we have

E

((
κ(X,x) + κ(X, y)

)2)
= E

(
κ(X,x)2

)
+ 2E (κ(X,x)κ(X, y)) +E

(
κ(X, y)2

)
≤ λ2(x)2 + 2λ2(x)λ2(y) + λ2(y)2

=
(
λ2(x) + λ2(y)

)2
.(4)

Combining the bounds from equations (3) and (4) we obtain

E

((
1− κ(X,x)pn

)
+

(
1− κ(X, y)pn

)
+

)
≤ 1−

(
λ(x) + λ(y)

)
pn +

1

2

(
λ2(x) + λ2(y)

)2
p2n

=
(

1−
(
λ(x) + λ(y)

)
pn

)(
1 +

1

2
·
(
λ2(x) + λ2(y)

)2
p2n

1−
(
λ(x) + λ(y)

)
pn

)
≤
(

1−
(
λ(x) + λ(y)

)
pn

)(
1 +

(
λ2(x) + λ2(y)

)2
p2n

)
,

for n large enough since λ(x) < 1 for all x ∈ B. Furthermore, if x, y ∈ G we have

that

E

((
1− κ(X,x)pn

)
+

(
1− κ(X, y)pn

)
+

)
≤
(

1−
(
λ(x) + λ(y)

)
pn

)(
1 +

4np2n
log4 n

)
.

From this and the bound in equation (2) we get

E (Y1Y21G) ≤
∫
G

∫
G

(
1−

(
λ(x) + λ(y)

)
pn

)n−2(
1 +

4np2n
log4 n

)n−2
dµ(x)dµ(y)

≤
∫
G

∫
G

(
1−

(
λ(x) + λ(y)

)
pn

)n−2
exp

(
4n(n− 2)p2n

log4 n

)
dµ(x)dµ(y)

≤ (1 + o(1))

∫
B

∫
B

(
1−

(
λ(x) + λ(y)

)
pn

)n−2
dµ(x)dµ(y).

Note that since the right term of the inequality in (1) is positive we have

E (Y1)E (Y2) ≥
∫
B

(1− λ(x)pn)n−1dµ(x)

∫
B

(1− λ(y)pn)n−1dµ(y)

=

∫
B

∫
B

(1− λ(x)pn)(1− λ(y)pn)n−1dµ(x)dµ(y)

≥
∫
B

∫
B

(
1−

(
λ(x) + λ(y)

)
pn

)n−1
dµ(x)dµ(y).
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Therefore, the proof is complete since we have

E (Y1Y21G) ≤ (1 + o(1))E (Y1)E (Y2) . �

3. Connectivity threshold

The objective of this part is to prove that once the graph does not have isolated

vertices, which happens when λ∗ > 1, then there is only one connected component,

i.e., the graph is connected. The proof has two parts, first we prove that every

component is of linear size, and then we show that any pair of linear size sets will

be connected.

3.1. Every component is large. To prove that there are no small components

we use a first moment bound. Given two sets of vertices A,B we write A= B for

the event that A does not connect to B, i.e., A= B = ∩i∈A ∩j∈B {(i, j) /∈ En}.

Lemma 2. Let λ2 ∈ L∞(S, µ). Then for 1 ≤ k < n and any set A ⊂ {1, . . . , n} of

size |A| = k we have

P (A= Ac) ≤
(

1− λ∗kpn + ‖λ2‖2∞k2p2n/2
)n−k

.

Proof. Without loss of generality, assume A = {1, . . . , k}. We have

P (A= Ac) = P

 ⋂
j∈Ac

⋂
i∈A

(i, j) /∈ En


= E

∏
j∈Ac

∏
i∈A

(
1− κ(Xj , Xi)pn

)
+


=

∫
S
· · ·
∫
S

∏
j∈Ac

E

(
k∏
i=1

(
1− κ(Xj , xi)pn

)
+

)
dµ(x1) . . . dµ(xk)

≤
∫
S
· · ·
∫
S

(
1−

k∑
i=1

λ(xi)pn +
‖λ2‖2∞k2p2n

2

)n−k
dµ(x1) . . . dµ(xk)

≤
(

1− λ∗kpn + ‖λ2‖2∞k2p2n/2
)n−k

,

where the first inequality above follows from

E

(
k∏
i=1

(
1− κ(X,xi)pn

)
+

)
≤ E

(
exp

(
−

k∑
i=1

κ(X,xi)pn

))

≤ E

1−
k∑
i=1

κ(X,xi)pn +
1

2

(
k∑
i=1

κ(X,xi)

)2

p2n


≤ 1−

k∑
i=1

λ(xi)pn +
‖λ2‖2∞k2p2n

2
,
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which holds because

E

( k∑
i=1

κ(X,xi)

)2
 =

k∑
i=1

k∑
j=1

E (κ(X,xi)κ(X,xj))

≤
k∑
i=1

k∑
j=1

λ2(xi)λ2(xj)

≤ ‖λ2‖2∞k2. �

To get rid of larger components we need the following result which is based on

the concentration of the number of edges of the graph.

Lemma 3. Let λ2 ∈ L∞(S, µ). Then for 1 ≤ k ≤ n/2 and any set A ⊂ {1, . . . , n}
of size |A| = k we have

P (A= Ac) ≤ e−pnλ∗k(n−k)/2 + ke−nλ
2
∗/16‖λ2‖2∞ .

Proof. Without loss of generality assume A = {1, . . . , k}. We have

P (A= Ac) = P

 ⋂
j∈Ac

⋂
i∈A

(i, j) /∈ En


= E

∏
i∈A

∏
j∈Ac

(
1− κ(Xi, Xj)pn

)
+


≤ E

exp

−pn∑
i∈A

∑
j∈Ac

κ(Xi, Xj)


=

∫
S
· · ·
∫
S
E

(
e−pn

∑k
i=1 Z(xi)

)
dµ(x1) . . . dµ(xk),(5)

where we define Z(xi) =
∑
j∈Ac κ(xi, Xj).

We use the following Bernstein type inequality: If Y1, Y2, . . . , Yn are non-

negative independent random variables and Y =
∑n
j=1 Yj then

P (Y ≤ EY − t) ≤ e−t
2/2

∑n
j=1 EY

2
j .

See Theorem 3.5 of [7] (also the monograph [14] or chapter 2 of the book [6]).

For every 1 ≤ i ≤ k we apply the inequality to Y = Z(xi) with Yj = κ(xi, Xj) so

that EY 2
j = λ2(xi)

2 and t = EY/2 = EZ(xi)/2 = λ(xi)(n− k)/2 to obtain

P

(
Z(xi) ≤

EZ(xi)

2

)
≤ e−λ(xi)

2(n−k)/8λ2(xi)
2

.
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Let U = {x ∈ S : λ(x) ≥ λ∗ and λ2(x) ≤ ‖λ2‖∞}. Note that µ(S \ U) = 0. If

xi ∈ U for all i = 1, . . . , k, we have

P

(
Z(xi) ≤

λ∗(n− k)

2

)
≤ P

(
Z(xi) ≤

EZ(xi)

2

)
≤ e−λ(xi)

2(n−k)/8λ2(xi)
2

≤ e−nλ
2
∗/16‖λ2‖2∞ ,

since k ≤ n/2. Using the union bound we get

P

(
k∑
i=1

Z(xi) ≤
λ∗k(n− k)

2

)
≤ P

(
min
i∈A

Z(xi) ≤
λ∗(n− k)

2

)
≤ ke−nλ

2
∗/16‖λ2‖2∞ .

Let E = E(x1, . . . , xk) be the event where
∑k
i=1 Z(xi) ≥ λ∗k(n− k)/2. Then,

using inequality (5) we can write

P (A= Ac) ≤
∫
S
· · ·
∫
S
E

(
e−pn

∑k
i=1 Z(xi)(1E + 1Ec)

)
dµ(x1) . . . dµ(xk)

≤
∫
S
· · ·
∫
S

(
E

(
e−pn

∑k
i=1 Z(xi)1E

)
+P (Ec)

)
dµ(x1) . . . dµ(xk)

≤
∫
U
· · ·
∫
U

(
e−pnλ∗k(n−k)/2 + ke−nλ

2
∗/16‖λ2‖2∞

)
dµ(x1) . . . dµ(xk)

≤ e−pnλ∗k(n−k)/2 + ke−nλ
2
∗/16‖λ2‖2∞ . �

Proposition 4. Let λ2 ∈ L∞(S, µ) and λ∗ > 1. Then, there exists δ > 0 such that

all connected components of G(n, κ) have size greater than δn with high probability.

Proof. Let Nk denote the number of components of size exactly k and A = {1, . . . , k}.
By Lemma 2, we have that

ENk ≤
(
n

k

)
P (A= Ac)

≤ nk
(

1− λ∗kpn + ‖λ2‖2∞k2p2n/2
)n−k

≤ exp
(
k log n− (n− k)λ∗kpn + (n− k)‖λ2‖2∞k2p2n/2

)
≤ exp

(
k log n

(
1− λ∗ +

λ∗k

n
+
‖λ2‖2∞(n− k)k log n

2n2

))
(6)

≤ e−(λ∗−1)k logn/2,

for k = o(n/ log n) because k/n → 0 and k log n/n → 0, which implies that the

last two terms in equation (6) are smaller than ε = (λ∗ − 1)/4 for n large enough.

Therefore,

P

en3/4∑
k=1

Nk > 0

 ≤ en3/4∑
k=1

ENk ≤
en3/4∑
k=1

e−(λ∗−1)k logn/2 ≤ e−(λ∗−1) logn/2

1− e−(λ∗−1) logn/2
→ 0.
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Fix 0 < δ ≤ 1/2 to be chosen later. For the rest of the range using Lemma 3 we

obtain

E (Nk) ≤
(
n

k

)
P (A= Ac)

≤
(ne
k

)k (
e−pnλ∗k(n−k)/2 + ke−nλ

2
∗/16‖λ2‖2∞

)
≤
(ne
k

)k
e−pnλ∗k(n−k)/2︸ ︷︷ ︸

[LT ]

+
(ne
k

)k
ke−nλ

2
∗/16‖λ2‖2∞︸ ︷︷ ︸

[RT ]

.

For the left term we have

[LT ] ≤ exp

(
k

(
1 + log n− log k − λ∗

4
log n

))
≤ e−(λ∗−1)k logn/4,

if k > en3/4. While for the right term

[RT ] ≤ k · exp

(
n

(
k

n
− k

n
log

k

n
− λ2∗

16‖λ2‖2∞

))
≤ ne−nλ

2
∗/32‖λ2‖2∞ ,

if k/n < δ where δ = max
{
ρ ∈ [0, 1/2] : ρ− ρ log ρ ≤ λ2∗/32‖λ2‖2∞

}
> 0. Therefore,

P

(
δn∑

k=en3/4

Nk > 0

)
≤

δn∑
k=en3/4

ENk ≤ n
(
e−(λ∗−1)n

3/4 logn/2 + ne−nλ
2
∗/32‖λ2‖2∞

)
→ 0.

Thus we have proved that with high probability the graph has no component of size

smaller than δn. �

3.2. All vertices are connected. To prove that every vertex is connected we

discretize the space S using a finite partition and work with a lower approximation

of the kernel κ. For this approximation to behave nicely we need κ to be continuous

almost everywhere. For A ⊂ S we write diam(A) = sup{d(x, y) : x, y ∈ A}, where

d is the metric on S.

Lemma 4 (Lemma 7.1 from [2]). Given (S, µ) there exists a sequence of finite

partitions Am = {Am,1, . . . ,Am,Mm
}, m > 1, of S such that

(a) each Am,i is measurable and µ(∂Am,i) = 0;

(b) for each m, Am+1 refines Am, i.e., each Am,i is a union ∪j∈Jm,i
Am+1,j for

some set Jm,i;

(c) let im(x) be such that x ∈ Am,im(x), then diam(Am,im(x))→ 0 as m→∞ for

µ almost every x ∈ S.

Definition 4. Given a sequence of partitions Am as above, we define the lower

approximation kernels by

κm(x, y) = inf{κ(x′, y′) : x′ ∈ Am,im(x), y
′ ∈ Am,im(y)},

and the partition graphs Hm = (Vm, Em) where the vertex set is given by Vm ={
1 ≤ i ≤Mm : µ(Am,i) > 0

}
and (i, j) is an edge if κm > 0 in Am,i ×Am,j .
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Note that if κ is continuous almost everywhere it holds that κm(x, y)↗ κ(x, y)

as m→∞, for almost every (x, y) ∈ S2.

Lemma 5. If κ is irreducible and continuous (µ ⊗ µ)-almost everywhere, then

for any ε > 0 there exists m > 1 and a connected component Cm in Hm with

µ(S \ ∪i∈CmAm,i) < ε.

Proof. We first show that we can find m0 such that there exists (i0, j0) ∈ Em0
.

Since κ 6= 0 and is continuous almost everywhere there exists (x0, y0) and δ > 0

such that µ(B(x0, δ)), µ(B(y0, δ)) > 0 and if d(x, x0), d(y, y0) < δ then κ(x, y) > 0.

Pick m0 so that diam(Am0,im0 (x)
) < δ and diam(Am0,im0 (y)

) < δ then we have that

(im0(x), im0(y)) ∈ Em0 .

For m ≥ m0, since κm ≥ κm0
> 0 on Am0,i0 × Am0,j0 , we have that all the

vertices i ∈ Vm such that Am,i ⊆ Am0,i0 are in the same connected component of

Hm which we denote by Cm.

Let Bm = ∪i∈Cm
Am,i and Sm = ∪i∈Vm

Am,i. If i ∈ Cm and j /∈ Cm then

κm = 0 on Am,i × Am,j therefore κm = 0 on Bm × (Sm \ Bm) and thus almost

everywhere on Bm × (S \ Bm). Now define B = ∪∞m=1Bm. If n ≥ m, then Bm ⊆ Bn
so κn = 0 almost everywhere on Bm × (S \ B) ⊆ Bn × (S \ Bn). Letting n→∞, we

have κ = 0 almost everywhere on Bm × (S \ B). Taking the union in m yields κ = 0

almost everywhere on B × (S \ B).

Since κ is irreducible, it follows that µ(B) = 0 or µ(S \ B) = 0. As B ⊇ Bm0 ⊇
Am0,j0 , we have µ(B) > 0, so µ(S \ B) = 0. To finish the proof note that Bm ↗ B
so µ(S \ Bm)→ 0 and we can choose m so that µ(S \ Bm) < ε. �

Lemma 6. Let N(A) = #{Xi ∈ A} be the number of points in A. Given a finite

partition Am of S with high probability for every i = 1, . . . ,Mm

nµ(Am,i)/2 < N(Am,i) < 2nµ(Am,i).

Proof. We use the binomial Chernoff bound [5, 11, 12]: If ξ ∼ binomial(n, p) and

t > 0 then

min
(
P (ξ ≤ tnp) ,P (ξ ≥ tnp)

)
≤ e−f(t)np,

where we write f(x) = x log x− x+ 1. For a fixed set Am,i, the number of points

N(Am,i) is binomial(n, µ(Am,i)). Thus, we have for any 1 ≤ i ≤Mm,

P
(
N(Am,i) ≤ nµ(Am,i)/2

)
≤ e−f(1/2)nµ(Am,i),

P
(
N(Am,i) ≥ 2nµ(Am,i)

)
≤ e−f(2)nµ(Am,i).

For sets Am,i of zero measure the result holds almost surely. Let α = min{µ(Am,i) :

i ∈ Vm} and define the events

Di =

{
1

2
≤ N(Am,i)
nµ(Am,i)

≤ 2

}
.
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Since f(1/2) < f(2) we have for all i = 1, . . . ,Mm

P (Dc
i ) ≤ 2e−f(1/2)αn.

We can apply a union bound to obtain

P

(
Mm⋃
i=1

Dc
i

)
≤

Mm∑
i=1

P (Dc
i ) ≤

Mm∑
i=1

2e−f(1/2)αn ≤ 2Mme
−f(1/2)αn → 0. �

Theorem 5. If κ is irreducible, continuous (µ ⊗ µ)-almost everywhere, λ2 ∈
L∞(S, µ) and λ∗ > 1, then G(n, κ) is connected with high probability.

Proof. Assume that the graph is disconnected. Let A be a connected component, by

Proposition 4 it has size at least δn with high probability. Consider the sequence of

partitions Am given in Lemma 4 and the associated partition graph Hm = (Vm, Em).

Let ε = δ/4 by Lemma 5 there exists m > 1 and a connected component Cm in Hm

with µ(S \ ∪i∈Cm
Am,i) < ε. Let us fix such m in the following.

By Lemma 6 the event D = ∩Mm
i=1 {1/2 < N(Am,i)/nµ(Am,i) < 2} holds

with high probability. On D, the number of points in S \ ∪i∈Cm
Am,i is less than

2εn = δn/2. Therefore, at least δn/2 points of A must lie in sets Am,i for i ∈ Cm.

We can argue in the same way for Ac. By the pigeonhole principle there is at least

u, v ∈ Cm such that the number of points of A in Am,u is at least δn/2|Cm| and

the number of points of Ac in Am,v is at least δn/2|Cm|.

Now define a function f : Cm → {0, 1} in the following way: f(u) = 1, f(v) = 0,

and for any other vertex f(i) = 1 if the majority of points in Am,i belongs to A and

f(i) = 0 otherwise. Consider a path u = i0, i1, . . . , i` = v between u and v in Cm,

such a path exists since Cm is connected. Let q = min{1 ≤ k ≤ ` : f(ik) = 0} then

f(iq−1) = 1 and f(iq) = 0.

Let α = min{µ(Am,i) : i ∈ Vm}, clearly α > 0 because Vm is finite. Let

βi,j = inf{κ(x, y) : x ∈ Am,i, y ∈ Am,j} note that βi,j > 0 for any edge (i, j) ∈ Em
of the partition graph Hm. Define β = min{βi,j : (i, j) ∈ Em}, thus β > 0 since Em
is finite. Define U = {i ∈ A : Xi ∈ Am,iq−1

} and V = {i ∈ Ac : Xi ∈ Am,iq}. On D,

we have that |U |, |V | ≥ γn where γ = min{α/2, δ/2|Cm|}. Therefore conditionally

on D we have

P (A= Ac | D) ≤ P (U = V | D)

≤ E

∏
i∈U

∏
j∈V

(
1− κ(Xi, Xj)pn

)
+

∣∣∣∣ D


≤ E
(

(1− βpn)|U ||V | | D
)

≤ (1− βpn)γ
2n2

≤ e−βγ
2n logn.
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We can apply this bound to finish the proof. As before, let Nk be the number of

components of size k. We have

P

 n/2∑
k=δn

Nk > 0

 ≤ P (Dc) +P

 n/2∑
k=δn

Nk > 0

∣∣∣∣ D


≤ P (Dc) +

n/2∑
k=δn

E (Nk | D)

≤ P (Dc) +

n/2∑
k=δn

(
n

k

)
P (A= Ac | D)

≤ P (Dc) + 2n × e−βγ
2n logn → 0.

We have proved that with high probability there are no components of any size less

than n/2. Thus, the graph is connected. �

4. Discussion

When λ∗ = 1 we are in the window of connectivity. In this case the probability

that the graph G(n, κ) is connected doesn’t go to either 0 or 1. For example, if

κ = 1 then G(n, κ) is just the random graph G(n, p) with p = log n/n. Erdős and

Renyi [8] proved in this case that P (G(n, κ) is connected)→ 1/e by showing that

isolated vertices are still the main obstruction to obtain connectivity, i.e., with high

probability the graph consists solely of a giant component and some isolated vertices

and the number of them is asymptotically Poisson distributed.

The following example helps to illustrate that some integrability condition on

λ2 is necessary to obtain connectivity with high probability. Let S = [0, 1] and

µ = m be the Lebesgue measure. Consider the following kernel

κ(x, y) =
c

x
1[x/2,x](y) +

c

y
1[y/2,y](x).

We have that λ∗ = c/2 because

λ(x) =

{
c
2 + c log 2 if x ≤ 1

2 ,
c
2 + c log 1

x if x > 1
2 .

However, the graph G(n, κ) is not connected with positive probability. To see this,

consider the disjoint events Ek = {Xk < 1/n} ∩
⋂
i 6=k{Xi > 2/n}. If Ek holds then

vertex k is isolated in G(n, κ). Therefore,

P

(
n⋃
k=1

Ek

)
=

n∑
k=1

P (Ek) =

n∑
k=1

1

n

(
1− 2

n

)n−1
=

(
1− 2

n

)n−1
→ 1

e2
.

This does not contradict Theorem 1 because this kernel has

λ2(x) =

{
c2

x if x ≤ 1
2 ,

3c2

2x − c
2 if x > 1

2 ,



CONNECTIVITY OF INHOMOGENEOUS RANDOM GRAPHS 13

and thus λ2 /∈ L1(S, µ).
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