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Abstract

In this paper we study the problem of estimating the density of the error dis-
tribution in a random design regression model, where the error is assumed to
be independent of the design variable. Our main result is that the L1 error of
the kernel density estimate applied to residuals of a consistent regression esti-
mate converges with probability one to zero regardless of the form of the true
density. We demonstrate that this result is in general no longer true if the error
distribution and the design variable are dependent.
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1. Introduction

In this paper we study the problem of estimating the density of the error
distribution in a random design regression model. More precisely, we assume
that we have given data

Dn = {(X1, Y1) , . . . , (Xn, Yn)} ,

where
Yi = m (Xi) + εi

∗Running title: Estimation of the density of residuals
†Corresponding author. Tel: +49-6151-16-5288
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for some m : Rd → R, Rd-valued random (design) variables X1, . . . , Xn and
real-valued random variables ε1, . . . , εn with zero expectation. We assume that
(X1, ε1) , (X2, ε2) , . . . are independent and identically distributed and that X1, ε1
are independent. We let X be a random variable distributed as X1 and ε be a
random variable with density f with respect to Lebesgue measure. It is assumed
that all εi’s are distributed as ε. We use PX for the probability law of a random
variable X . We consider the problem of estimating f from the data Dn.

Estimating the density of the error distribution in nonparametric regression
models has been dealt with by several researchers. Ahmad (1992) showed that
under a Lipschitz-condition of the kernel function, the Parzen-Rosenblatt den-
sity estimator (Parzen (1962), Rosenblatt (1956)) converges in probability at
every continuity point to the real density of the residuals. In case of a con-
tinuous error density, the same estimator is pointwise and uniformly consistent
(Cheng (2004)), and, in addition, the histogram error density estimator is uni-
formly and in L1 consistent (Cheng (2002)). Efromovich (2005) investigated in
a homeoscedastic regression model estimates which are as good as estimates us-
ing an oracle that knows the underlying regression errors. In the heteroscedastic
nonparametric regression model, where the Yi’s have different variances, Efro-
movich (2006) generalized his optimal estimation for a twice differentiable error
density with finite support. Estimators of the residual distribution function
include that of Akritas and Van Keilegom (2001), who extended the results of
Durbin (1973) and Loynes (1980) to a weak convergence result for a distribu-
tion function estimator in a nonparametric heteroscedastic regression model.
The empirical distribution function of residuals was used as an estimator in
an heteroscedastic model with multivariate covariates by Neumeyer and Van
Keilgom (2010). For general results in density estimation we refer to the books
of Devroye and Györfi (1985), Devroye (1987) and Devroye and Lugosi (2000),
and to the article Mnatsakanov and Khmaladze (1981), where the necessary and
sufficient conditions for L1-consistency of general density estimates are derived.

In this paper the main aim is to derive L1-consistent estimates of f . This
is important, because Scheffé’s Lemma implies that the L1 error of a density
estimate equals twice the total variation distance (see, e.g., Devroye and Györfi
(1985)) and hence an L1-consistent density estimate allows simultaneous esti-
mation of all probabilities. In order to estimate the density of the error distri-
bution, we split the data in two parts, use the first part to compute a regression
estimate, compute its residuals on the second part and use them as data for a
standard kernel density estimate. We show that the resulting density estimate
is strongly consistent in L1 for all densities f provided we use in the first step a
consistent regression estimate. Furthermore, we show that this result no longer
holds in case that the design variable and the errors in the regression model
are dependent. The estimates are defined in Section 2, the main results are
presented in Section 3, and Section 4 contains the proofs.
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2. Definition of the estimates

We start by splitting the sample in two parts: a first part of size n′ and the
second part containing the n′′ = n−n′ remaining data points. We assume that
we have given a regression estimate

mn′ (·) = mn′ (·,Dn′) : Rd → R

satisfying
∫

|mn′(x) −m(x)|PX(dx) → 0 a.s.

(for n → ∞), which we apply to the first part of the data. We use mn′ to
compute the residuals on the second part of the data, i.e., we set

ε̂j = Yn′+j −mn′ (Xn′+j) (j = 1, . . . , n′′)

and we use them to compute the Parzen-Rosenblatt kernel density estimate

fn (x) =
1

n′′hn′′

n′′

∑

j=1

K

(

x− ε̂j
hn′′

)

.

Here hn′′ > 0 is the bandwidth, and K : R → R+ is the kernel function, which
we assume to be a density [in general, only integrability to one is needed, but
we will be happy with the subclass of densities].

3. Main results

Our first result deals with the consistency of fn.

Theorem 1. Let X1, X2, . . . be i.i.d. Rd-valued random variables distributed as
X, and let ε1, ε2, . . . be i.i.d. real-valued random variables with E {ε1} = 0, and
having common density f , and assume that both sequences are also independent
of each other. Define

Yi = m (Xi) + εi (i ∈ N)

for some function m : Rd → R, and let the estimate fn be defined as in Section
2. Assume that K is a density with compact support satisfying

∫

R

K2 (u) du < ∞, (1)

such that

hn → 0 (n → ∞) and n · hn → ∞ (n → ∞) (2)

and that the regression estimate mn satisfies
∫

Rd

|mn(x) −m(x)|PX1
(dx) → 0 a.s. (3)
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Finally, assume that both n′ → ∞ and n′′ → ∞ as n → ∞. Then
∫

R

|fn(x)− f(x)| dx → 0 a.s.

Remark 1. The L1 error of the above density estimate tends to zero re-
gardedless of the form of the density of ε1, provided the regression estimate is
L1 (PX1

)-consistent. By Cauchy-Schwarz, (3) is implied by
∫

Rd

|mn(x) −m(x)|2 PX1
(dx) → 0 a.s., (4)

and if we assume E
{

Y 2
1

}

< ∞ there are many different estimates which are
universally consistent in the sense that (4) holds for all distributions, cf., e.g.,
Devroye et al. (1994), Györfi and Walk (1996, 1997), Kohler and Krzyżak
(2001), Lugosi and Zeger (1995), Nobel (1996), Walk (2002), or Györfi et al.
(2002) and the literature cited therein. So under this additional assumption
our estimate of the density of the error distribution in our regression model is
strongly consistent in L1 for all densities.

In Theorem 1, the generic pair (X, ε) is independent. Without this indepen-
dence condition, one has to be much more careful. Noting that Theorem 1 was
formulated in terms of a very general L1-consistent regression estimate (3), the
lack of independence will force one to at least make a specific choice of regression
function estimate. This is captured in Theorem 2.

Theorem 2. Let d = 1. Assume that |n′−n′′| ≤ 1, n = n′+n′′. There exists a
regression function m and a distribution of (X, ε) with E {ε|X} = 0, such that
ε has a density f (with respect to the Lebesgue-measure) , and such that for
any sequence of bandwiths hn satisfying (2) there exists regression estimates mn

satisfying (3) with the property that the corresponding density estimate fn from
Section 2 in case of the naive kernel (i.e., the kernel K(x) = (1/2)I[−1,1](x)):

lim sup
n→∞

∫

R

|fn(x) − f(x)| dx ≥ 1.

Remark 2. Theorem 1 showed that when the pair (X, ε) is independent, the
density estimate of Section 2 is strongly L1-consistent whenever the regression
estimate is strongly L1(PX1

)-consistent. By Theorem 2 this is no longer true
in all generality if we omit the independence assumption. The counterexample
in Theorem 2 has two special properties—first of all, conditional on X , ε is a
shifted Bernoulli random variable without a density, but its marginal distribu-
tion has a density. Secondly, and more importantly, the example uses a special
regression estimate that one would not encounter in statistical practice. It is
still an open problem whether there exists any regression estimate such that
the corresponding density estimate from Section 2 is strongly L1-consistent for
all distributions of (X,Y ) where ε = Y − E{Y |X} has a density f and where
E|Y | < ∞.
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4. Proofs

4.1. Proof of Theorem 1

First we show
∫

R

|fn(x)− f(x)| dx−E

{
∫

R

|fn(x)− f(x)| dx
∣

∣

∣
Dn′

}

→ 0 (5)

almost surely (applied conditioned on Dn′).
Define

g(ε̂1, . . . , ε̂n′′) :=

∫

R

∣

∣

∣

∣

∣

∣

1

n′′ · hn′′

n′′

∑

j=1

K

(

x− ε̂j
hn′′

)

− f(x)

∣

∣

∣

∣

∣

∣

dx.

Scheffé’s Lemma implies

|g(ε̂1, . . . , ε̂n′′)− g(ε̂1, . . . , ε̂i−1, ε̂
′
i, ε̂i+1, ε̂n′′)|

≤
∫

R

∣

∣

∣

∣

1

hn′′

K

(

x− ε̂i
hn′′

)

−
1

hn′′

K

(

x− ε̂′i
hn′′

)
∣

∣

∣

∣

dx

= 2 ·
∫

R

(

1

hn′′

K

(

x− ε̂i
hn′′

)

−
1

hn′′

K

(

x− ε̂′i
hn′′

))

+

dx

≤ 2.

From McDiarmid’s inequality (McDiarmid (1989); see also Devroye (1991) and
Theorem A.2. in Györfi et. al. (2002)), we see that

∞
∑

n=1

P

[
∣

∣

∣

∣

∫

R

|fn(x) − f(x)| dx −E

{
∫

R

|fn(x) − f(x)| dx
∣

∣

∣
Dn′

}
∣

∣

∣

∣

≥ ε
∣

∣

∣
Dn′

]

≤
∞
∑

n=1

exp

(

−n′′ε2

2

)

< ∞.

We obtain (5) by an application of the lemma of Borel and Cantelli.
Next we show

E

{
∫

R

|fn(x)− f(x)| dx
∣

∣

∣
Dn′

}

→ 0 a.s.

Scheffé’s Lemma implies that
∫

R

|fn(x)− f(x)| dx = 2·
∫

R

(f(x)− fn(x))+ dx ≤ 2·
∫

B

|f(x)− fn(x)| dx+2·
∫

Bc

f(x) dx.

Hence it suffices to show

E

{
∫

B

|fn(x) − f(x)| dx
∣

∣

∣
Dn′

}

→ 0 a.s.
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for any compact set B ⊆ R. Let B be an arbitrary compact set in R. Set

f∗
n(x) =

1

n′′ · hn′′

n′′

∑

j=1

E

{

K

(

x− ε̂j
hn′′

)

∣

∣

∣
Dn′

}

.

Then

E

{
∫

B

|fn(x) − f(x)| dx
∣

∣

∣
Dn′

}

≤ E

{
∫

B

|fn(x) − f∗
n(x)| dx

∣

∣

∣
Dn′

}

+E

{
∫

B

|f∗
n(x)− f(x)| dx

∣

∣

∣
Dn′

}

.

In the first step of the proof we show

E

{
∫

B

|fn(x)− f∗
n(x)| dx

∣

∣

∣
Dn′

}

→ 0 (n → ∞).

By Cauchy-Schwarz and the inequality of Jensen we have

E

{
∫

B

|fn(x)− f∗
n(x)| dx

∣

∣

∣
Dn′

}

≤ E

{
√

∫

B

1 dx ·

√

∫

B

|fn(x)− f∗
n(x)|

2 dx

∣

∣

∣

∣

∣

Dn′

}

≤

√

∫

B

1 dx ·

√

E

{
∫

B

|fn(x) − f∗
n(x)|

2 dx
∣

∣

∣
Dn′

}

.

Now

E

{
∫

B

|fn(x)− f∗
n(x)|

2 dx
∣

∣

∣
Dn′

}

=

∫

B

E











∣

∣

∣

∣

∣

∣

1

n′′ · hn′′

n′′

∑

j=1

(

K

(

x− ε̂j
hn′′

)

−E

{

K

(

x− ε̂j
hn′′

)

∣

∣

∣
Dn′

})

∣

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

Dn′











dx

≤
1

n′′2 · h2
n′′

n′′

∑

j=1

∫

B

E

{

K2

(

x− ε̂j
hn′′

)

∣

∣

∣
Dn′

}

dx

=
1

n′′2 · h2
n′′

n′′

∑

j=1

∫

B

∫

R

K2

(

x− u−m(Xn′+j) +mn′(Xn′+j)

hn′′

)

f(u) du dx

=
1

n′′2 · hn′′

n′′

∑

j=1

∫

R

f(u)

∫

B

1

hn′′

K2

(

x− u−m(Xn′+j) +mn′(Xn′+j)

hn′′

)

dx du

≤
1

n′′ · hn′′

∫

R

K2(z) dz → 0 (n → ∞).

6



In the second step of the proof we show

E

∫

R

∣

∣

∣

∣

f∗
n(x)−E

{

1

hn′′

K

(

x− ε1
hn′′

)}
∣

∣

∣

∣

dx → 0 (n → ∞).

To do this we observe
∫

R

∣

∣

∣

∣

f∗
n(x) −E

{

1

hn′′

K

(

x− ε1
hn′′

)}
∣

∣

∣

∣

dx

=

∫

R

∣

∣

∣

1

n′′

n′′

∑

j=1

∫

R

1

hn′′

K

(

x− u+mn′(Xn′+j)−m(Xn′+j)

hn′′

)

f(u) du

−
∫

R

1

hn′′

K

(

x− u

hn′′

)

f(u) du
∣

∣

∣
dx

≤
∫

R

1

n′′

n′′

∑

j=1

∫

R

1

hn′′

K

(

x− z

hn′′

)

|f (z −m(Xn′+j) +mn′(Xn′+j))− f(z)| dz dx

≤
1

n′′

n′′

∑

j=1

∫

R

∫

R

1

hn′′

K

(

x− z

hn′′

)

·
∣

∣f(z +mn′(Xn′+j)−m(Xn′+j))

− gf(z +mn′(Xn′+j)−m(Xn′+j))
∣

∣dz dx

+
1

n′′

n′′

∑

j=1

∫

R

∫

R

1

hn′′

K

(

x− z

hn′′

)

· |gf (z +mn′(Xn′+j)−m(Xn′+j))− gf (z)| dz dx

+
1

n′′

n′′

∑

j=1

∫

R

∫

R

1

hn′′

K

(

x− z

hn′′

)

· |gf (z)− f(z)| dz dx

=: T1,n + T2,n + T3,n

with an arbitrary density gf : Rd → R+.

Application of Fubini’s theorem yields

T1,n =
1

n′′

n′′

∑

j=1

∫

R

|f(z +mn′(Xn′+j)−m(Xn′+j))− gf(z +mn′(Xn′+j)−m(Xn′+j))|

·
∫

R

1

hn′′

K

(

x− z

hn′′

)

dx dz

=

∫

R

|f(z)− gf(z)| dz
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and

T3,n =
1

n′′

n′′

∑

j=1

∫

R

|gf (z)− f(z)| ·
∫

R

1

hn′′

K

(

x− z

hn′′

)

dx dz

=

∫

R

|f(z)− gf (z)| dz.

Choosing gf as a density which approximates f in L1, both terms T1,n and T3,n

can be made arbitrary small.

Assume that gf is Lipschitz-continous with Lipschitz-constant L > 0 and let
C be an arbitrary compact set in R. By Scheffé’s Lemma,

T2,n =
1

n′′

n′′

∑

j=1

∫

R

|gf(z +mn′(Xn′+j)−m(Xn′+j))− gf(z)| ·
∫

R

1

hn′′

K

(

x− z

hn′′

)

dx dz

=
1

n′′

n′′

∑

j=1

2 ·
∫

R

(gf (z)− gf (z +mn′(Xn′+j)−m(Xn′+j)))+ dz

≤ 2 ·
1

n′′

n′′

∑

j=1

∫

C

|gf (z)− gf (z +mn′(Xn′+j)−m(Xn′+j))| dz + 2 ·
∫

Cc

gf (z) dz

≤ 2 · L ·
1

n′′

n′′

∑

j=1

|mn′(Xn′+j)−m(Xn′+j)|
∫

C

1 dz + 2 ·
∫

Cc

gf (z) dz.

So

lim sup
n→∞

E
{

T2,n

∣

∣ Dn′

}

≤ 2L ·
∫

C

1 dz · lim
n→∞

∫

Rd

|mn′(x)−m(x)|PX1
(dx) + 2

∫

Cc

gf (z) dz

and with C ↑ R we get

E
{

T2,n

∣

∣ Dn′

}

→ 0 a.s.

From Devroye and Györfi (1985), Chapter 3, Theorem 1 we know

∫

R

∣

∣

∣

∣

1

hn′′

E

{

K

(

x− ε1
hn′′

)}

− f(x)

∣

∣

∣

∣

dx → 0 (n → ∞)

and the assertion is proved. !

4.2. Proof of Theorem 2

Without loss of generality, we assume that n is even, so that n′ = n′′ = n/2.
Let i ∈ {1, . . . , n} and j ∈ {1, . . . , n′′} . Let Xi be i.i.d. and uniformly distributed
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on [0, 1], and define

Yi =

{

Xi with probability 1
2

−Xi with probabilty 1
2 .

Then Yi is uniformly distributed on [−1, 1] , E
{

Yi

∣

∣ Xi

}

= 0 and εi = Yi −
E
{

Yi

∣

∣ Xi

}

= Yi. Define
mn′(x) = x− x′

with x′ = ) x√
hn′

+ ·
√
hn′ = ) x√

hn′′

+ ·
√
hn′′ . Since

|mn′(x)| ≤
√

hn′ → 0 (n → ∞)

assumption (3) is valid. Estimating the residuals as described in Section 2 we
get

ε̂j = Yn′+j −mn′(Xn′+j) =

{

X ′
n′+j with probability 1

2

−2Xn′+j +X ′
n′+j with probability 1

2 ,

where X ′
n′+j = )Xn′+j√

hn′′

+ ·
√
hn′′ . Observe that −2Xn′+j +X ′

n′+j ≤ 0. Define

An :=
∞
⋃

k=0

[

k
√

hn − hn, k
√

hn + hn

]

.

Note that these intervals are disjoint if hn < 1
4 . So there exists a natural number

N ∈ N such that for every n′′ > N , we have

∫

[0,1]∩Ac
n′′

f(x)dx =

!n′′−1
∑

k=0

∫ (k+1)
√

hn′′−hn′′

k
√

hn′′+hn′′

1

2
dx

=
1

2
"n′′

(

√

hn′′ − 2hn′′

)

with "n′′ := max
{

k ∈ N : k
√
hn′′ ≤ 1

}

= ) 1√
hn′′

+.

If x ∈ Ac
n′′ ∩ [0, 1]d then

∣

∣x− k
√
hn′′

∣

∣ > hn′′ for every k ∈ N and consequently
|x − ε̂j| > hn′′ for all j ∈ N. Using the naive kernel in the definition of fn, we
have for every n′′ > N ,

∫

[0,1]∩Ac
n′′

fn(x) dx =

∫

[0,1]∩Ac
n′′

1

2n′′hn′′

n′′

∑

j=1

1{|x−ε̂j|≤hn′′}(x)dx = 0.

By Scheffé’s Lemma, we see that for every n′′ > N ,

∫

|fn(x)− f(x)| dx = 2 · sup
B∈B

∣

∣

∣

∣

∫

B

f(x)dx −
∫

B

fn(x)dx

∣

∣

∣

∣
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≥ 2 ·
∫

[0,1]∩Ac
n′′

f(x)dx − 2 ·
∫

[0,1]∩Ac
n′′

fn(x)dx

= "n′′

√

hn′′ − "n′′

√

hn′′

√

hn′′

→ 1 (n → ∞)

and the proof is complete.
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