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1 Farley’s problem and its solution

A transversal in a rooted tree is any set of nodes that meets every path from
the root to a leaf. We let c(T, k) denote the number of transversals of size
k in a rooted tree T . If T has n nodes and n ≥ 2, then

c(T, n) = 1,

c(T, n− 1) = n,

and (
n−1
k−1

)
≤ c(T, k) ≤

(
n
k

)
for all k = 1, 2, . . . , n− 2. (1)

The n− 2 upper bounds in (1) are attained simultaneously if and only if T
is the path (the tree with precisely one leaf); the n− 2 lower bounds in (1)
are attained simultaneously if and only if T is the star (the tree where all
leaves are children of the root). Jonathan David Farley asked how high can
these lower bounds be raised if each node of T has at most two children; he
offered a creative interpretation of this question in [7, 8]. In this section, we
give an answer.
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Harary and Schwenk [9] call a caterpillar a tree (an unrooted one) where
removal of all nodes of degree one produces a path. Abusing this usage a
little, we will call a caterpillar any rooted tree where removal of all leaves
produces a rooted tree with precisely one leaf. By a full caterpillar of degree
d, we will mean a caterpillar where each internal node, except possibly the
lowest one, has precisely d children. (A d-ary tree means a rooted tree
where each node has at most d children and the order of these children is
irrelevant.)

Theorem 1. Let n and d be positive integers such that d < n; let T be any
d-ary tree on n nodes and let Tmin be the full caterpillar of degree d on n
nodes. Then c(T, k) ≥ c(Tmin, k) for all k = 1, 2, . . . , n.

In the special case where d = 2, Farley proved inequalities c(T, k) ≥ c(Tmin, k)
with (essentially) k = 1, 2, . . . , 1 + blog2 nc by an argument different from
ours.

Given rooted trees T, T ′ on n nodes, we will write T � T ′ to mean that
c(T, k) ≥ c(T ′, k) for all k = 1, 2, . . . , n and that c(T, k) > c(T ′, k) for at
least one of these values of k. With this notation, a refinement of Theorem 1
can be stated as follows.

Theorem 2. Let n and d be positive integers such that d < n and let Tmin

be the full caterpillar of degree d on n nodes. If T is a d-ary tree on n nodes,
then T � Tmin or else T = Tmin.

Our proof of Theorem 2 relies on two ways of altering a rooted tree T so
that the resulting tree succeeds T in the partial order � . We shall describe
these alterations in terms of the parent function of a rooted tree that assigns
to each node z of the tree its parent p(z) — except when z is the root, in
which case p(z) is undefined.

Lemma 1. Let T be a rooted tree defined by parent function p. Let x and y
be nodes of T such that y is a proper ancestor of p(x). Let T ′ be the rooted
tree defined by parent function p′ such that

p′(z) =
{

p(z) if z 6= x,
y if z = x.

Then T � T ′.

This operation is illustrated in Figure 1.
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(a) y is a proper ancestor of p(x) in T .
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(b) y becomes the parent of x in T ′.

Figure 1: From a subtree of T to a subtree of T ′ in Lemma 1.

Proof. If z is a leaf of T , then z is a leaf of T ′ and every node on the path
from the root to z in T ′ lies on the path from the root to z in T . It follows
that every transversal in T ′ is a transversal in T , and so c(T, k) ≥ c(T ′, k)
for all k. To see that c(T, k) > c(T ′, k) for at least one k, consider the set
that consists of p(x) and all leaves of T that are not descendants of p(x):
this set is a transversal in T but not in T ′.

Lemma 2. Let T be a rooted tree defined by parent function p. Let x and
y be nodes of T such that x is not a leaf and y is a leaf which is a proper
descendant of a sibling of x. Let T ′ be the rooted tree defined by parent
function p′ such that

p′(z) =
{

p(z) if p(z) 6= x,
y if p(z) = x.

Then T � T ′.

This operation is illustrated in in Figure 2.

Proof. Given any set S′ of nodes in T ′, define

f(S′) =
{

S′ if S′ meets the path from the root to y,
S′ − {x} ∪ {y} otherwise.

By this definition, f(S′) always meets the path from the root to y; this path
is the same in T ′ and T . Every leaf of T distinct from y is a leaf of T ′;
unless this leaf is a descendant of x, the path from the root to it is again the
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(a) y is a proper descendant of a sibling
of x in T .
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(b) Children of x in T become children of
y in T ′.

Figure 2: From a subtree of T to a subtree of T ′ in Lemma 2.

same in the two trees and, in particular, x does not lie on this path; since
f(S′) ⊃ S′ − {x}, it follows that

(i) if S′ is a transversal in T ′, then f(S′) meets every path in T from the
root to a leaf that is not a descendant of x.

To see that

(ii) if S′ is a transversal in T ′, then S′ meets every path in T from the
root to a leaf that is a descendant of x,

note that S′ meets the path from the root to x and that this path is the
same in T ′ and T . Next, we claim that

(iii) if S′ is a transversal in T ′ such that f(S′) 6= S′, then f(S′) meets every
path in T from a child of x to a leaf.

To justify (iii), note that S′, being a transversal in T ′, meets every path in
T ′ from the root to a leaf and that, since f(S′) 6= S′, it does not meet the
path from the root to y; it follows that S′ meets every path in T ′ from a
child of y to a leaf. Since every path in T from a child of x to a leaf is a
path in T ′ from a child of y to a leaf, we conclude that S′ meets every such
path; now (iii) follows as f(S′) ⊃ S′ − {x}. In addition, we note that

(iv) if S′ is a transversal in T ′ such that f(S′) 6= S′, then x ∈ S′, y 6∈ S′

(since S′ does not meet the path from the root to y, it does not include y
and it does not meet the path from the root to the parent of x; but then,
since it meets the path from the root to x, it must include x) and that
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(v) if S′ is a transversal in T ′ such that f(S′) 6= S′, then f(S′) is not a
transversal in T ′

(because it does not meet the path from the root to x, which is a leaf of T ′).

From (i), (ii), (iii), (iv), we see that f maps every transversal in T ′ to a
transversal of the same size in T ; from (iv) and (v), we see that it maps
distinct transversals in T ′ to distinct transversals in T . It follows that
c(T, k) ≥ c(T ′, k) for all k. To see that c(T, k) > c(T ′, k) for at least one k,
consider the set that consists of p(y) and all leaves of T that are not descen-
dants of p(y): this set S is a transversal in T , but there is no transversal S′

in T ′ such that f(S′) = S.

Proof of Theorem 2. Consider any d-ary tree T on n nodes. Assuming
that there is no d-ary tree T ′ on n nodes such that T � T ′, we shall prove
that T is the full caterpillar of degree d. Lemma 2 guarantees that no two
internal nodes of T are siblings, which means that T is a caterpillar; in turn,
Lemma 1 guarantees that each internal node of T , except possibly the lowest
one, has precisely d children. �

Let us point out that the number of transversals of size k in the caterpillar
Tmin featured in Theorem 1 is easy to calculate:

c(Tmin, k) =


s∑

i=0

(
n− 1− id

k − 1− i(d− 1)

)
+ 1 if k = n− s− 1,

s∑
i=0

(
n− 1− id

k − 1− i(d− 1)

)
otherwise.

To see this, let r0, r1, . . . , rs denote the path produced when all leaves are
deleted from Tmin: r0 is the root, each ri with 0 ≤ i < s has d − 1 leaves
and ri+1 as children, and rs has between 1 and d leaves as children. Note
that a transversal in Tmin includes no ri at all if and only if it consists of
all the leaves of Tmin. Given a transversal S in Tmin that includes at least
one ri, consider the smallest subscript i such that ri ∈ S; note that S must
contain the i(d − 1) leaves that are children of r0, r1, . . . , ri−1 and that its
remaining elements consist of ri and an arbitrary set of its descendants.

Imposing an upper bound on the number of children of every node is a
way of staying clear of the tree that attains simultaneously the n− 2 lower
bounds in (1), one where all children of the root are leaves. Another way
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to stay clear of this tree is to impose an upper bound on the number of
leaves. There is a corresponding analogue of Theorem 2 and this analogue
also follows directly from our two lemmas.

Theorem 3. Let n and m be positive integers such that m < n and let T 0 be
the caterpillar with n nodes, where the root has m children and every node
other than the root has at most one child. If T is a rooted tree with n nodes
and at most m leaves, then T � T 0 or else T = T 0.

Proof. Consider any rooted tree T with n nodes and at most m leaves.
Assuming that there is no rooted tree T ′ with n nodes and at most m leaves
such that T � T ′, we shall prove that T = T 0. Lemma 2 guarantees that no
two internal nodes of T are siblings, which means that T is a caterpillar; in
turn, Lemma 1 guarantees that no internal node of T other than the root
has two or more children.

We close this section by pointing out that the number of transversals of size
k in the caterpillar T 0 featured in Theorem 3 is also easy to calculate:

c(T 0, k) =


(

n− 1
k − 1

)
if k < m,(

n− 1
k − 1

)
+
(

n−m

k −m + 1

)
if k ≥ m.

To see this, note that precisely
(
n−1
k−1

)
transversals of size k include the root

and that every transversal that does not include the root consists of m− 1
leaves that are children of the root and at least one node on the path from
the root to the m-th leaf.

2 Typical number of transversals

As T ranges through all d-ary trees on n nodes, the number c(T, k) of
transversals of size k attains its minimum at the full caterpillar, which we
will denote as Tmin

d (n) from now on. How close is this minimum to values
of c(T, k) that are typical for d-ary trees T on n nodes? This is the question
that we address in this section.

The ratio c(T, k)/
(
n
k

)
is the probability that a randomly chosen set of k of

the n nodes of T is a transversal. It is intuitively obvious that this proba-
bility increases with k; one formal way of capturing this intuition consists
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of counting in two different ways the number N of pairs (A,B) such that
A is a tranversal of size k, B is a transversal of size k + 1, and A ⊂ B
(choosing A first, we get N = c(T, k) · (n− k) and choosing B first, we get
N ≤ c(T, k + 1) · (k + 1)).

We will study c(T, k)/
(
n
k

)
indirectly by focussing on the probability ξ(T, p)

of obtaining a transversal when we choose each node of T independently
with probability p. These two quantities are related by the identity

ξ(T, p) =
n∑

k=0

(
n

k

)
pk(1− p)n−k · c(T, k)(

n

k

) . (2)

Since the sequence of the probabilities
(
n
k

)
pk(1 − p)n−k has a sharp peak

when k is around pn, it may seem intuitively obvious that c(T, k)/
(
n
k

)
is well

approximated by ξ(T, k/n).

To provide a rigorous justification of this intuition, we will bound c(T, k)/
(
n
k

)
in terms of ξ(T, p). For this purpose, we first note that identity (2) implies

ξ(T, p) ≤ c(T, k)(
n

k

) +
n∑

i=k+1

(
n

i

)
pi(1− p)n−i

and

ξ(T, p) ≥ c(T, k)(
n

k

) ·
n∑

i=k

(
n

i

)
pi(1− p)n−i .

Using the well-known inequality [2, 4, 3, 1, 10]∑
i≥(p+t)n

(
n

i

)
pi(1− p)n−i ≤ exp

(
−2t2n

)
and its companion ∑

i≤(p−t)n

(
n

i

)
pi(1− p)n−i ≤ exp

(
−2t2n

)
,

we conclude that

ξ(T, k/n− t)− exp
(
−2t2n

)
≤ c(T, k)(

n

k

) ≤ ξ(T, k/n + t)
1− exp (−2t2n)

. (3)
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We have already seen that the star minimizes all c(T, k) and that the path
maximizes all c(T, k). Similarly, we have

p + (1− p)pn−1 ≤ ξ(T, p) ≤ 1− (1− p)n whenever n ≥ 2

for all trees T on n nodes, with the lower bound attained by the star and
the upper bound attained by the path (the lower bound follows from observ-
ing that one transversal consists of the root alone and another transversal
consists of all the leaves; the upper bound follows from observing that the
empty set is not a transversal). Now we are going to tighten these bounds
under the assumption that, for a prescribed integer d greater than one, T
is a full d-ary tree (meaning that each of its internal nodes has precisely d
children).

Let Cω
d denote the complete d-ary tree where all leaves have depth ω. (The

depth of a node in a rooted tree means the length of the path from the root
to this node: the root has depth 0, its children have depth 1, and so on.)
Given an integer d such that d ≥ 2 and a real number p such that 0 ≤ p ≤ 1,
let us write

`d(p) =
p

1− (1− p)p d−1

and let ud(p) denote the smallest nonnegative root of the polynomial

p− x + (1− p)xd.

In particular,

u2(p) =


p

1− p
if 0 ≤ p ≤ 1/2,

1 if 1/2 ≤ p ≤ 1.

Theorem 4. For every integer d such that d ≥ 2, every real number p such
that 0 ≤ p ≤ 1, and every full d-ary tree T on n nodes, we have

ξ(Tmin
d (n), p) ≤ ξ(T, p) ≤ ξ(Cn

d , p).

As n increases, these bounds tend to the limits limn→∞ ξ(Tmin
d (n), p) = `d(p)

and limn→∞ ξ(Cn
d , p) = ud(p).

Proof. The lower bound on ξ(T, p) follows from our Theorem 1; the upper
bound follows from the observation that every transversal in T is a transver-
sal in Cn

d . Since

ξ(Tmin
d (n), p) = p + (1− p)pn−1 whenever 2 ≤ n ≤ d + 1

8



and

ξ(Tmin
d (n), p) = p + (1− p)pd−1ξ(Tmin

n−d, p) whenever n ≥ d + 2,

induction on n shows that, for all n greater than 1,

ξ(Tmin
d (n), p) = p

1− ((1− p)p d−1) t

1− (1− p)p d−1
+ pn−t(1− p)t with t=b(n− 2)/dc+1.

Finally, we have ξ(C0
d , p) = p and

ξ(Cω
d , p) = p + (1− p)ξ(Cω−1

d , p)d whenever ω ≥ 1.

Since ξ(Cω
d , 0) = 0 = ud(0) and ξ(Cω

d , 1) = 1 = ud(1) for all ω, we may
assume that 0 < p < 1. Now let us write f(x) = p + (1 − p)xd, so that
ξ(Cω

d , p) = fω(p) for all ω. By definition of ud(p) and since f(0) > 0, we
have

0 < x < ud(p) ⇒ x < f(x);

since the polynomial f(x)− x is convex in the interval [0, 1] and since ud(p)
and 1 (possibly identical) are among its roots, we have

ud(p) < x < 1 ⇒ f(x) < x;

since f is increasing in the interval [0, 1], we have

0 < x < ud(p) ⇒ f(x) < f(ud(p)) = ud(p),
ud(p) < x < 1 ⇒ ud(p) = f(ud(p)) < f(x).

It follows that the sequence ξ(C0
d , p), ξ(C1

d , p), ξ(C2
d , p), . . . is monotone (in-

creasing if p < ud(p) and decreasing if ud(p) < p), and so it tends to a limit
in (0, 1); this limit must be a fixed point of f , and so it equals ud(p).

We have noted that the full caterpillar Tmin
d (n) of degree d on n nodes

satisfies

c(Tmin
d (n), k) =

s∑
i=0

(
n− 1− id

k − 1− i(d− 1)

)
+ δ(k, n− s− 1)

with s=b(n− 2)/dc and δ the Kronecker delta. A part of Theorem 4 yields
a cleaner asymptotic formula (where, as usual, f ∼ g means lim f/g = 1):

Corollary 1. If k/n tends to a limit as n tends to infinity, then

c(Tmin
d (n), k) ∼

(
n

k

)
k

n− (n− k)(k/n) d−1
.
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Proof. Set T = Tmin
d (n) and (for instance) t = n−1/3 in (3); then appeal to

Theorem 4 for the value of limn→∞ ξ(Tmin
d (n), k/n).

Corollary 2. Given a function ω : N → N that tends to infinity with n,
let Fd(n) denote the set of all full d-ary trees T on n nodes where all leaves
have depth at least ω(n). If k/n tends to a limit as n tends to infinity, then

min{c(T, k) : T ∈ Fd(n)} ∼ max{c(T, k) : T ∈ Fd(n)} ∼
(

n

k

)
ud

(
k

n

)
.

Proof. If T ∈ Fd(n), then every transversal in C
ω(n)
d is a transversal in T

and every transversal in T is a transversal in Cn
d . It follows that

ξ(Cω(n)
d , p) ≤ ξ(T, p) ≤ ξ(Cn

d , p);

by Theorem 4, both the lower and the upper bound tend to ud(p) as n →∞;
we conclude that

lim
n→∞

min{ξ(T, p) : T ∈ Fd(n)} = lim
n→∞

max{ξ(T, p) : T ∈ Fd(n)} = ud(p).

Then we set again (for instance) t = n−1/3 in (3).

In a number of naturally arising classes of rooted trees, the minimum depth
of a leaf grows logarithmically with the number of vertices. For instance,
Devroye [5] proved that almost all random binary search trees have this
property. These trees are not, in general, full 2-ary trees; however, every
2-ary tree on n nodes can be extended into a full 2-ary tree on 2n + 1 nodes
by adding n + 1 leaves; in this sense, random binary search trees provide
a class of full 2-ary trees that can be taken for Fd(n) in Corollary 2 with
d = 2. A similar comment, with varying values of d, applies to other classes
of split trees, introduced by Devroye [6].

With d = 2, Corollary 1 states that

c(Tmin
2 (n), k) ∼

(
n

k

)
k

n− k + k2/n

and Corollary 2 states that

T ∈ F2(n) ⇒ c(T, k) ∼


(

n

k

)
k

n− k
if k ≤ n/2,(

n

k

)
if k ≥ n/2;
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it follows that

T ∈ F2(n) ⇒ c(T, k)
c(Tmin

2 (n), k)
∼


1 +

k2

n(n− k)
if k ≤ n/2,

1 +
(n− k)2

nk
if k ≥ n/2.

In particular, the limit of ratio c(T, k)/c(Tmin
2 (n), k) with T ∈ F2(n) in-

creases in the interval 0 ≤ k ≤ n/2 from 1 at k = 0 to its maximum 3/2 at
k = n/2 and then it decreases in the interval n/2 ≤ k ≤ n until it reaches 1
again at k = n.

When d ≥ 3, we have no explicit formula for ud(p), but at least we can prove
that the ratio ud(p)/`d(p) is unimodal:

Theorem 5. For every integer d such that d ≥ 2, the ratio ud(p)/`d(p)
increases in the interval [0, (d−1)/d] from its limit 1 at p = 0 to its maximum

1 +
1

d− 1

(
1−

(
d− 1

d

)d−1
)

at p = (d − 1)/d and then it decreases in the interval [(d − 1)/d, 1] until it
reaches 1 again at p = 1.

Proof. Write
p∗ = (d− 1)/d

and consider the function g : [ p∗,+∞) → R defined by

g(x) = xd−1 − xd.

Since g′(x) = (d− 1)xd−2 − dxd−1, this is a decreasing function; its inverse
h is a decreasing function and it maps the interval (−∞, g(p∗)] onto the
interval [ p∗,+∞); for every y in the domain of h, the value of h(y) is the
largest real root of the polynomial xd−xd−1 +y. Since a nonzero r is a root
of the polynomial xd − xd−1 + (1− p)pd−1 if and only if p/r is a root of the
polynomial p− x + (1− p)xd, it follows that

ud(p) =
p

h((1− p)pd−1)
,

and so
ud(p)
`d(p)

=
1− (1− p)pd−1

h((1− p)pd−1)
.
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In particular, limp→0 ud(p)/`d(p) = 1/h(0) = 1.

Since the function defined by p 7→ (1−p)pd−1 increases in the interval [0, p∗]
and maps it onto the interval [0, g(p∗)], proving that the ratio ud(p)/`d(p)
increases in the interval [0, p∗] reduces to proving that the ratio (1−y)/h(y)
increases in the interval [0, g(p∗)]. For this purpose, note first that g′(x)
decreases in the interval [p∗, 1]: more precisely, g′(x) decreases in the interval
[(d − 2)/d,+∞) and we have p∗ > (d − 2)/d. Since h′(y) = 1/g′(h(y))
and since h(y) decreases in the interval [0, g(p∗)], we conclude that h′(y)
decreases in the interval [0, g(p∗)]. In particular, as h′(0) = 1/g′(1) = −1,
we have h′(y) ≤ −1 for all y in [0, g(p∗)]; now it follows first that h(y) ≤ 1−y
for all y in [0, g(p∗)] and then that(

1− y

h(y)

)′
=

−h(y)− (1− y)h′(y)
h(y)2

≥ −h(y) + (1− y)
h(y)2

≥ 0

for all y in [0, g(p∗)].

Finally, if p∗ ≤ p ≤ 1, then p belongs to the domain of g, and so

ud(p) =
p

h((1− p)pd−1)
=

p

h(g(p))
= 1,

which implies
ud(p)
`d(p)

= 1 +
(1− p)(1− pd−1)

p
.

In closing, let us return to d = 2. A binary tree is a 2-ary tree where each
child is labeled as a ‘left child’ or a ‘right child’ in such a way that siblings
always get distinct labels. For every function k of n that takes values in
{1, 2, . . . , n}, the average of c(T, k) over all binary trees is

(1 + o(1))
(

n

k

)
2k√

(n− k)2 + 4k2

and the average of c(T, k) over all full binary trees is

(1 + o(1))
(

n

k

)
k√

(n− k)2 + k2
.
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Figure 3: Limiting probabilities of cutting the root from all the leaves as a
function of p, the probability of removing an individual node.

Analytic proofs of these two results are beyond the scope of the present pa-
per; we shall content ourselves with commenting on the difference between
the average c(T, k) of full binary trees on n nodes and the average c(T, k) of
full 2-ary trees on n nodes. Many full 2-ary trees may be labelled in many
different ways as full binary trees. For instance, there are precisely two full
2-ary trees on 7 nodes: the full caterpillar Tmin

2 (7) and the the complete
2-ary tree C2

2 . Since four distinct binary trees are isomorphic to Tmin
2 (7) as

2-ary trees and only one binary tree is isomorphic to C2
2 as a 2-ary tree, the

caterpilar contributes 80% of its (low) values of c(Tmin
2 (7), k) in computing

the average c(T, k) of full binary trees on 7 nodes, as opposed to only 50%
in computing the average c(T, k) of full 2-ary trees on 7 nodes.
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