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Abstract

Kademlia [7] is the de facto standard searching algorithm for P2P (peer-to-peer)
networks on the Internet. In our earlier work [2], we introduced two slightly different
models for Kademlia and studied how many steps it takes to search for a target node by
using Kademlia’s searching algorithm. The first model, in which nodes of the network
are labeled with deterministic ids, had been discussed in that paper. The second one,
in which nodes are labeled with random ids, which we call the Random id Model, was
only briefly mentioned. Refined results with detailed proofs for this model are given in
this paper. Our analysis shows that with high probability it takes about c log n steps to
locate any node, where n is the total number of nodes in the network and c is a constant
that does not depend on n.

1 Introduction to Kademlia

A P2P (peer-to-peer) network [11] is a decentralized computer network which allows partici-
pating computers (nodes) to share resources. Some P2P networks have millions of live nodes.
To allow searching for a particular node without introducing bottlenecks in the network, a
group of algorithms called dht (Distributed Hash Table) [1] was invented in the early 2000s,
including Plaxton’s algorithm [8], Pastry [10], can [9], Chord [13], Koorde [6], Tapestry [15],
and Kademlia [7]. Among them, Kademlia is most widely used in today’s Internet.

In Kademlia, each node is assigned an id selected uniformly at random from {0, 1}d (id
space), where d is usually 128 [12] or 160 [3]. The distance between two nodes is calculated
by performing the bitwise exclusive or (xor) operation over their ids and taking the result
as a binary number. (In this work distance and closeness always refer to the xor distance
between ids.)

Roughly speaking, a Kademlia node keeps a table of a few other nodes (neighbors) whose
distances are sufficiently diverse. So when a node searches for an id, it always has some
neighbors close to its target. By inquiring these neighbors, and these neighbors’ neighbors,
and so on, the node that is closest to the target id in the network will be found eventually.
Other dhts work in similar ways. The differences mainly come from how distance is defined
and how neighbors are chosen. For a more detailed survey of dhts, see [1].

∗Research of the authors was supported by NSERC.
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2 The Random ID Model

This section briefly reviews the Random id Model for Kademlia defined in [2]. Let d ≥ log2 n
be the length of n binary ids X1, . . . , Xn chosen uniformly at random from {0, 1}d without
replacement. Consider n nodes indexed by i ∈ {1, . . . , n}. Let Xi be the id of node i.

Given two ids x = (x1, . . . , xd), y = (y1, . . . , yd), their xor distance is defined by

δ(x, y) =
d
∑

j=1

(xj ⊕ yj)× 2d−j .

where ⊕ is the xor operator

u⊕ v =

{

1 if u 6= v,

0 otherwise.

Let ℓ(x, y) be the length of the common prefix of x and y. The n nodes can be partitioned
into d+ 1 parts by their common prefix length with x via

S(x, j) = {i : 1 ≤ i ≤ n, ℓ(x,Xi) = j}, 0 ≤ j ≤ d.

For each 1 ≤ i ≤ n, d tables (buckets) of size at most k are kept, where k is a fixed positive in-
teger. Buckets are indexed by j ∈ {0, . . . , d−1}. The bucket j is filled with min{k, |S(Xi, j)|}
indices drawn uniformly at random from S(Xi, j) without replacement. Note that the first j
bits of Xs, if s ∈ S(Xi, j), agree with the first j bits of Xi, but the (j + 1)-th bit is different.

Searching for y ∈ {0, 1}d initiated at node i proceeds as follows. Given that ℓ(y,Xi) = j,
y can only be in S(Xi, j). Thus, all indices from the bucket j of i are retrieved, say i1, . . . , ik.
From them, the one having shortest distance to y is selected as i∗. (In fact, any selection
algorithm would be sufficient for the results of this paper.) Note that

ℓ(y,Xi∗) = max
1≤r≤k

ℓ(y,Xir ).

Thus the choice of i∗ does not depend on the exact distances fromXi1 , . . . , Xik to y. Therefore,
instead of the xor distance, only the length of common prefix is needed in the following
analysis of searching.

The search halts if y = Xi or if the bucket is empty. In the latter case, Xi is closest to
y among all nodes. Otherwise we continue from i∗. Since ℓ(y,Xi∗) > ℓ(y,Xi), the maximal
number of steps before halting is bounded by d. Let Ti be the number of steps before halting
in the search of y when started from i (searching time). Then Ti = Ti∗ + 1.

Treating X1, . . . , Xn as strings consisting of zeros and ones, they can be represented by a
tree data structure called trie [14]. The S(x, j)’s can be viewed as subtrees. Filling buckets is
equivalent to choosing at most k leaves from each of these subtrees. Fig. 1 gives an example
of an id trie.

3 Main Results

The structure of the model is such that nothing changes if X1, . . . , Xn, y are replaced by their
coordinate-wise xor with a given vector z ∈ {0, 1}d. This is a mere rotation of the hypercube.
Thus, it can be assumed without loss of generality that y = (1, 1, . . . , 1), the rightmost branch
in the id trie.
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Figure 1: An example of Kademlia id trie. Given an id x = (1, 0, 0), the trie is partitioned
into subtrees S(x, 0),S(x, 1) and S(x, 2). Node x maintains a bucket for each of these subtrees
containing at most k nodes from the corresponding subtree.

If d ∼ c log2 n for some c ≥ 1, the searching time is O(log n), which is undoubtedly a
contributing factor in Kademlia’s success. If d = ω(n), then it is not a useful upper bound
of searching time any more. However, in some probabilistic sense, Ti can be much smaller
than log2 n—it can be controlled by the parameter k, which measures the amount of storage
consumed by each node. The aim of this work is to investigate finer properties of these random
variables. In particular, the following theorem is proved:

Theorem 1. Assume that d ≥ log2 n. Let k > 0 be a fixed integer. Let
p
→ denote convergence

in probability. Then

T1

log2 n

p
→

1

µk
, as n → ∞,

ET1

log2 n
→

1

µk
, as n → ∞,

where µk is a function of k only:

µk =

∞
∑

j=1

1−

(

1−
1

2j−1

)k

.

In particular, µ1 = 2.

In the rest of the paper, we first show that once the search reaches a node that shares a
common prefix of length about log n with y, the search halts in o(log n) steps. Thus it suffices
to prove Theorem 1 for the time that it takes for this event to happen. Then we show that
the id trie is well balanced with high probability. Thus when n is a power of 2, we can couple
the search in the original trie with a search in a trie that is a complete binary tree. It proves
the theorem for this special case. After that, we give a sketch of how to deal with general n.
At the end we briefly summarize some implications of the theorem.
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4 The Tail of the Search Time

To keep the notation simple, let m = log2 n and and note that m is not necessarily integer-
valued. Also, for analytic purposes, define

J = min
{

j :
n

2j+1
≤ m4

}

.

Since n/2J > m4 and n/2J+1 ≤ m4,

J < log2
n

m4
= m− 4 log2 m ≤ m, (1)

J ≥ log2
n

m4
− 1 = m− 4 log2 m− 1. (2)

The importance of J follows from the fact that once the search reaches a node i with
ℓ(Xi, y) ≥ J , it takes very few steps to finish. Let T ′

1 be the number of search steps that
depart from a node in the set S(y, j) for some j < J , with the very first node in the search
being 1.

Lemma 1. Theorem 1 follows if

T ′
1

log2 n

p
→

1

µk
, as n → ∞.

Proof. Let T ′′
1 = T1−T ′

1. T
′′
1 counts steps of the search departing from a node in

⋃d−1
j=J S(y, j).

Thus

T ′′
1 ≤

d−1
∑

j≥J

1[|S(y,j)|>0].

Noting that

E|S(y, j)| =
n

2j+1
, (3)

by linearity of expectation,

ET ′′
1 ≤

d−1
∑

j≥J

P {|S(y, j)| ≥ 1} ≤

d−1
∑

j≥J

min{E|S(y, j)|, 1}

≤

d−1
∑

j≥J

min
{ n

2j+1
, 1
}

(by (3))

≤

d−1
∑

j≥J

1[2j+1<n] +

d−1
∑

j≥J

1[2j+1≥n] ×
n

2j+1

≤ 4 log2 log2 n+ 2 (by (2)).

Thus, for all ǫ > 0 fixed,

P {T ′′
1 ≥ ǫ log2 n} ≤

ET ′′
1

ǫ log2 n
= o(1),
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Therefore T ′′
1 / log2 n

p
→ 0. For the expectation, note that

ET ′
1

log2 n
→

1

µk
, as n → ∞,

by the lemma’s assumption and the fact that T ′
1/ log2 n ≤ 1 < ∞.

5 Good Tries and Bad Tries

Since the tail of search does not matter, define a new partition Sj of all nodes by merging
subtrees S(y, j) for j ≥ J as follows:

Sj =

{

S(y, j) if 0 ≤ j < J ,
⋃d

i=J S(y, i) if j = J.

Let Nj = |Sj |. It follows from (3) that

ENj =

{

n/2j+1 if 0 ≤ j < J ,

n/2J if j = J,
(4)

or simply ENj = n/2(j+1)∧J , where a ∧ b
def
= min{a, b}. Note that Nj is hypergeometric with

parameters
(

n,
2d

2(j+1)∧J
, 2d −

2d

2(j+1)∧J

)

,

i.e., it corresponds to the selection of n balls without replacement from an urn of 2d balls of
which 2d/2(j+1)∧J are white [5, chap. 6.3].

The analysis of T ′
1 can be simplified if the Nj ’s are all close to their expectations. To be

precise, let α = m−3/2 be the accuracy parameter. An id trie is good, if

|Nj −ENj | ≤ α×ENj ,

for all 0 ≤ j ≤ J . Otherwise it is called bad.

Lemma 2. The probability that an id trie is bad is o(1).

Proof. It follows from the union bound that

P







J
⋃

j=0

[|Nj −ENj | > α×ENj ]







≤

J
∑

j=0

P {[|Nj −ENj | > α×ENj ]}

≤

J
∑

j=0

Var(Nj)

(α×ENj)2
(by Chebyshev’s inequality)

≤
J
∑

j=0

ENj

(α×ENj)2
(Nj is hypergeometric)

≤
1

α2
×

J
∑

j=0

2j+1

n
(by (4))

≤ m3 ×
2J+2

n
= o(1).

(

since
n

2J
> m4

)
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Figure 2: The approximate sizes of subtrees in a good trie.

The fact used here is that Var(Nj) ≤ Var(N ′
j) where N

′
j is binomial (n, 1/2(j+1)∧J ). For the

binomial, Var(N ′
j) ≤ EN ′

j = ENj .

6 Proof when n Is a Power of 2

In this section, n is assumed to be a power of 2, i.e., m is an integer. The general case is
treated in the next section.

6.1 A Perfect Trie

Construct a coupled id trie consisting of Y1, . . . , Yn as follows. If Nj ≥ ENj , i.e., the size of
the subtree Sj is at least its expectation, let Yi = Xi for the ENj smallest indices in Sj . After
this preliminary coupling, some Yi’s are undefined. The indices i for which Yi are undefined
go into a global pool G of size

J
∑

j=0

max{Nj −ENj , 0}.

For a good trie, the size of the pool is at most

J
∑

j=0

α×ENj = α×E

J
∑

j=0

Nj = αn.

For a subtree Sj of size Nj < ENj , take E [Nj ] − Nj indices i from G and assign Yi a
value, that is different from all other Ys’s, and that has ℓ(Yi, y)∧ J = j. Subtrees of this new
trie have fixed sizes of

|{i : ℓ(Yi, y) ∧ J = j}| = ENj =
n

2(j+1)∧J
, 0 ≤ j ≤ J. (5)

A trie like this is called perfect. Indices i for which Xi 6= Yi, i.e., i ∈ G, are called ghosts.
Other indices are called normal.

Next, refill the buckets according to the perfect trie, but keep buckets of normal indices
containing no ghosts unchanged. Observe that a search step departing at a normal index i
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proceeds precisely the same in both tries if bucket j (with j = ℓ(Yi, y)) of i does not contain
ghosts. Assuming that the original trie is good, the probability that a bucket that corresponds
to Sj for some j ≤ J contains a ghost is not more than kα. This is because in the newly
constructed prefect trie, the subtree Sj contains no more than α proportion of ghost nodes.

Let T ∗
1 denote the number of search steps starting from node 1 via node i with ℓ(Yi, y) < J

in the perfect trie. Then [T ∗
1 6= T ′

1] ⊆ B, where B is the event that at least one node in the
buckets encountered during a search is a ghost. Let A be the event that the trie is good. It
follows from Lemma 2 that

P {T ∗
1 6= T ′

1} ≤ P {B} ≤ P {B,A}+P {Ac} ≤ J × kα+ o(1) = o(1).

Therefore, Theorem 1 follows if

T ∗
1

log2 n

p
→

1

µk
, as n → ∞.

6.2 Filling the Buckets with Replacement

To deal with the problem that buckets are filled by sampling without replacement, another
coupling argument is needed. Let pj be the probability that the k items sampled with re-
placement from a set of size n/2j+1 are not all distinctive. Observe that by the union bound,

pj ≤

(

k

2

)

2j+1

n
≤

k22j

n
.

If ℓ(Yi, y) = j < J , then bucket j of i has k elements drawn without replacement from

S = {s : ℓ(Ys, y) ≥ j + 1}, 0 ≤ j < J.

Observe that
|S| =

n

2j+2
+

n

2j+3
+ · · ·+

n

2J
+

n

2J
=

n

2j+1
.

Hence, with probability 1 − pj , the sampling can be seen as having been carried out with
replacement.

The coupling is as follows: for all i with ℓ(Yi, y) = j and all 0 ≤ j < J , mark bucket
j of i with probability pj . When a bucket is marked, replace its entries with k new entires
drawn with replacement conditioned on the existence of at least one duplicate entry. In this
way, all bucket entries are for a sampling with replacement. Let the search time, starting still
from 1, be denoted by T ∗∗

1 . Let D be the event that during the search a marked bucket is
encountered. Observe that [T ∗

1 6= T ∗∗
1 ] ⊆ D. Therefore

P {T ∗
1 6= T ∗∗

1 } ≤ P {D} ≤

J−1
∑

j=0

pj ≤

J−1
∑

j=0

k22j

n
<

k22J

n
<

2k2

m4
= o(1).

So Theorem 1 follows if
T ∗∗
1

log2 n

p
→

1

µk
, as n → ∞.
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6.3 Analyzing T ∗∗

1 Using a Sum of I.I.D. Random Variables

Let ∆0 = ℓ(Y1, y). Assume that step t of the search departs from node i and reaches node i∗.
Let ∆t = ℓ(Yi∗ , y)− ℓ(Yi, y), i.e., ∆t represents the progress in this step. Then

T ∗∗
1 = inf

{

t :
t
∑

s=0

∆s ≥ J

}

.

Due to the recursive structure of a perfect trie, ∆1,∆2, . . ., although not i.i.d., should have
very similar distributions. This intuition leads to the following analysis of T ∗∗

1 by studying a
sum of i.i.d. random variables.

One observation allows us to deal with truncated version of ∆t’s is as follows:

Lemma 3. Let w0, w1, . . . be a sequence of real numbers with
∑

t≥0 wt = ∞. Define

wt = wt ∧

(

M −

t−1
∑

s=0

ws

)

, t = 0, 1, 2 . . . ,

where M is also a real number. Then

inf

{

t :
t
∑

s=0

ws ≥ M

}

= inf

{

t :
t
∑

s=0

ws ≥ M

}

,

where we define the infimum of an empty set to be ∞.

Proof. Let τ = inf
{

t :
∑t

s=0 ws ≥ M
}

. If τ = ∞ or τ = 0, the lemma is trivially true. So we

assume 0 < τ < ∞. By induction on t, one can show that wt = wt if t < τ . Since 0 < τ , we
have w0 = w0, which is the induction basis. If ws = ws for all 0 ≤ s ≤ t− 1 and t < τ , then

wt = wt ∧

(

M −
t−1
∑

s=0

ws

)

= wt ∧

(

M −
t−1
∑

s=0

ws

)

= wt.

Therefore
∑t

s=0 ws < M if and only if
∑t

s=0 ws < M .

Let ∆t = ∆t ∧
(

J −
∑t−1

s=0 ∆s

)

. It follows from the previous lemma that

T ∗∗
1 = inf

{

t :
t
∑

s=0

∆s ≥ J

}

,

which is quite convenient as the distribution of ∆t is easy to compute.
Assume again that step t of the search departs from node i with ℓ(Yi, y) = j < J . Consider

one item, say z, in bucket j of i. Recall that z is selected uniformly at random from all indices
r with ℓ(r, y) ≥ j + 1. Thus it follows from the structure of a perfect trie, which is given
by (5), that

P {ℓ(Yz, y) = s} =
n

2s+1

n
2j+2 + n

2j+3 + · · ·+ n
2J

+ n
2J

=
1

2s−j
, j + 1 ≤ s < J,

P {ℓ(Yz, y) ≥ J} =
n
2J

n
2j+2 + n

2j+3 + · · ·+ n
2J

+ n
2J

=
1

2J−j−1
.
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Or shifted by −j,

P {ℓ(Yz, y)− j = s} =
1

2s
, 1 ≤ s < J − j,

P {ℓ(Yz, y)− j ≥ J − j} =
1

2J−j−1
.

If truncated by J − j, we obtain

P {(ℓ(Yz, y)− j) ∧ (J − j) = s} =
1

2s∧(J−j−1)
, 1 ≤ s ≤ J − j.

Note that this is exactly the distribution of a geometric (1/2) truncated by J − j.
Recall that among all the values of ℓ( ·, y) given by items in the bucket j of i, the one

chosen as the next stop of the search gives the maximum. Thus

∆t = max
z∈bucket j

{ℓ(Yz, y)− j}.

Let Z1, Z2, . . . be i.i.d. geometric (1/2). Let V = max{Z1, . . . , Zk}. Then

∆t = ∆t ∧ (J − j)

= max
z∈bucket j

{(ℓ(Yz, y)− j)} ∧ (J − j)

= max
z∈bucket j

{(ℓ(Yz, y)− j) ∧ (J − j)}

L
= max{Z1 ∧ (J − j), . . . , Zk ∧ (J − j)}

= max{Z1, . . . , Zk} ∧ (J − j)

= V ∧ (J − j).

Let V0 be a geometric (1/2) minus one. Then V0 ∧ d
L
=∆0. Let V1, V2, . . . be i.i.d. random

variables distributed as V . Let V t = Vt ∧ (J −
∑t−1

s=0 V s). Using induction and the previous
argument about ∆t, one can show that

t
∑

s=0

V s
L
=

t
∑

s=0

∆s t = 0, 1, . . . . (6)

For the induction basis, note that

∆0 = ∆0 ∧ J
L
=(V0 ∧ d) ∧ J = V0 ∧ J = V 0.

Assume that
∑t−1

s=0 V s
L
=
∑t−1

s=0 ∆s for some t > 0. Then for all 0 ≤ i ≤ J ,

P

{

t
∑

s=0

∆s = i

}

=

i
∑

j=0

P

{

∆t = i− j

∣

∣

∣

∣

∣

t−1
∑

s=0

∆s = j

}

P

{

t−1
∑

s=0

∆s = j

}

=
i
∑

j=0

P {Vt ∧ (J − j) = i− j}P

{

t−1
∑

s=0

V s = j

}

=

i
∑

j=0

P

{[

V t = i−

t−1
∑

s=0

V s

]

∩

[

t−1
∑

s=0

V s = j

]}

= P

{

t
∑

s=0

V s = i

}

.
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Thus (6) is proved. It then follows from Lemma 3 and (6) that

T ∗∗
1

L
= inf

{

t :
t
∑

s=0

V s ≥ J

}

= inf

{

t :
t
∑

s=0

Vs ≥ J

}

,

which makes T ∗∗
1 much easier to analyze.

Since V < s if and only if Z1, . . . , Zk are all smaller than s,

P {V < s} =

k
∏

r=1

P {Zr < s} =

(

1−
1

2s−1

)k

.

Therefore, by definition of µk,

EV =

∞
∑

s=1

P {V ≥ s} =

∞
∑

s=1

1−

(

1−
1

2s−1

)k

= µk.

Readers familiar with renewal theory [4, chap. 4.4] can immediately see that

T ∗∗
1

log2 n
=

T ∗∗
1

J
×

J

log2 n

p
→

1

EV
=

1

µk
,

which completes the proof of Theorem 1 for n which is power of 2. The following Lemma
gives some more details.

Lemma 4. If τ = inf
{

t :
∑t

s=0 Vs ≥ M
}

,

τ

M/EV

p
→ 1, as M → ∞.

Proof. Since V0 + 1 is geometric (1/2),

P {V0 + 1 ≤ s} = 1−
1

2s
≥

(

1−
1

2s

)k

= P {V1 ≤ s} .

In other words, V0 � V1, where � denotes stochastical ordering. Let

τ ′ = inf

{

t :

t
∑

s=1

Vs ≥ M

}

, τ ′′ = inf

{

t :

t
∑

s=0

Vs+1 ≥ M

}

= τ ′ − 1.

Then τ ′′ � τ and τ ≤ τ ′. By the strong law of large numbers, both τ ′/M and τ ′′/M converge

to 1/EV almost surely. Therefore τ/M
p
→ 1/EV .

7 Proof for the General Case

In this section, the proof Theorem 1 for n an arbitrary integer is only sketched as most
methods used here are very similar to those in the previous section.
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7.1 An Almost Perfect Trie

When n is not power of 2, ENj = n/2(j+1)∧J is not guaranteed to be an integer. So a perfect
trie is not well defined any more. However, let us define

bj =

{

⌈ENj⌉ = ⌈ n
2j+1 ⌉ 0 ≤ j < J,

n−
∑J−1

s=0 bs = n−
∑J−1

s=0 ⌈
n

2s+1 ⌉ j = J.

Then the coupling argument for perfect tries used in Section 6.1 can still be applied, now
replacing ENj by bj .

In this way, a trie consisting of Y1, . . . , Yn can be constructed, with its subtrees having
fixed sizes of

|{i : ℓ(Yi, y) ∧ J = j}| = bj . (7)

If the original trie is good, then the number of indices i for which Xi 6= Yi, called ghosts, is
bounded by

J−1
∑

j=0

α×ENj + (αENJ + J) = αn+ J.

A trie with these properties is called almost perfect.
Let T ∗

1 denote the number of search steps starting from node 1 via node i with ℓ(Yi, y) < J
in the almost perfect trie. If T ∗

1 and T ′
1 are coupled the same way as they were in Section 6.1,

then [T ∗
1 6= T ′

1] ⊆ B, where B is the event that at least one node in the buckets encountered
during a search is a ghost. Let A be the event that the trie is good, which has probability
o(1) by Lemma 2. One can check that

P {T ∗
1 6= T ′

1} ≤ P {B} ≤ P {B,A}+P {Ac} ≤ mk(m−3/2 +
m

2m
) + o(1) = o(1).

Again, Theorem 1 follows if

T ∗
1

log2 n

p
→

1

µk
, as n → ∞.

7.2 Filling the Buckets with Replacement

The coupling argument used in Section 6.2 to deal the problem that buckets are filled by
sampling without replacement can be adapted for an almost perfect trie. Let pj be the
probability that k items sampled without replacement from a set of size bj+1 + · · ·+ bJ have
conflicts. Observe that, for n large enough,

bj+1 + · · ·+ bJ ≥
n

2j+1
− (j + 1) ≥

n

2j+2
.

Thus it follows from the union bound that

pj ≤

(

k

2

)

1

bj+1 + · · ·+ bJ
≤

k2

2(bj+1 + · · ·+ bJ )
≤

2j+1

n
.
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Let the search time of sampling without replacement be T ∗∗
1 . Let T ∗∗

1 and T ∗
1 be coupled

in the same way as they were in Section 6.2. Let D be the event that during the search an
unmarked bucket is encountered. Since [T ∗

1 6= T ∗∗
1 ] ⊆ D, one can check that

P {T ∗
1 6= T ∗∗

1 } ≤ P {D} ≤

J−1
∑

j=0

pj <
4k2

m4
= o(1).

So once again, Theorem 1 follows if

T ∗∗
1

log2 n

p
→

1

µk
, as n → ∞.

7.3 Analyzing T ∗∗

1 Using a Sum of I.I.D. Random Variables

Consider two partitions of a line segment L of length n. From left to right, cut L into J + 1
consecutive intervals B0, . . . , BJ , with |Bj | = bj , where |a| denotes the length of a. Again,
from left to right, cut L into infinite many consecutive intervalsB′

0, B
′
1, . . ., with |B′

j | = 1/2j+1.
Observe that for 0 ≤ j < J , Bj and B′

j do not completely match since Bj is wider than
B′

j . However, since |Bj | − |B′
j | ≤ 1, for 0 ≤ j < J , the distance between the right endpoints

of Bj and B′
j is at most J . Therefore, the total length of unmatched regions, which are are

called death zones, is O(J2).
Let ∆0,∆1, . . . and V0, V1, . . . be the same as in Section 6.3. A coupling between them can

constructed as follows: pick one point z0 uniformly at random from the entire L. If z0 falls

in interval Bj , let ∆0 = j. If z0 falls in interval B′
j , let V0 = j. Note that ∆0

L
= ℓ(Y1, y). Also

note that since

P {V0 = j} = P
{

z0 ∈ B′
j

}

=
|B′

j |

n
=

1

2j+1
, j = 0, 1, . . . ,

V0 is geometric (1/2) minus one, as desired.

Assume that
∑t−1

s=0 ∆s = j. Pick k points from the line segment starting from B′
j+1 to the

right endpoint of L. Let Vt = s such that the rightmost one of the k points falls into B′
j+s.

Since

P {Vt < s} = P
{

all k points are in B′
j+1, . . . , B

′
j+s−1

}

=

(

1−
1

2s−1

)k

,

Vt is again the maximum of k i.i.d. geometric (1/2).
If not all the k points are in the range of Bj+1, . . . , BJ , keep picking more points until k

of them are within this region. Let ∆t = s such that the rightmost of the these k points falls
into Bj+s. Chosen in this way, ∆t has the same distribution as how much progress one makes
at step t of the search. Therefore

T ∗∗
1

L
= inf

{

t :

t
∑

s=0

∆s ≥ J

}

.

It follows from Lemma 4 that if

T ∗∗∗
1 = inf

{

t :

t
∑

s=0

Vs ≥ J

}

,
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then T ∗∗∗
1 /log2 n

p
→ 1/µk as n → ∞.

Let E be the event that at some step of the previous coupling, at least one of the first k
chosen points falls into death zones. Note that [T ∗∗

1 6= T ∗∗∗
1 ] ⊆ E. Therefore,

P {T ∗∗
1 6= T ∗∗∗

1 } ≤ P {E} ≤

J−1
∑

j=0

k
J2

bJ
≤

m3k

m4 −m
= o(1).

So the proof of Theorem 1 when n is an arbitrary integer is complete.

8 Conclusions

In a Kademlia system, one often searches for a random id. Although T1 is the searching time
for a fixed id, Theorem 1 still holds if the target y is chosen uniformly at random from {0, 1}d.

If d ∼ c log2 n with c > 2, there is no essential difference between sampling the n ids
with or without replacement from {0, 1}d as the probability of a collision in sampling with
replacement is o(1). This is the well known birthday problem. Since in practice, a Kademlia
system hands out a new id without checking its uniqueness, it is wise to have c > 2 since then
a randomly generated id clashes with any existing id with very small probability.

Recall that µk =
∑∞

j=1 1−
(

1− 1/2j−1
)k
. Since the terms in the sum decrease in j, µk

can be bounded:

µk ≥

∫ ∞

0

1−

(

1−
1

2x

)k

dx =
Hk

log 2
,

µk ≤

∫ ∞

0

1−

(

1−
1

2x

)k

dx+ 1 =
Hk

log 2
+ 1.

Here logw denotes the natural logarithm of w, and Hk =
∑k

s=1 1/s is the k-th harmonic
number. Since Hk ∼ log k,

lim
k→∞

µk

log2 k
= lim

k→∞

Hk

log 2× log2 k
= 1.

Thus, T1/ logk n
p
→ log2 k/µk = 1 + ok(1). Since T1/(

1
2 log2 n)

p
→ 1 when k = 1, an increase

in storage by a factor of k results in a modest decrease in searching time by a factor of
log(k)/(2 log 2).

In [2], it has been proved that if X1 = x1, . . . , Xn = xn for fixed x1, . . . , xn, then

sup
x1,...,xn

sup
i

sup
y

ETi ≤

(

log 2

Hk
+ o(1)

)

log2 n.

Thus Theorem 1 implies that the above upper bound is not far from tight when k is large.
Table 8 lists the numeric values of 1/µk and log(2)/Hk for k = 1, . . . , 10.

If k = Θ(log n), then T1 ∼ log n/log log n in probability as n → ∞. The proof of Theorem 1
is for fixed k only, but one can verify that only minor changes are needed to make it work
for such modest increase in k as a function of n. More specifically, to make the coupling
with searching in a perfect trie work, we only need to redefine J = min{j : 1/2j+1 < m7}
and α = m−3. And Lemma 4 needs to use a version of the weak law of large numbers [4,
thm. 2.2.4] instead of the strong law of large numbers to deal with the fact that EV is not a
constant anymore.
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Table 1: Numeric values of 1/µk and log(2)/Hk.

k 1/µk log(2)/Hk

1 0.5000000000 0.6931471806
2 0.3750000000 0.4620981204
3 0.3181818182 0.3780802804
4 0.2853260870 0.3327106467
5 0.2635627530 0.3035681083
6 0.2478426396 0.2829172166
7 0.2358018447 0.2673294911
8 0.2261891923 0.2550344423
9 0.2182781689 0.2450176596
10 0.2116151616 0.2366523364

If k = nΘ(1), we can show that T1 = Θ(1) in probability. Note that here only an upper
bound of T1 is needed. Assuming that the id trie is good, it can be proved that in each search
step the length of the common prefix of the current node and the target node increases by
at least c log n with high probability, where c is a constant depending on k. Thus after at
most O(1) steps, the current node and the target node are both in a subtree of size at most
k. Then the search terminates after one more step.
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