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Abstract

We define the (random) k-cut number of a rooted graph to model the difficulty of
the destruction of a resilient network. The process is as the cut model of Meir and
Moon [21] except now a node must be cut k times before it is destroyed. The first
order terms of the expectation and variance of Xn, the k-cut number of a path of
length n, are proved. We also show that Xn, after rescaling, converges in distribution
to a limit Bk, which has a complicated representation. The paper then briefly discusses
the k-cut number of some trees and general graphs. We conclude by some analytic
results which may be of interest.
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1 Introduction and main results

1.1 The k-cut number of a graph

Consider Gn, a connected graph consisting of n nodes with exactly one node labeled
as the root, which we call a rooted graph. Let k be a positive integer. We remove nodes
from the graph as follows:

1. Choose a node uniformly at random from the component that contains the root.
Cut the selected node once.

2. If this node has been cut k times, remove the node together with edges attached to
it from the graph.

3. If the root has been removed, then stop. Otherwise, go to step 1.
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k-cut on paths and some trees

We call the (random) total number of cuts needed to end this procedure the k-cut number
and denote it by K(Gn). (Note that in traditional cutting models, nodes are removed as
soon as they are cut once, i.e., k = 1. But in our model, a node is only removed after
being cut k times.)

One can also define an edge version of this process. Instead of cutting nodes, each
time we choose an edge uniformly at random from the component that contains the
root and cut it once. If the edge has been cut k-times then we remove it. The process
stops when the root is isolated. We let Ke(Gn) denote the number of cuts needed for the
process to end.

Our model can also be applied to botnets, i.e., malicious computer networks consisting
of compromised machines which are often used in spamming or attacks. The nodes in
Gn represent the computers in a botnet, and the root represents the bot-master. The
effectiveness of a botnet can be measured using the size of the component containing the
root, which indicates the resources available to the bot-master [6]. To take down a botnet
means to reduce the size of this root component as much as possible. If we assume that
we target infected computers uniformly at random and it takes at least k attempts to fix
a computer, then the k-cut number measures how difficult it is to completely isolate the
bot-master.

The case k = 1 and Gn being a rooted tree has aroused great interests among
mathematicians in the past few decades. The edge version of one-cut was first introduced
by Meir and Moon [21] for the uniform random Cayley tree. Janson [16, 17] noticed the
equivalence between one-cuts and records in trees and studied them in binary trees and
conditional Galton-Watson trees. Later Addario-Berry, Broutin and Holmgren [1] gave a
simpler proof for the limit distribution of one-cuts in conditional Galton-Watson trees.
For one-cuts in random recursive trees, see [22, 15, 9]. For binary search trees and split
trees, see [12, 13].

1.2 The k-cut number of a tree

One of the most interesting cases is when Gn = Tn, where Tn is a rooted tree with n
nodes.

There is an equivalent way to define K(Tn). Imagine that each node is given an
alarm clock. At time zero, the alarm clock of node v is set to ring at time T1,v, where
(Ti,v)i≥1,v∈Tn are i.i.d. (independent and identically distributed) Exp(1) random variables.
After the alarm clock of node v rings the i-th time, we set it to ring again at time Ti+1,v.
Due to the memoryless property of exponential random variables (see [10, pp. 134]), at
any moment, which alarm clock rings next is always uniformly distributed. Thus, if we
cut a node that is still in the tree when its alarm clock rings, and remove the node with
its descendants if it has already been cut k-times, then we get exactly the k-cut model.
(The random variables (Ti,v)i≥1 can be seen as the holding times in a Poisson process
N(t)v of parameter 1, where N(t)v is the number of cuts in v during the time [0, t] and
has a Poisson distribution with parameter t.)

How can we tell if a node is still in the tree? When node v’s alarm clock rings for
the r-th time for some r ≤ k, and no node above v has already rung k times, we say v
has become an r-record. And when a node becomes an r-record, it must still be in the
tree. Thus, summing the number of r-records over r ∈ {1, . . . , k}, we again get the k-cut
number K(Tn). One node can be a 1-record, a 2-record, etc., at the same time, so it can
be counted multiple times. Note that if a node is an r-record, then it must also be an
i-record for i ∈ {1, . . . , r − 1}.
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k-cut on paths and some trees

To be more precise, we define K(Tn) as a function of (Ti,v)i≥1,v∈Tn . Let

Gr,v
def
=

r∑
i=1

Ti,v,

i.e., Gr,v is the moment when the alarm clock of node v rings for the r-th time. Then Gr,v
has a gamma distribution with parameters (r, 1) (see [10, Theorem 2.1.12]), which we
denote by Gamma(r). Let

Ir,v
def
= JGr,v < min{Gk,u : u ∈ Tn, u is an ancestor of v}K, (1.1)

where J·K denotes the Iverson bracket, i.e., JSK = 1 if the statement S is true and JSK = 0

otherwise. In other words, Ir,v is the indicator random variable for node v being an
r-record. Let

Kr(Tn)
def
=
∑
v∈Tn

Ir,v, K(Tn)
def
=

k∑
r=1

Kr(Tn).

Then Kr(Tn) is the number of r-records and K(Tn) is the total number of records.

1.3 The k-cut number of a path

Let Pn be a one-ary tree (a path) consisting of n nodes labeled 1, . . . , n from the root
to the leaf. To simplify notations, from now on we use Ir,i, Gr,i, and Tr,i to represent
Ir,v, Gr,v and Tr,v respectively for a node v at depth i. Then (1.1) can be written as

Ir,i+1
def
= JGr,j < min{Gk,j : 1 ≤ j ≤ i}K. (1.2)

Let Xn
def
= K(Pn) and Xn,r = Kr(Pn). In this paper, we mainly consider Xn and we let

k ≥ 2 be a fixed integer.
The first motivation of this choice is that, as shown in Section 4, Pn is the fastest

to cut among all graphs. (We make this statement precise in Lemma 4.1.) Thus Xn
provides a universal stochastic lower bound for K(Gn). Moreover, our results on Xn can
immediately be extended to some trees of simple structures: see Section 4. Finally, as
shown below, Xn generalizes the well-known record number in permutations and has
different limit distributions when k = 1, the usual cut-model, and k ≥ 2, our extended
model.

The name record comes from the classic definition of records in random permutations.
Let σ1, . . . , σn be a uniform random permutation of {1, . . . , n}. If σi < min1≤j<i σj , then
i is called a (strictly lower) record. Let Rn denote the number of records in σ1, . . . , σn.
Let W1, . . . ,Wn be i.i.d. random variables with a common continuous distribution. Since
the relative order of W1, . . . ,Wn also gives a uniform random permutation, we can
equivalently define σi as the rank of Wi. As gamma distributions are continuous, we
can in fact let Wi = Gk,i. Thus, being a record in a uniform permutation is equivalent to

being a k-record and Rn
L
=Xn,k. Moreover, when k = 1, Rn

L
=Xn.

Starting from Chandler [5]’s article [5] in 1952, the theory of records has been widely
studied due to its applications in statistics, computer science, and physics. For more
recent surveys on this topic, see [2].

A well-known result ofRn (and thus also Xn,k) [25] is that (Ik,j)1≤j≤n are independent.
It follows from the Lindeberg–Lévy–Feller Theorem that

E [Rn]

log n
→ 1,

Rn
log n

a.s.→ 1, L
(
Rn − log n√

log n

)
d→N (0, 1),
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where N (0, 1) denotes the standard normal distribution.
In the following, Theorem 1.1 gives the expectation of Xn,r which implies that the

number of one-records dominates the number of other records. Subsequently Theo-
rem 1.2 and Theorem 1.3 estimate the variance and higher moments of Xn,1.

Theorem 1.1. For all fixed k ∈ N,

E [Xn,r] ∼
{
ηk,rn

1− rk (1 ≤ r < k),

log n (r = k),

where the constants ηk,r are defined by

ηk,r
def
=

(k!)
r
k

k − r
Γ
(
r
k

)
Γ(r)

,

where Γ(z) denotes the gamma function. Therefore E [Xn] ∼ E [Xn,1]. Also, for k = 2,

E [Xn] ∼ E [Xn,1] ∼
√

2πn.

Theorem 1.2. For all fixed k ∈ {2, 3, . . . },

E [Xn,1(Xn,1 − 1)] ∼ E
[
(Xn,1)

2
]
∼ γkn2−

2
k ,

where

γk =
Γ
(
2
k

)
(k!)

2
k

k − 1
+ 2λk,

and

λk =


π cot

(
π
k

)
Γ
(
2
k

)
(k!)

2
k

2 (k − 2) (k − 1)
k > 2,

π2

4
k = 2.

Therefore

Var (Xn,1) ∼
(
γk − η2k,1

)
n2−

2
k .

In particular, when k = 2

Var (Xn,1) ∼
(
π2

2
+ 2− 2π

)
n.

Theorem 1.3. For all fixed k ∈ {2, 3, . . . } and ` ∈ N

lim sup
n→∞

E

[(
Xn,1
n1−

1
k

)`]
≤ ρk,`

def
= `!Γ

(
`+ 1− `

k

)−1(
π

k
(k!)1/k sin

(π
k

)−1)`
.

The upper bound is tight for ` = 1 since ρk,1 = ηk,1.

The above theorems imply that the correct rescaling parameter should be n1−
1
k .

However, unlike the case k = 1, when k ≥ 2 the limit distribution of Xn/n1−
1
k has

a rather complicated representation Bk defined as follows: Let U1, E1, U2, E2, . . . be

mutually independent random variables with Ej
L
= Exp(1) and Uj

L
= Unif[0, 1]. Let

Sp
def
=

k!
∑

1≤s≤p

 ∏
s≤j<p

Uj

Es

 1
k

, (1.3)
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Bp
def
= (1− Up)

 ∏
1≤j<p

Uj

1− 1
k

Sp, (1.4)

Bk
def
=
∑
1≤p

Bp, (1.5)

where we use the convention that an empty product equals one.

Remark 1.4. An equivalent recursive definition of Sp is

Sp =

{
k!E1 (p = 1),(
Up−1S

k
p−1 + k!Ep

) 1
k (p ≥ 2).

Theorem 1.5. Let k ∈ {2, 3, . . . }. Let L(Bk) denote the distribution of Bk. Then

L
(
Xn
n1−

1
k

)
d→L(Bk).

Thus, by Theorem 1.1, 1.2 and 1.3, the convergence also holds in Lp for all p > 0 and

E [Bk] = ηk,1, E
[
B2k
]

= γk, E [Bpk] ∈ [ηpk,1, ρk,p] (p ∈ N).

Remark 1.6. The idea behind Bk is that we split the path into segments according to
the positions of k-records, then we count the numbers of one-records in every segment,
each of which converges to a Bp in the sum (1.5). This will be made rigorous in Section 3.
We will also see that Bk has a density close to a normal distribution in Section 3.4.

Remark 1.7. It is easy to see that X e
n+1

def
= Ke(Pn+1)

L
=Xn by treating each edge on a

length n+ 1 path as a node on a length n path.

The rest of the paper is organized as follows: Section 2 proves the moment results
Theorem 1.1, 1.2, and 1.3. Section 3 deals with the distributional result Theorem 1.5.
Section 4 discusses some easy results for general graphs and trees. Finally, Section 5
collects analytic results used in the proofs, which may themselves be of interest.

2 The moments

2.1 The expectation

In this section we prove Theorem 1.1.

Lemma 2.1. Uniformly for all i ≥ 1 and r ∈ {1, . . . , k},

E [Ir,i+1] =
(

1 +O
(
i−

1
2k

)) (k!)
r
k

k

Γ
(
r
k

)
Γ(r)

i−
r
k .

Proof. By (1.2), E [Ir,i+1] = P {Gk,1 > Gr,i+1, . . . , Gk,i > Gr,i+1}. Thus conditioning on
Gr,i+1 = x yields E [Ir,i+1] =

∫∞
0
xr−1e−x/Γ(r)P {Gk,1 > x}i dx. Theorem 2.1 thus fol-

lows from Theorem 5.2.

Proof of Theorem 1.1. A simple computation shows that for a ∈ (0, 1)∑
1≤i≤n

1

ia
=

1

1− a
n1−a +O(1). (2.1)

It then follows from Theorem 2.1 that for r ∈ {1, . . . , k − 1}

E [Xn,r] =
∑

0≤i<n

E [Ir,i+1] =
(k!)

r
k

k

Γ
(
r
k

)
Γ(r)

1

1− r
k

n1−
r
k +O

(
n1−

r
k−

1
2k

)
+O(1).

When r = k, E [Xn,k] = E [Rn] ∼ log(n) is already well-known.
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2.2 The variance

In this section we prove Theorem 1.2.
Let Ei,j denote the event that [I1,i+1I1,j+1 = 1]. Let Ax,y denote the event that

[G1,i+1 = x ∩G1,j+1 = y]. Then conditioning on Ax,y

Ei,j =

 ⋂
1≤s≤i

Gk,s > x ∨ y

 ∩ [Gk,i+1 > y] ∩

 ⋂
i+2≤s≤j

Gk,s > y

 ,
where x ∨ y def

= max{x, y}. Since conditioning on Ax,y, Gk,i+1
L
= Gamma(k − 1) + x,

Gk,s
L
= Gamma(k) for s /∈ {i + 1, j + 1}, and all these random variables are indepen-

dent, we have

P {Ei,j |Ax,y} = P {Gk−1,1 + x > y}P {Gk,1 > x ∨ y}iP {Gk,1 > y}j−i−1 . (2.2)

It follows from G1,i+1
L
=G1,j+1

L
= Exp(1) that

P {Ei,j} =

∫ ∞
0

∫ ∞
y

e−x−yP {Ei,j |Ax,y} dxdy +

∫ ∞
0

∫ y

0

e−x−yP {Ei,j |Ax,y} dx dy

def
= A1,i,j +A2,i,j .

We next estimate these two terms.

Lemma 2.2. Let k ∈ {2, 3, . . . }. We have

A2,i,j =
(

1 +O
(
j−

1
2k

)) (k!)
2
k

k
Γ

(
2

k

)
j−

2
k .

Proof. In this case, x ∨ y = y. Thus, by (2.2)

A2,i,j =

∫ ∞
0

e−yP {Gk,1 > y}j−1
∫ y

0

e−xP {Gk−1,1 > y − x} dx dy.

Note that the dependence on i disappears. Let Z denote a Poisson random variable with
mean y − x. By the well-known connection between Poisson and gamma distributions,
the inner integral in the above equals∫ y

0

e−xP {Z < k − 1} dx =

∫ y

0

e−x
k−2∑
`=0

e−(y−x)
(y − x)`

`!
dx = e−y

k−2∑
`=0

y`+1

(`+ 1)!
.

It then follows from Theorem 5.2 that

A2,i,j =

k−2∑
`=0

∫ ∞
0

e−2y
y`+1

(`+ 1)!
P {Gk,1 > y}j−1 dy

=

k−2∑
`=0

(
1 +O

(
j−

1
2k

)) (k!)
`+2
k

k(`+ 1)!
Γ

(
`+ 2

k

)
j−

`+2
k

=
(

1 +O
(
j−

1
2k

)) (k!)
2
k

k
Γ

(
2

k

)
j−

2
k .

Lemma 2.3. Let k ∈ {2, 3, . . . }. Let a = i and b = j − i− 1. Then for all a ≥ 1 and b ≥ 1,

A1,i,j = ξk(a, b) +O
((
a−

1
2k + b−

1
2k

)(
a−

2
k + b−

2
k

))
,

where

ξk(a, b)
def
=

∫ ∞
0

∫ ∞
y

exp

(
−ax

k

k!
− by

k

k!

)
dxdy.
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Proof. In this case, x ∨ y = x and y − x < 0. Thus, by (2.2) and Theorem 5.2

A1,i,j =

∫ ∞
0

∫ ∞
y

e−xe−yP {Gk,1 > x}iP {Gk,1 > y}j−i−1 dxdy

=

∫ ∞
0

∫ ∞
y

e−x−y
(

Γ(k, x)

Γ (k)

)a(
Γ(k, y)

Γ (k)

)b
dxdy, (2.3)

where Γ(`, z) denotes the upper incomplete gamma function.
Let S be the integration area of (2.3). Let x0 = a−α and y0 = b−α where α =

1
2

(
1
k + 1

k+1

)
. Let

S0 = S ∩
{

(x, y) ∈ R2 : x < x0, y < y0
}
.

We split (2.3) into two parts A1,1 and A1,2 with integration area S0 and S \S0 respectively.
Let β = 1

2(k+1) . Let x1 = aβ/k! and y1 = bβ/k!. It follows from Theorem 5.1 and
Theorem 5.4 that

A1,1 =
(

1 +O
(
a−

1
2k + b−

1
2k

))∫∫
S0

exp

(
−ax

k

k!
− by

k

k!

)
dxdy

=
(

1 +O
(
a−

1
2k + b−

1
2k

))
ξk(a, b) +O

(
e−x1 + e−y1

)
= ξk(a, b) +O

((
a−

1
2k + b−

1
2k

)(
a−

2
k + b−

2
k

))
.

It is not difficult to verify that

A1,2 = O

((
Γ(k, x0)

Γ(k)

)−a
+

(
Γ(k, y0)

Γ(k)

)−b)
= O

(
e−x1 + e−y1

)
.

Proof of Theorem 1.2. We have

E [Xn,1 (Xn,1 − 1)] = 2

n−1∑
i=1

n∑
j=i+1

P {Ei,j} = 2

n−2∑
i=0

n−1∑
j=i+1

(A1,i,j +A2,i,j) . (2.4)

Thus, by Theorem 2.2 and (2.1),

n−2∑
i=0

n−1∑
j=i+1

A2,i,j =

n−2∑
i=0

n−1∑
j=i+1

[
(k!)

2
kΓ
(
2
k

)
k

j−
2
k +O

(
j−

5
2k

)]

=
(k!)

2
kΓ
(
2
k

)
2(k − 1)

n2−
2
k +O

(
n2−

5
2k

)
. (2.5)

For A1,i,j , it follows from Theorem 2.3 that

n−2∑
i=0

n−1∑
j=i+1

A1,i,j =

n−1∑
a=1

n−a∑
b=1

ξk(a, b) +O
(
n2−

5
2k

)
=

∫ n

0

∫ n−a

0

ξk(a, b) dbda+O
(
n2−

5
2k

)
= n2−

2
k

∫ 1

0

∫ 1−s

0

ξk(s, t) dtds+O
(
n2−

5
2k

)
= λkn

2− 2
k +O

(
n2−

5
2k

)
, (2.6)

where the last step follows from Theorem 5.5. Theorem 1.2 follows by putting (2.5), (2.6)
into (2.4).
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2.3 Higher moments

In this section we prove Theorem 1.3.

The computations of higher moments of Xn,1 are rather complicated. However, an

upper bound is readily available. Let (x)`
def
= x(x− 1) . . . (x− `+ 1). For ` ≥ 1,

E [(Xn,1)`] = `!
∑

1≤i1<i2···<i`≤n

E [I1,i1I1,i2 · · · I1,i` ]

≤ `!
∑

1≤i1<i2···<i`≤n

E [I1,i1 ]E [I1,i2−i1 ] · · ·E
[
I1,i`−i`−1

]
= `!

∑
(a1,...,a`)∈Sn,`

∏̀
j=1

E
[
I1,aj

]
, (2.7)

where

Sn,`
def
=

(a1, a2, . . . , a`) ∈ N` : a1 ≥ 0, . . . , a` ≥ 0,
∑̀
j=1

aj ≤ n− `

 .

The above inequality holds since if ij is a one-record in the whole path, then it must
also be a one-record in the segment (ij−1 + 1, . . . , ij) ignoring everything else, and what
happens in each of such segments are independent. It follows from Theorem 2.1 that
(2.7) equals

`!
∑

(a1,...,a`)∈Sn,`

∏̀
j=1

(
1 +O

(
a
− 1

2k
j

)) (k!)
1
k

k
Γ

(
1

k

)
a
− 1
k

j

= `!n`(1−
1
k )

(
(k!)

1
k

k
Γ

(
1

k

))` ∑
(a1,...,a`)∈Sn,`

∏̀
j=1

(
1 +O

(
a
− 1

2k
j

))(aj
n

)− 1
k 1

n

∼ n`(1−
1
k )`!

(
(k!)

1
k

k
Γ

(
1

k

))` ∫
A`

∏̀
j=1

x
− 1
k

j d(x1, . . . , x`)

= n`(1−
1
k )`!

(
(k!)

1
k

k
Γ

(
1

k

))`
Γ

(
k − 1

k

)`
Γ

(
1 + `− `

k

)−1
def
= n`(1−

1
k )ρk,`,

where A` is the simplex {(x1, . . . , x`) : x1 > 0, . . . , x` > 0, x1 + · · · + x` < 1}. The above
integral is known as the beta integral [24, 5.14.1].

3 Convergence to the k-cut distribution

By Theorem 1.1 and Markov’s inequality, Xn,r/n1−
1
k
p→ 0 for r ∈ {2, . . . , k}. So it

suffices to prove Theorem 1.5 for Xn,1 instead of Xn. Throughout Section 3, unless
otherwise emphasized, we assume that k ≥ 2.

The idea of the proof is to condition on the positions and values of the k-records, and
study the distribution of the number of one-records between two consecutive k-records.

We use (Rn,q)q≥1 to denote the k-record values and (Pn,q)q≥1 the positions of these

k-records. To be precise, let Rn,0
def
= 0, and Pn,0

def
= n+ 1; for q ≥ 1, if Pn,q−1 > 1, then let

Rn,q
def
= min{Gk,j : 1 ≤ j < Pn,q−1},

Pn,q
def
= argmin{Gk,j : 1 ≤ j < Pn,q−1},
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k-cut on paths and some trees

i.e., Pn,q is the unique positive integer which satisfies that Gk,Pn,q < Gk,i for all 1 ≤ i <
Pn,q−1; otherwise let Pn,q = 1 and Rn,q =∞. Note that Rn,1 is simply the minimum of n
i.i.d. Gamma(k) random variables.

According to (Pn,q)q≥1, we split Xn,1 into the following sum

Xn,1 =
∑

1≤j≤n

I1,j = Xn,k +
∑
1≤q

∑
1≤j

JPn,q−1 > j > Pn,qK I1,j
def
= Xn,k +

∑
1≤q

Bn,q. (3.1)

Figure 1 gives an example of (Bn,q)q≥1 for n = 12. It depicts the positions of the k-records
and the one-records. It also shows the values and the summation ranges for (Bn,q)q≥1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Pn,3 Pn,2 Pn,1 n Pn,0

Bn,1 = 2Bn,2 = 1Bn,3 = 1

k-record one-record node

Figure 1: An example of (Bn,q)q≥1 for n = 12.

Recall that Tr,j
L
= Exp(1), is the lapse of time between the alarm clock of j rings for the

(r−1)-st time and the r-th time. Conditioning on (Rn,q, Pn,q)n≥1,q≥1, for j ∈ (Pn,q, Pn,q−1),
we have

E [I1,j ] = P {T1,j < Rn,q |Gk,j > Rn,q } .

Then the distribution of Bn,q conditioning on (Rn,q, Pn,q)n≥1,q≥1 is simply that of

Bin (Pn,q−1 − Pn,q − 1,P {T1,j < Rn,q |Gk,j > Rn,q }) ,

where Bin(m, q) denotes a binomial (m, q) random variable. When Rn,q is small and
Pn,q−1 − Pn,q is large, this is roughly

Bin (Pn,q−1 − Pn,q,P {T1,j < Rn,q})
L
= Bin

(
Pn,q−1 − Pn,q, 1− e−Rn,q

)
. (3.2)

Therefore, we first study a slightly simplified model. Let (T ∗r,j)r≥1,j≥1 be i.i.d. Exp(1)

which are also independent from (Tr,j)r≥1,j≥1. Let

I∗j
def
= JT ∗1,j < min{Gk,i : 1 ≤ i ≤ j}K, X ∗n

def
=

∑
1≤j≤n

I∗j .

We say a node j is an alt-one-record if I∗j = 1. As in (3.1), we can write

X ∗n =
∑

1≤j≤n

I∗j =
∑
1≤q

∑
1≤j

JPn,q−1 > j ≥ Pn,qK I∗j
def
=
∑
1≤q

B∗n,q. (3.3)

Then conditioning on (Rn,q, Pn,q)n≥1,q≥1, B∗n,q has exactly the distribution as (3.2). Figure
2 gives an example of (B∗n,q)q≥1 for n = 12. It shows the positions of alt-one-records, as
well as the values and the summation ranges of(B∗n,q)q≥1.

In the rest of this section, we will first prove the following proposition:

Proposition 3.1. For all fixed q ∈ N and k ≥ 2,

L
((

B∗n,1

n1−
1
k

, . . . ,
B∗n,q

n1−
1
k

))
d→L ((B1, . . . Bq)) ,

EJP 24 (2019), paper 53.
Page 9/22

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP318
http://www.imstat.org/ejp/


k-cut on paths and some trees

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Pn,3 Pn,2 Pn,1 n Pn,0

B∗n,1 = 4B∗n,2 = 2B∗n,3 = 2

k-record one-record alt-one-record node

Figure 2: An example of (B∗n,q)q≥1 for n = 12.

which implies by the Cramér–Wold device that

L

 ∑
1≤j≤q

B∗n,j

n1−
1
k

 d→L

 ∑
1≤j≤q

Bj

 , (3.4)

Then we can prove that q can be chosen large enough so that
∑
q<j B

∗
n,j/n

1− 1
k is negligi-

ble. Thus,

L
(
X ∗n
n1−

1
k

)
def
= L

(∑
1≤j B

∗
n,j

n1−
1
k

)
d→L

∑
1≤j

Bj

 def
= L (Bk) .

Following this, we can use a coupling argument to show that Xn,1/n1−
1
k and X ∗n/n1−

1
k

converge to the same limit, which finishes the proof of Theorem 1.5. The section ends
with some discussions on Bk.

3.1 Proof of Theorem 3.1

To prove (3.4), we construct a coupling by defining all the random variables being
studied in one probability space. Let

Pn,q = max {dUq (Pn,q−1 − 1)e, 1} ,

for q ≥ 1, where (Uq)q≥1 are i.i.d. Unif[0, 1] random variables, independent of everything
else. This is a valid coupling, since conditioning on Pn,q−1, Pn,q is uniformly distributed
on {1, . . . , Pn,q−1 − 1}. Note that by induction on q this implies that for all q ∈ N

Pn,q
n

a.s.→
∏

1≤s≤q

Us. (3.5)

Then conditioning on (Pn,q)q≥1, we generate the random variables (Tr,j)r≥1,j≥1 according
to their proper conditional distribution, which determine (Gr,j)r≥1,j≥1 and (Rn,q)q≥1. Let
(T ∗r,j)r≥1,j≥1 be as before.

Recall that Rm,1 is the minimum of m independent Gamma(k) random variables.

Let M(m, t)
def
= (Rm,1|Rm,1 > t) for t ≥ 0. Then conditioning on Pn,q−1 and Rn,q−1,

Rn,q
L
=M(Pn,q−1 − 1, Rn,q−1). The following lemma allows us to describe the limit distri-

bution of Rn,q conditioning on Pn,q−1 and Rn,q−1.

Lemma 3.2. Let k ∈ N. Assume that rm
m → 1 and t ≥ 0. Let Hm

def
= r

1
k
m ·M

(
m, tr

− 1
k

m

)
.

Then as m→∞,

L (Hm)
d→L

((
tk + k!E

) 1
k

)
,
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where E
L
= Exp(1). In particular, L

(
m

1
kM(m, 0)

)
d→L

(
(k!E)

1
k

)
. The convergence is

also point-wise for the density functions. The lemma also holds if Hm by is replaced by

H ′m
def
= r

1
k
m ·
(

1− exp
(
−M

(
m, tr

− 1
k

m

)))
.

Proof. We only prove the lemma for Hm. Similar argument works for H ′m. Let ym = x/r
1
k
m

and let sm = t/r
1
k
m. By Theorem 5.1, for all fixed x ≥ t,

P {Hm > x} =
P {Rm,1 ≥ ym}
P {Rm,1 ≥ sm}

=

(
Γ (k, ym)

Γ (k, sm)

)m
∼ exp

(
m

(
−y

k
m − skm
k!

))
→ exp

(
−x

k − tk

k!

)
= P

{(
tk + k!E

) 1
k > x

}
.

(3.6)

Using (3.6) and the derivative formula for the incomplete gamma functions [24, 8.8.13],
it is straightforward to verify the point-wise convergence of the density functions.

The next step is to recursively apply Theorem 3.2 to get a joint convergence in
distribution for (Sn,1, . . . , Sn,q) as well as (S∗n,1, . . . , S

∗
n,q), which are basically rescaled

versions of (Rn,1, . . . , Rn,q) defined by

L∗n,q
def
=

n ∏
1≤j<q

Uj

 1
k

, Sn,q
def
= L∗n,qRn,q, S∗n,q

def
= L∗n,q(1− e−Rn,q ).

Lemma 3.3. For all fixed q ∈ N and k ∈ {2, 3, . . . },

L ((Sn,1, Sn,2, . . . , Sn,q))
d→L ((S1, S2, . . . , Sq)) .

The convergence is also point-wise for the joint distribution functions. The lemma holds
if Sn,j is replaced by S∗n,j .

Proof. We only prove the lemma for Sn,j . The same argument works for S∗n,j .
Let F = σ((Uj)j≥1) denote the sigma algebra generated by (Uj)j≥1. Throughout the

proof of this lemma, we will condition on F and treat (Uq, Pn,q, L
∗
n,q)q≥0,n≥1 as if they are

deterministic numbers.
Let fn,1(·) and f1(·) denote the density functions of Sn,1 and S1 respectively. For

q > 1, let fn,q(·|yq−1) and fq(·|yq−1) denote the density function of Sn,q|Sn,q−1 = yq−1,
and Sq|Sq−1 = yq−1 respectively. It follows from Theorem 3.2 that for all y1 ≥ 0,
fn,1(y1) → fq(y1), and for all yq ≥ 0, fn,q(yq|yq−1) → fq (yq|yq−1) . Therefore, for all
y1, . . . , yq ∈ [0,∞)q, as n→∞,

gn,q(y1, . . . , yq)
def
= fn,q(yq|yq−1)fn,q−1(yq−1|yq−2) . . . fn,1(y1)

→ fq(yq|yq−1)fq−1(yq−1|yq−2) . . . f1(y1)
def
= gq(y1, . . . , yq).

In other words, the joint density function of (Sn,1, . . . , Sn,q) converges point-wise to the
joint density function of (S1, . . . , Sq) conditioning on F . Thus, the lemma still holds
without conditioning on F .

One last ingredient needed is the next lemma which follows easily from Chernoff’s
bound, see, e.g., [23, pp. 43].

Lemma 3.4. Let Wm
L
= Bin(m, pm). If `mpm → c ∈ (0,∞) and m/`m → ∞, then

`mWm/m
p→ c.
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Proof of Theorem 3.1. As in the proof of Theorem 3.3, we condition on F = σ((Uj)j≥1)

and treat (Uj , Pn,j , L
∗
n,j)j≥0,n≥1 as deterministic numbers. By (3.2), conditioning on

(S∗n,1, . . . , S
∗
n,q), B

∗
n,1, . . . , B

∗
n,q are independent and for j ∈ {1, . . . , q},

B∗n,j |(S∗n,1, . . . , S∗n,q)
L
= Bin

(
Pn,j−1 − Pn,j ,

S∗n,j
L∗n,j

)
.

It follows from (3.5) and Theorem 3.4 that

B∗n,j

n1−
1
k

∣∣∣∣ (S∗n,1, . . . , S∗n,q) p→ (1− Uj)

 ∏
1≤s<j

Us

1− 1
k

S∗n,j .

Now by Theorem 3.3, the joint density function of (S∗n,1, . . . , S
∗
n,q) converges point-wise

to that of (S1, . . . , Sq). Therefore, jointly, conditioning on F = σ((Uj)j≥1),

L
((

B∗n,1

n1−
1
k

, . . . ,
B∗n,q

n1−
1
k

))
d→L ((B1, . . . Bq)) ,

where (see (1.4) and (1.3)) Bj
def
= (1−Uj)

(∏
1≤s<j Us

)1− 1
k

Sj . Thus, the convergence also

holds without conditioning on F .

3.2 The leftovers

In this section, we show that for q large enough,
∑
s>q Bs,

∑
s>q B

∗
n,s/n

1− 1
k , and∑

s>q Bn,s/n
1− 1

k are all negligible.

Lemma 3.5. For all k ∈ {2, 3, . . . }, ε > 0 and δ > 0, there exists q ∈ N and n0 ∈ N such
that for all n > n0,

P

{∑
q<s

Bs ≥ ε

}
< δ, P

{∑
j>q Bn,j

n1−
1
k

≥ ε
}
< δ, P

{∑
j>q Bn,j

n1−
1
k

≥ ε
}
< δ.

Proof. We only give the proof for
∑
s>q Bs, since the other two can be dealt essentially

in the same way.

Let U ′1, E
′
1, U

′
2, E

′
2, . . . be independent random variables such that U ′j

L
= Unif[0, 1] and

E′j
L
= Exp(1). By the definition of Bs (see (1.4) and (1.3)), we have

Bs � B′s
def
=

 ∏
1≤j≤s

U ′j

k!
∑

1≤j≤s

E′s

1/k

,

i.e., Bs is stochastically dominated by B′s. Thus, we can prove the lemma for B′s instead.
Let Ws and W ′s be independent Gamma(s) random variables. Then

− log

 ∏
1≤j≤s

U ′j

 L
=Ws,

∑
1≤j≤s

E′j
L
=W ′s.

It is well known that E
[
(Ws − s)4

]
= 3s2 + 6s [19, pp. 339]. It follows from Markov’s

inequality that for s ≥ 1,

P
{
|Ws − s| ≥

s

2

}
≤

E
[
(Ws − s)4

]
s4/16

=
3s2 + 6s

s4/16
=

9s2

s4/16
≤ 144

s2
.
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Therefore

P

{
(B′s)

k ≥ k!
3

2
se−s/2

}
≤ P

 ∏
1≤j≤s

U ′j ≥ e−s/2

+ P

 ∑
1≤j≤s

E′j ≥
3

2
s


= P

{
Ws ≤

s

2

}
+ P

{
W ′s ≥

3s

2

}
= O

(
1

s2

)
.

We are done since∑
s>q

1

s2
= O(q−1),

∑
s>q

(
k!

3

2
se−s/2

) 1
k

= O
(

e−
q
4k

)
.

3.3 Finishing the proof Theorem of 1.5

By Theorem 3.5, the contribution of
∑
s>q Bs and

∑
s>q B

∗
n,s/n

1− 1
k in

∑
s>1Bs and∑

s>1B
∗
n,s/n

1− 1
k respectively can be made arbitrarily small by choosing q large enough.

Thus, it follows from Theorem 3.1 that L
(
X ∗n/n1−

1
k

)
d→L (Bk) as we claimed.

Now we fill the gap between X ∗n and Xn,1 by the following lemma, from which
Theorem 1.5 follows immediately.

Lemma 3.6. Let k ∈ {2, 3, . . . }. There exists a coupling such that

X ∗n −Xn,1
n1−

1
k

p→ 0.

Proof. Recall that (T ∗i,j)i≥1,j≥1 are i.i.d. Exp(1) random variables that we used, together
with (Pn,j , Rn,j)j≥0 to define X ∗n . Now we modify (Ti,j)i≥1,j≥1 by letting Ti,j = T ∗i,j for all
i ∈ N and j 6∈ {Pn,j}j≥0, unless there is a discrepancy, i.e., if for some q ≥ 1,

Pn,q−1 < j < Pn,q, and
k∑
i=1

T ∗j,i < Rn,q.

This is a valid coupling since it does not change the distribution of (Bn,j)j≥1.
Let Jn,q denote the number of discrepancies between Pn,q−1 and Pn,q, i.e.,

Jn,q =
∑
j≥1

JPn,q−1 < j < Pn,qKJRn,q >
∑

1≤i≤k

T ∗i,jK.

By the definition (3.1) and (3.3), with the above coupling, for all fixed q ∈ N,

|Xn,1 −X ∗n | ≤
∑

1≤j≤q

Jn,j + 2Xn,k +
∑
j>q

Bn,q +
∑
j>q

B∗n,q. (3.7)

By Theorem 1.1, we have Xn,k/n1−
1
k
p→ 0. It follows from Theorem 3.5 that by choosing

q large enough, the last two terms of the right-hand-side of (3.7) divided by n1−
1
k are

negligible. Thus, it suffices to show that
∑

1≤j≤q Jn,j/n
1−1/k p→ 0.

Conditioning on (Rn,j , Pn,j)n≥1,j≥0,

Jn,q
L
= Bin (Pn,q−1 − Pn,q − 1,P {Gk < Rn,q}) ,

where Gk
L
= Gamma(k). Therefore, it follows from the series expansion of the incomplete

gamma function [24, 8.7.3] that

E [Jn,q | (Rn,j , Pn,j)n≥1,j≥0] ≤ (Pn,q−1 − Pn,q) ·
(

1− Γ(k,Rn,q)

Γ(k)

)

EJP 24 (2019), paper 53.
Page 13/22

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP318
http://www.imstat.org/ejp/


k-cut on paths and some trees

≤ Pn,q−1Rkn,q =
Pn,q−1
(L∗n,q)

k
(Sn,q)

k d→L
(
Skq
)
,

where the convergence follows from (3.5) and Theorem 3.3. By the definition (1.3),
Skq � k!Gq. Thus for all fixed q ∈ N, supn≥1 E [Jn,q] <∞ and

∑
1≤i≤q Jn,i/n

1− 1
k
p→ 0.

3.4 The density of Bk
Lemma 3.7. For all k ∈ {2, 3, . . . } the random variable Bk defined in (1.5) has a density
function.

Proof. The random variable Bk can be written as
∑

1≤q(a(q) + b(q)E1)1/k, where a(q)

and b(q) are non-negative functions of the random vector (U1, U2, E2, U3, E3, . . . ). Con-
ditioning on this vector, Bk has a density provided that b(q) 6= 0 for some q. Thus, a
sufficient condition for Bk to have a density is that P {b(1) = 0} = 0, which is obvious
since b(1) = (1− U1)1/kk!

It is not easy to see what the density function of Bk should be like analytically. But
through simulation, it is obvious that Bk has a density very close to that of the normal
distribution N (EBk,

√
Var (Bk)), see Figure 3. Comparing Figure 3a with the simulation

result for Xn with k = 2 shown in Figure 4, we see that Bk is indeed the limit distribution
of Xn.

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

(a) k = 2

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

(b) k = 3

1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c) k = 4

1 2 3 4

0.0

0.2

0.4

0.6

0.8

(d) k = 5

Figure 3: Histograms of 105 samples of Bk for k = 2, . . . , 5. The blue curves represent
the density functions of N (EBk,

√
Var (Bk)).
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1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

Figure 4: Simulation for Xn with k = 2, n = 217 and 60000 samples, after rescaled by√
n. The blue curve represents the density function of a normal distribution with the

empirical mean and variance.

4 Some extensions

4.1 A lower bound and an upper bound for general graphs

Let Gn be the set of rooted graphs with n nodes. It is obvious that Pn is the easiest to
cut among all graphs in Gn. We formalize this by the following lemma:

Lemma 4.1. Let k ∈ N. For all Gn ∈ Gn, Xn
def
= K(Pn) � K(Gn). Therefore,

min
Gn∈Gn

EK(Gn) ≥ EXn ∼


(k!)

1
k

k − 1
Γ

(
1

k

)
n1−

1
k (k ≥ 2),

log n (k = 1),

by Theorem 1.1.

The most resilient graph is obviously Kn, the complete graph with n vertices. Thus,
we have the following upper bound:

Lemma 4.2. Let k ∈ N.

(i) Let Y
L
= Gamma(k), Z

L
= Poi(Y ), and W

L
=Z ∧ k, i.e., W

L
= min{Z, k}. Then

L
(
K(Kn)

n

)
d→L (E [W |Y ]) = L

(
Γ(k + 1, Y )− e−Y Y k+1

k!
+ k

)
, (4.1)

where Γ(`, z) denotes the upper incomplete gamma function. Note that when k = 1,
the right-hand-side is simply Unif[0, 1].

(ii) For all Gn ∈ Gn, K(Gn) � K(Kn). Therefore,

max
Gn∈Gn

EK(Gn) ≤ EK(Kn) ∼ k
(

1− 1

22k

(
2k

k

))
n. (4.2)

Proof. Let Sn be the tree of n nodes with one root and n − 1 leaves. Obviously

K(Kn)
L
=K(Sn). Let Y be the time when the root is removed. Let W1,n, . . . ,Wn−1,n
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be the number of cuts each leaf receives by this time. Conditioning on the event

Y = y, W1,n, . . . ,Wn−1,n are i.i.d. with Wi,n
L
=Zi ∧ k, where Zi

L
= Poi(y). In other words,

conditioning on Y = y, by the law of large numbers,

K(Sn)

n
=
k +

∑n−1
i=1 Wi,n

n

a.s.→ E [Z1] ,

from which (4.1) and (4.2) follow immediately.

4.2 Path-like graphs

If a graph Gn consists of only long paths, then the limit distribution K(Gn) should
be related to Bk, the limit distribution of K(Pn)/n1−

1
k (see Theorem 1.5). We give two

simple examples with k ∈ {2, 3, . . . }.
Example 4.3 (Long path). Let (Gn)n≥1 be a sequence of rooted graphs such that Gn
contains a path of length m(n) starting from the root with n−m(n) = o(n1−

1
k ). Since it

takes at most k(n−m(n)) cuts to remove all the nodes outside the long path,

K(Pm(n)) � K(Gn) � K(Pm(n)) + ko
(
n1−1/k

)
.

Thus, by Theorem 4.1, this implies that K(Gn)/n1−
1
k converges in distribution to Bk.

Example 4.4 (Curtain). Let ` ≥ 2 be a fixed integer. Let T(`)
n be a graph that consists

of only ` paths connected to the root, with the first `− 1 of them having length
⌈
n−1
`

⌉
.

We call T(`)
n an `-curtain. It is easy to see that cutting T(`)

n is very similar to cutting `

separated paths of length
⌈
n
`

⌉
. Therefore, we can show that

L

(
K(T(`)

n )

(n/`)
1
k

)
d→L

∑̀
j=1

B[j]k ,


where B[1]k , . . . ,B

[`]
k are i.i.d. copies of Bk.

4.3 Deterministic and random trees

The approximation given in Theorem 2.1 can be used to compute the expectation of
k-cut numbers in many deterministic or random trees. We give four examples: complete
binary trees, split trees, random recursive trees, and Galton-Watson trees.

4.3.1 Complete binary trees

Let Tbi
n be a complete binary tree of with n = 2m+1 − 1 nodes, i.e., its height is m. Recall

that Ir,i+1 in Theorem 2.1 is the indicator that a node in Pn at depth i is an r-record.
Since the probability of a node being an r-record only depends on its depth, it follows
from Theorem 2.1 that

EKr(Tbi
n ) =

m∑
i=0

2iEIr,i+1 ∼
(k!)

r
k

k

Γ
(
r
k

)
Γ(r)

2m+1

m
r
k
.

Thus, only the one-records matter as in the case of Pn and

EK(Tbi
n ) ∼ EK1(Tbi

n ) ∼
(k!)

1
kΓ
(
1
k

)
k

2m+1

m
1
k

∼
(k!)

1
kΓ
(
1
k

)
k

n

(log2 n)
1
k

.

The limit distribution of K(Tbi
n ) has been found in our follow-up paper [3].
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4.3.2 Split trees

Split trees were first defined by Devroye [7] to encompass many families of trees that
are frequently used in algorithm analysis, e.g., binary search trees and tries. Its exact
construction is somewhat lengthy and we refer readers to either the original algorithmic
definition in [14] or the more probabilistic version in [4, Section 2].

Very roughly speaking, Tsp
n is constructed by first distributing randomly n balls among

the nodes of an infinite b-ary tree and then removing all subtrees without balls. Each
node in the infinite b-ary tree is given a random non-negative split vector V = (V1, . . . , Vb),
satisfying

∑b
i=1 Vi = 1, drawn independently from the same distribution. These vectors

affect how balls are distributed.
In the study of split trees, the following condition of V is often assumed:

Condition 4.5. The split vector V is permutation invariant. Moreover, P {V1 = 1} = 0,
P {V1 = 0} = 0, and that − log(V1) is non-lattice.

Holmgren[14, Theorem 1.1] showed that , assuming condition 4.5, there exists a constant
α such that EN ∼ αn, where N is the random number of nodes in Tsp

n .
In the setup of split trees (and other random trees), we obtain K(Tsp

n ) by choosing
a random split tree first and then carry out the k-cut process conditioning on the tree.
Holmgren [13, Theorem 1.1] showed that condition 4.5 implies that Kk(Tsp

n ) converges
to a weakly 1-stable distribution after normalization, and that EKk(Tsp

n ) ∼ µαn/log n,

where µ
def
= bE [−V1 log V1]. We extend this result as follows:

Lemma 4.6. Assuming condition 4.5, we have

E [Kr(Tsp
n )] ∼ (k!µ)

r
k

k

Γ
(
r
k

)
Γ(r)

αn

(log n)
r
k
, (1 ≤ r ≤ k),

E [K(Tsp
n )] ∼ (k!µ)

1
k

Γ
(
1
k

)
k

αn

(log n)
1
k

.

Proof. We say a node v is good if it has depth d(v) where
∣∣∣d(v)− 1

µ log n
∣∣∣ ≤ log0.6 n, oth-

erwise we say it is bad. Let Bsp
n be the number of bad nodes in Tsp

n . By [14][Theorem 1.2],
EBsp

n = O
(
n/(log n)3

)
. Thus, the number of r-records in bad nodes is negligible and it

suffices to prove the lemma for good nodes. By Lemma 2.1 and the definition of good
nodes, we have

E [K(Tsp
n )|Tsp

n ] =(N − Bsp
n )

(k!)
r
k

k

Γ
(
r
k

)
Γ(r)

[
log n

µ
+O(log0.6 n)

]− rk
(1 +O(log−

1
2k n))

=(N − Bsp
n )

(k!µ)
r
k

k

Γ
(
r
k

)
Γ(r)

1

(log n)
r
k

(1 +O(log−
1
2k n)),

from which the lemma follows by taking expectation and using that EN ∼ αn.

4.3.3 Random recursive trees

A random recursive tree Trr
n is random tree of n nodes constructed recursively as follows:

let Trr
1 be the tree of a single node labeled 1; given Trr

n−1, choose a node in Trr
n−1 uniformly

at random and attach a node labeled n to the selected node as a child, which gives Trr
n .

Meir and Moon [22] introduced this model and showed that EKk(Trr
n ) ∼ n/ log n and that

Kk(Trr
n ) concentrates around its mean. Drmota et al. [9] and subsequently Iksanov and

Möhle [15] proved K(Trr
n ) converges weakly to a stable law after proper shifting and

normalization.
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The intuition behind EKk(Trr
n ) ∼ n/ log n is simply that almost all nodes in Trr

n are at
depth around log n. We say a node v in Trr

n is good if |d(v)− log(n)| ≤ log(n)0.9; otherwise
we say it is bad. The following lemma shows that there are very few bad nodes in
expectation:

Lemma 4.7. Let Brr
n be the number of bad nodes in Trr

n , then EBrr
n = O

(
n/log(n)3

)
.

Proof. Let h(Trr
n ) be the height of Trr

n . By [8, 6.3.2]

P {|h(Trr
n )− e log(n)| > η} = O

(
e−cη

)
,

for some constant c. Thus, we can choose some constant K large enough and ignore the
nodes of depth greater than K log(n). Let wd(Trr

n ) be the number of nodes at depth d in
Trr
n . By [11, Equation 3]

E [wd(T
rr
n )] =

log(n)d

Γ(1 + d/ log(n))d!

(
1 +O

(
log(n)−1

))
, (4.3)

uniformly for all n ≥ 3 and 1 ≤ d ≤ K log(n), for all K ≥ 1. Thus, the lemma fol-
lows by summing both sides of (4.3) over integers d in [1, log(n) − log(n)0.9] ∪ [log(n) +

log(n)0.9,K log(n)].

Thus, by exactly the same argument of Theorem 4.6, we get:

Lemma 4.8. We have

E [Kr(Trr
n )] ∼ (k!)

r
k

k

Γ
(
r
k

)
Γ(r)

n

(log n)
r
k
, (1 ≤ r ≤ k),

E [K(Trr
n )] ∼ (k!)

1
k

Γ
(
1
k

)
k

n

(log n)
1
k

.

Remark 4.9. Tsp
n and Trr

n are both of logarithmic height. Thus, the same method which
we used for treating complete binary trees [3] should also work for them.

4.3.4 Conditional Galton-Watson trees

A Galton-Watson tree Tgw is a random tree that starts with the root node and recursively
attaches a random number of children to each node in the tree, where the numbers
of children are drawn independently from the same distribution L(ξ) (the offspring
distribution). A conditional Galton-Watson tree Tgw

n is Tgw restricted to size n. See [18]
for a comprehensive survey of conditional Galton-Watson trees.

Janson [17, Theorem 1.6] showed that Kk(Tgw
n )/
√
n converges weakly to a Rayleigh

distribution and the convergence is also in all moments if ξ has a finite exponential
moment. In particular

EKk(Tgw
n )√

n
→ E

[∫ 1

0

(
2e(t)

σ

)−1
dt

]
= σ

√
π

2
,

where e(t) denotes a normalized Brownian excursion and σ2 = Var (ξ). It is straight
forward to adapt the method in [17] to get the first moment of EKr(Tgw

n ). (Though higher
moments and the limit distribution seems to be elusive.) We formulate this as lemma
and refer the reader to [17] for details.

Lemma 4.10. Assume that E
[
ξ3
]
<∞. Then for r ∈ {1, . . . , k},

EKr(Tgw
n )

n1−
r
2k

→ (k!)
r
k

k

Γ( rk )

Γ(r)
E

[∫ 1

0

(
2e(t)

σ

)− rk
dt

]
=

(k!)
r
k

k

Γ( rk )Γ
(
1− r

2k

)
Γ(r)

(
σ√
2

) r
k

.
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As a result,

EK(Tgw
n ) ∼ EK1(Tgw

n ) ∼ (k!)
1
k

k
Γ

(
1

k

)
Γ

(
1− 1

2k

)(
σ√
2

) 1
k

n1−
1
2k .

5 Some auxiliary results

Lemma 5.1. Let Gk
L
= Gamma(k). Let α

def
= 1

2

(
1
k + 1

k+1

)
and x0

def
= m−α. Then uniformly

for all x ∈ [0, x0],

P {Gk > x}m =

(
Γ (k, x)

Γ(k)

)m
=
(

1 +O
(
m−

1
2k

))
exp

(
−mx

k

k!

)
,

where Γ(`, z) denotes the upper incomplete gamma function.

Proof. By the density function of gamma distributions, P {Gk > x} = Γ (k, x)/Γ(k). It
then follows from the series expansion of the incomplete gamma function [24, 8.7.3],
that uniformly for all x ≤ x0,(

Γ (k, x)

Γ(k)

)m
=

(
1− xk

k!
+O

(
xk+1
0

))m
=
(

1 +O
(
m−

1
2k

))
exp

(
−mx

k

k!

)
, (5.1)

where we use that −α(k + 1) + 1 = − 1
2k .

Lemma 5.2. Let Gk
L
= Gamma(k). Let a ≥ 0 and b ≥ 1 be fixed. Then uniformly for

m ≥ 1, ∫ ∞
0

xb−1e−axP {Gk > x}m dx =
(

1 +O
(
m−

1
2k

)) (k!)
b
k

k
Γ

(
b

k

)
m−

b
k . (5.2)

Proof. By Theorem 5.1, the left-hand-side of (5.2) equals∫ x0

0

xb−1e−ax
(

Γ (k, x)

Γ(k)

)m
dx+

∫ ∞
x0

xb−1e−ax
(

Γ (k, x)

Γ(k)

)m
dx

def
= A1 +A2,

where x0 = m−α and α = 1
2

(
1
k + 1

k+1

)
. Then

A1 =
(

1 +O
(
m−

1
2k

))∫ x0

0

xb−1e−ax exp

(
−mx

k

k!

)
dx

=
(

1 +O
(
m−

1
2k

)) (k!)
b
k

k

(
Γ

(
b

k

)
− Γ

(
b

k
, w0

))
m−

b
k ,

where w0 =
mxk0
k! = Θ(m

1
2k(k+1) ). By the upper bound given in [24, 8.11.i], Γ

(
b
k , w0

)
=

O
(

e−
w0
2

)
, which is exponentially small and can be neglected. Using (5.1), one can verify

that A2 = O
(

e−
w0
2

)
which can also be neglected.

Lemma 5.3. For a > 0, b > 0 and k ≥ 2,

ξk(a, b)
def
=

∫ ∞
0

∫ ∞
y

e−ax
k/k!−byk/k! dx dy

=
Γ
(
2
k

)
k

(
k!

a

) 2
k

F

(
2

k
,

1

k
; 1 +

1

k
;− b

a

)
, (5.3)
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where F denotes the hypergeometric function. In particular,

ξ2(a, b) = arctan

(√
b

a

)
(ab)−

1
2 . (5.4)

Proof. Changing to polar system by x = r cos(θ) and y = r sin(θ),

ξk(a, b) =

∫ π/4

0

∫ ∞
0

exp

[
−rk

(
a

cos(θ)k

k!
+ b

sin(θ)k

k!

)]
r dr dθ

=

∫ π/4

0

(
a

cos(θ)k

k!
+ b

sin(θ)k

k!

)− 2
k Γ( 2

k )

k
dθ

=
Γ( 2

k )

k

(
k!

a

) 2
k
∫ π/4

0

(
1 +

b

a
tan(θ)k

)− 2
k

dθ

=
Γ( 2

k )

k2

(
k!

a

) 2
k
∫ 1

0

u
1
k−1

(
1 +

b

a
u

)− 2
k

du,

which equals the right-hand-side of (5.3) by [24, 15.6.1]. For (5.4), see [24, 15.4.3].

Lemma 5.4. For a > 0, b > 0 and k ≥ 2,

(a+ b)−
2
k ≤ k

Γ
(
2
k

)
(k!)

2
k

ξk(a, b) ≤ a− 2
k + b−

2
k . (5.5)

Moreover, ξk(a, b) is monotonically decreasing in both a and b.

Proof. Let

ξ∗k(a, b)
def
=

k

Γ
(
2
k

)
(k!)

2
k

ξk(a, b) = (a+ b)
− 2
k F

(
2

k
, 1; 1 +

1

k
;

b

a+ b

)
, (5.6)

where we use [24, 15.8.1]. Let α1 = k
k+1 . By [20, cor. 2], for x ∈ (0, 1),

(1− α1x)
− 2
k ≤ F

(
2

k
, 1; 1 +

1

k
;x

)
≤ 1− α1 + α1 (1− x)

− 2
k .

This together with (5.6) give us (5.5).

For monotonicity, using the derivative formula [24, 15.5.1], it is easy to verify that for
a > 0 and b > 0 ∂

∂aξ
∗
k(a, b) < 0 and ∂

∂bξ
∗
k(a, b) < 0.

Lemma 5.5. For k ≥ 2, let

λk
def
=

∫ 1

0

∫ 1−s

0

ξk(s, t) dtds.

Then

λk =


π cot

(
π
k

)
Γ
(
2
k

)
(k!)

2
k

2 (k − 2) (k − 1)
k > 2,

π2

4
k = 2.
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Proof. When k = 2, applying (5.4) and changing to the polar system by letting s =

(r cot(θ))2 and t = (r sin(θ))2, we get

λ2 =

∫ 1

0

∫ 1−s

0

arctan
(√

t
s

)
√
st

=

∫ π
2

0

∫ 1

0

4rθ dr dθ =
π2

4
.

For k ≥ 3, by Theorem 5.3, it suffices to show that∫ 1

0

s−
2
k

∫ 1−s

0

F

(
2

k
,

1

k
; 1 +

1

k
;− t

s

)
dtds =

kπ cot
(
π
k

)
2(k − 2)(k − 1)

, (5.7)

which is easily verifiable using Mathematica. A human proof can be derived using the
series expansion of hypergeometric functions [24, 15.6.1].

Remark 5.6. In an attempt to prove Theorem 5.5, we discovered the following identity∫ ∞
0

(w + 1)
2
k−2 F

(
2

k
,

1

k
; 1 +

1

k
;−w

)
dw =

π cot
(
π
k

)
k − 2

, (k ≥ 3) ,

which we have not found in the literature. The proof follows from changing to polar
system in the left-hand-side of (5.7) by letting s = (r cos(θ))k and t = (r sin(θ))k.
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