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Abstract

A random geometric irrigation graph Γn(rn, ξ) has n vertices identified by n independent
uniformly distributed points X1, . . . , Xn in the unit square [0, 1]2. Each point Xi selects
ξi neighbors at random, without replacement, among those points Xj (j �= i) for which
�Xi − Xj� < rn, and the selected vertices are connected to Xi by an edge. The number
ξi of the neighbors is an integer-valued random variable, chosen independently with identical
distribution for each Xi such that ξi satisfies 1 ≤ ξi ≤ κ for a constant κ > 1. We prove
that when rn = γn

�
log n/n for γn → ∞ with γn = o(n1/6/ log5/6 n), then the random

geometric irrigation graph experiences explosive percolation in the sense that when Eξi = 1,
then the largest connected component has size o(n) but if Eξi > 1, then the size of the largest
connected component is with high probability n− o(n). This offers a natural non-centralized
sparsification of a random geometric graph that is mostly connected.

1 Introduction

We study the following model of random geometric “irrigation” graphs. Let X = {X1, . . . , Xn}
be a set of uniformly distributed random points in [0, 1]2. Given a positive number rn > 0,
we may define the random geometric graph Gn(rn) with vertex set [n] := {1, . . . , n} in which
vertex i and vertex j are connected if and only if the distance of Xi and Xj does not exceed
the threshold rn [18, 24]. To avoid non-essential technicalities arising from irregularities around
the borders of the unit square, we consider [0, 1]2 as a torus. Formally, we measure distance of
x = (x1, x2), y = (y1, y2) ∈ [0, 1]2 by

d(x, y) =

�
2�

i=1

min(|xi − yi|, 1− |xi − yi|)2
�1/2

.

It is well known that the connectivity threshold for the graph Gn(rn) is r�n =
�
log n/(nπ) (see,

e.g., Penrose [24]). This means that, for any � > 0,

lim
n→∞

P (Gn(rn) is connected) =

�
0 if rn ≤ (1− �)r�n
1 if rn ≥ (1 + �)r�n.
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In this paper we consider values of rn well above the connectivity threshold. So G(rn) is connected
with high probability. One may sparsify the graph in a distributed way by selecting, randomly, and
independently for each vertex u, a subset of the edges adjacent to u, and then consider the subgraph
containing those edges only. Such random subgraphs are sometimes called irrigation graphs or
Bluetooth networks [9, 12, 13, 16, 26]. A related model of soft random geometric graphs, resulting
from bond percolation on the geometric graph Gn(rn) is studied by Penrose [25]. In this paper,
we study the following slight generalization of the irrigation graph model:

THE IRRIGATION GRAPH. We consider a positive integer-valued random variable ξ. We assume
that the distribution of ξ is such that there exists a constant κ > 1 such that ξ ∈ [1,κ] with
probability one. The random irrigation graph Γn = Γn(rn, ξ) is obtained as a random subgraph
of Gn(rn) as follows. For every x ∈ [0, 1]2, define ρ(x) = |B(x, rn) ∩ X| to be the number
of points of X that are visible from x, where B(x, r) = {y ∈ [0, 1]2 : d(x, y) < r}. With
every point Xu ∈ X, we associate ξu, an independent copy of the random variable ξ. Then given
that Xu ∈ X and ξu, let Y(Xu) := (Yi(Xu), 1 ≤ i ≤ ξu ∧ ρ(Xu)) be a subset of elements of
X∩B(Xu, rn) chosen uniformly at random, without replacement. (Note that this definition allows
a vertex to select itself. Such a selection does not create any edge. In a slight modification of the
model, the selection is from the set X ∩ B(Xu, rn) \ {Xu}. Since self-selection is unlikely, all
asymptotic results remain unchanged in the modified model.)

We then define Γ+
n as the digraph on [n] in which two vertices u, v ∈ [n] are connected by

an oriented edge (u, v) if Xv = Yi(Xu) for some 1 ≤ i ≤ ξu ∧ ρ(Xu). The out-degree of every
vertex in Γ+

n is bounded by κ. Finally, we define Γn as the graph on [n] in which {u, v} is an edge
if either (u, v) or (v, u) is an oriented edge of Γ+

n .
We study the size of the largest connected component of the random graph Γn(rn, ξ) for large

values of n. We say that a property of the graph holds with high probability (whp) when the
probability that the property does not hold is bounded by a function of n that goes to zero as
n → ∞.

CONNECTIVITY OF RANDOM GEOMETRIC IRRIGATION GRAPHS. Irrigation subgraphs of random
geometric graphs have some desirable connectivity properties. In particular, the graph remains
connected with a significant reduction of the number of edges when compared to the underlying
random geometric graph. Connectivity properties of Γn(rn, cn) (i.e., when ξ = cn is deterministic,
possibly depending on n) have been studied by various authors. Dubhashi et al. [12] showed that
when rn = r > 0 is independent of n, Γn(r, 2) is connected with high probability. Note that
when r >

√
2/2 then the underlying random geometric graph Gn(r) is the complete graph and

Γn(r, 2) is just the 2-out random subgraph of the complete graph analyzed by Fenner and Frieze
[15]. When r is bounded away from zero, the underlying random geometric graph G(rn) is still an
expander and Γn(r, 2) exhibits a similar behavior. Geometry only comes into play when rn → 0

as n → ∞. In this regime, Crescenzi et al. [9] proved that there exist constants γ1, γ2 such that
if rn ≥ γ1

�
log n/n and cn ≥ γ2 log(1/rn), then Γn(rn, cn) is connected with high probability.

The correct scaling for the connectivity threshold for rn ∼ γ
�
log n/n for sufficiently large γ was

obtained by Broutin et al. [6] who proved that the connectivity threshold for the irrigation graphs
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with rn ∼ γ
�

log n/n is

c�n :=

�
2 log n

log log n
,

independently of the value of γ. More precisely, for any � ∈ (0, 1), one has

lim
n→∞

P (Γn(rn, cn) is connected) =

�
0 if cn ≤ (1− �)c�n
1 if cn ≥ (1 + �)c�n.

(1)

Thus, the irrigation subgraph of a random geometric graph preserves connectivity with high proba-
bility while keeping only O(nc�n) edges, which is much less than the Θ(n log n) edges of the initial
random geometric graph. However, the obtained random irrigation subgraph is not authentically
sparse as the average degree still grows with n.

One way to obtain connected sparse random geometric irrigation graphs is to increase the size
rn of the “visibility window” slightly. Indeed, we show elsewhere [7] that by taking rn slightly
larger, as rn ∼ n−1/2+� for some fixed � > 0, there exists a constant c = c(�) such that Γn(rn, c)

is connected with high probability.

Otherwise, one needs to relax the constraint of connectivity, and see how this affects the graph.
In this paper we study the emergence of a “giant” component (i.e., a connected component of
linear size) of random geometric irrigation graphs when rn ∼ γ

�
log n/n for a sufficiently large

constant γ (i.e., just above the connectivity threshold of the underlying random geometric graph
Gn(rn)). The main result shows that already when Eξ > 1, the graph Γn(rn, ξ) has a connected
component containing almost all vertices. Interestingly, there is not only a phase transition around
a critical value in the edge density but the phase transition is discontinuous. More precisely, we
show that when Eξ = 1 (or equivalently ξ = 1, that is, when the average degree is about 2), the
largest component of Γn(rn, ξ) is of size o(n), while for any � > 0, if Eξ = 1 + �, then with
high probability, Γn(rn, ξ) has a component of size n − o(n). The phenomenon when there is a
discontinuous phase transition was coined “explosive percolation” and has received quite a lot of
attention recently [23]. In explosive percolation, the size of the largest component, divided by the
number of vertices, considered as a function of the average degree, suffers a discontinuous jump
from zero to a positive value. In the present case we have even more: the jump is from zero to the
maximal value of one. Therefore, the random graph process experiences a super-explosive phase

transition or instant percolation. The main results of the paper are summarized in the following
theorems.

Theorem 1. Assume that Eξ > 1. For every ε ∈ (0, 1) there exists a constant γ > 0 such that for

rn ≥ γ
�
log n/n,

P (C1(Γn(rn, ξ)) ≥ (1− ε)n) −−−→
n→∞

1 ,

where C1(Γn(rn, ξ)) denotes the size of the largest connected component of the graph Γn(rn, ξ).

We also prove that when ξ = 1, with probability tending to one, the largest connected compo-
nent of the irrigation graph Γn(rn, ξ) is sublinear:

Theorem 2. Suppose that rn = o((n log n)−1/3). Then, for any ε > 0

P (C1(Γn(rn, 1)) ≥ εn) −−−→
n→∞

0.
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The two theorems may be combined to prove the following “instant-percolation” result.

Corollary 1. Suppose rn/
�
log n/n → ∞ and rn = o((log n/n)1/3. Then Γn(rn, ξ) experiences

super-explosive percolation in the sense that

(i) if Eξ ≤ 1, then C1(Γn(rn, ξ)) = o(n) in probability;

(ii) if Eξ > 1, then n− C1(Γn(rn, ξ)) = o(n) in probability.

Note that for classical models of random graphs, including both random geometric graphs
[24] and Erdős–Rényi random graphs [4, 20], the proportion of vertices in the largest connected
component is bounded away from one whp when the average degree is bounded by a constant.
Furthermore, for these graphs, the size of the largest connected component is continuous in the
sense that the (limiting) proportion of vertices in the largest connected component vanishes as the
average degree tends to the threshold value. The behavior of random geometric irrigation graphs
is very different, since the largest connected component contains n− o(n) vertices as soon as the
expected degree is greater than two. In particular, from a practical point of view, the irrigation
graph provides an almost optimal and distributed algorithm for sparsification of the underlying
graph. (Here distributed refers to the fact that every vertex makes its choices independently, as in
distributed algorithms.) Indeed the largest connected component contains n− o(n) edges, and we
achieve this with only n(1 + �) edges while any such graph must contain at least n− o(n) edges.

Recall that when the underlying graph is the complete graph Kn (i.e., when r ≥
√
2/2), then

the irrigation graph model corresponds to the c-out graphs studied by Fenner and Frieze [15] if
ξ = c ∈ N almost surely. With c = 1, a random 1-out subgraph of Kn is a just a random mapping
[17, 21] (a uniformly random function from [n] to [n]). In particular, for c = 1 and with high
probability, a random 1-out subgraph of Kn contains a connected component of linear size but is
not connected. For c ≥ 2, a random c-out subgraph of Kn is 2-vertex and 2-edge connected with
high probability [15]. (See also [2, 3]: although a bit cryptic, Theorem 3 there applies to unions of
two random mappings and shows that such graphs are asymptotically connected.) One may easily
verify that if we write Kn(ξ) for the random irrigation subgraph of Kn in which vertex i chooses
ξi random neighbors and E[ξ] > 1, then, as n → ∞,

P (Kn(ξ) is connected) → 1 ,

as an easy generalization of Fenner and Frieze [15].

2 Preliminaries: discretization and regularity of the point set

The proof relies heavily on different levels of discretization of the torus into smaller sub-squares,
as shown in Figure 1. The largest of these sub-squares are called cells and have side length about
krn/2 where k is a fixed large odd natural number. More precisely, let k ≥ 1 be odd and define

m :=

�
2

krn

�
and r�n :=

2

km
. (2)

The unit square is then partitioned into m2 congruent cells of side length 1/m = r�nk/2. Note that
(1− krn)rn ≤ r�n ≤ rn for all n large enough.
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Figure 1: The different levels of discretization of the torus [0, 1]2 is shown here with k = 5,
d = 1, and m = 4. The torus is sub-divided into m2 congruent squares, called cells, and each cell
is further divided into k2d2 small squares, called boxes. The central box and the seed boxes of one
of the cells are marked.

A cell Q is further partitioned into k2d2 square boxes, each of side length 1/(mkd) = r�n/(2d),
for some natural number d ≥ 1. We make d odd and call C(Q) the central box of cell Q. A typical
square box is denoted by S , and we let S (Q) be the collection of all boxes in cell Q.

Note that there are two independent sources of randomness in the definition of the random
graph Γn(rn, ξ). One comes from the random underlying geometric graph Gn(rn) (i.e., the col-
lection X of random points), and the other from the choice of the neighbors of each vertex. We
will always work conditionally on the locations of the points in X. The first step is to guarantee
that, with high probability, the random set X satisfies certain regularity properties. In the rest of
the proof we assume that the point set X satisfies the required regularity property, fix X and work
conditionally.

In the course of the proofs, we condition on the locations of the points X1, . . . , Xn and assume
that they are sufficiently regularly distributed. The probability that this happens is estimated in the
following simple lemma that relies on standard estimates of large deviations for binomial random
variables.

Fix odd positive integers k and d and consider the partitioning of [0, 1]2 into cells and boxes
as described above. For a cell Q, and a box S ∈ S (Q), we have

E[|X ∩ S|] = n

(mkd)2
=

nr�2n
4d2

.
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Fix δ ∈ (0, 1). A cell Q is called δ-good if for every S ∈ S (Q), one has

(1− δ)nr2n
4d2

≤ |X ∩ S| ≤ (1 + δ)nr2n
4d2

.

Lemma 1. For every δ ∈ (0, 1), there exists γ > 0 such that if rn ≥ γ
�
log n/n, then for all n

large enough,

inf
Q

P(Q is δ-good) ≥ 1− 2(mkd)2n−γ2δ2/(24d2).

In particular, if γ2 > 24d2/δ2 then

lim
n→∞

P(every cell Q is δ-good) = 1 .

See the Appendix for the proof.

3 An overwhelming giant: Structure of the proof

3.1 General approach and setting

Our approach consists in exhibiting a large connected component by exposing the edges, or equiv-
alently the choices of the points, in a specific order so as to maintain a strong control on what
happens. The general strategy has two phases: first a push-like phase in which we aim at exposing
edges that form a connected graph that is fairly dense almost everywhere; we call this subgraph
the web. Then, we rely on a pull-like phase in which we expose edges from the points that are not
yet part of the web and are trying to hook up to it.

THE PUSH PHASE. The design and analysis of the push phase is the most delicate part of the
construction. It is difficult to build a connected component with positive density while keeping
some control on the construction. For instance, following the directed edges in Γ+

n from a single
point, say x, in a breadth-first manner produces an exploration of Γ+

n that resembles a branching
process. That exploration needs to look at Ω(log log n) neighborhoods of x in order to reach the
� log n total population necessary to have positive density in at least one ball of radius rn. However,
by the time the Θ(log log n) neighborhoods have been explored, the spread of the cloud of points
discovered extends as far as Θ(log log n) away from x in most directions: in other words, doing
this would waste many edges, and make it difficult to control the dependence between the events
of reaching positive density in different regions of the square. An important consequence is that is
it not reasonable to expect that two points that are close are connected locally: we will prove that
points are indeed connected with high probability, but the path linking them does wander far away
from them.

To take this observation into account, in a first stage we only build a sort of skeleton of what
will later be our large connected component. That skeleton, which we call the web does not try to
connect points locally and its aim is to provide an almost ubiquitous network to which points will
be able to hook up easily. The construction of this web uses arguments from percolation theory
and relies on the subdivision of the unit square into m2 cells described above. It is crucial to keep
in mind that for the construction we are about to describe to work the web should be connected in
a directed sense.
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The cells define naturally an m×m grid as a square portion of Z2, which we view as a directed
graph. To avoid confusion with vertices and edges of the graph Γn(rn, ξ), we call the vertices of
the grid graph nodes and its edges links. More precisely, let [m] := {1, . . . ,m}. We then consider
the digraph Λ+

m on the node set [m]2 whose links are the pairs (u, v) whose �1 distance equals one;
the oriented link from u to v is denoted by uv. Write E+

m for the link set, so that Λ+
m = ([m]2, E+

m).
The construction of the web uses two main building blocks: we define events on the nodes and

the links of Λ+
m such that

• a node event is the event that, starting from a vertex in the central box of the cell, if one
tracks the selected neighbors of the vertex staying in the cell, then the selected neighbors of
these neighbors in the cell and so on up to a number of hops k2, then the resulting component
populates the cell in a uniform manner – see Proposition 1 for the precise statement;

• a link event allows the connected component built within the cell to propagate to a neigh-
boring cell. We show that both node events and link event happen with high probability. See
Lemma 2

It is important to emphasize that in proving that node and link events occur with high probability,
we make use of a coupling with suitably defined branching random walks that are independent of
the precise location of the points at which such events are rooted. Although this does not suffice to
make all node and link events become independent, it helps us control this dependence and allows
us to set up a joint site/bond percolation argument on Z2 that proves the existence of a directed
connected component that covers most cells. The node and link events are described precisely
and the bounds on their probabilities are stated in Sections 3.2 and 3.3, respectively. Finally, in
Section 3.4, we show how to combine the node and link events in order to construct the web using
a coupling with a percolation process. The proof relating to the estimates of the probabilities of
the node events is rather intricate, and we present them in Section 4.

THE PULL PHASE. The analysis of the pull phase relies on proving that any vertex not yet explored
in the process of building the web is in the same component as the web, with high probability. In
order to prove this, one may construct another web starting from such a vertex, which succeeds
with high probability by the arguments of the push phase. Then it is not difficult to show that the
two webs are connected with high probability. The details are developed in Section 3.5.

3.2 Populating a cell: node events

In proving the existence of the web (i.e., a connected component that has vertices in almost every
cell), we fix δ > 0 and any point set X for which every box is δ-good and work conditionally.
Thus, the only randomness comes from the choices of the edges. We reveal edges of the digraph
Γ+
n in a sequential manner. In order to make sure that certain events are independent, once the ξi

out-edges of a vertex Xi have been revealed, the vertex becomes forbidden and excluded from any
events considered later. We keep control of the number and density of forbidden points during the
entire process.

In Section 3.4 we describe the order in which cells are examined. In this section we look into
a single cell Q and describe an event —the so-called “node event”— that only depends on edge
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choices of vertices within the cell. All we need is a starting vertex x ∈ X in the central box C(Q)

of the cell and a set F of forbidden vertices. Both x and F may depend on the evolution of process
before the cell is examined. However, by construction (detailed below), we guarantee that the set
of forbidden vertices F only has a bounded number of elements in each box, and therefore does
not have a significant impact on the outcome of the node event. Similarly, the starting vertex x

originates from an earlier stage of the process but its exact location is unimportant, again by the
definition of the node event, as detailed below.

Consider a cell Q and a point x ∈ X ∩Q. For i ≥ 0, let ∆̃x(i) denote the collection of points
of X ∩ Q that can be reached from x by following i directed edges of Γ+

n without ever using a
point lying outside of Q. Let F ⊂ X denote the set of forbidden points containing the y ∈ X

whose choices have already been exposed. Let ∆x(i) be the subset of points of ∆̃x(i) that can be
reached from x without ever using a point in F .

Recall that the cell Q is partitioned into k2d2 square boxes of side length r�n/(2d) and that
S = S (Q) denotes the collection of boxes of Q. The next proposition shows that, with high
probability, any cell Q with starting point x ∈ X ∩ Q is such that ∆x(k2) populates Q in the
following way: for every S ∈ S (Q), we have |∆x(k2) ∩ S| ≥ E[ξ]k

2/2. We refer to this event as
Nx(Q) and the corresponding local connected component is called a bush. The proof is delayed
until Section 4.

Proposition 1. For a cell Q and vertex x ∈ X ∩ C(Q), define the node event

Nx(Q) =
�
∀S ∈ S (Q) : |∆x(k

2) ∩ S| ≥ E[ξ]k
2/2

�
.

For every η > 0, there exist constants d0, k0, n0 ≥ 1, and δ0 > 0 such that, provided that the cell

is δ-good and that supS∈S (Q) |F ∩ S| < δ0nr2n, then for all k ≥ k0, d ≥ d0, n ≥ n0 and for all

x ∈ X ∩ C(Q),

P(Nx(Q) |X) ≥ 1− η .

We note that although it may seem that the events Nx(Q), for distinct cells Q would be inde-
pendent (they depend on the choices of disjoint sets of vertices), it is not the case. It will become
clear later that the events do interact through the set F , which will be random, but that this depen-
dence can be handled.

3.3 Seeding a new cell: link events

We define an event that permits us to extend a bush confined to a cell Q and to find a directed path
from it to a point x� in the central box of a neighboring cell Q�.

For a given cell Q, the set of (kd)2 boxes S (Q) is naturally indexed by

{−�kd/2�, . . . , �kd/2�}2.

Among the boxes S ∈ S (Q), let I(Q) denote the collection of the four boxes that correspond to
the coordinates (−�kd/2�, 0), (�kd/2�, 0), (0,−�kd/2�) and (0, �kd/2�) (Figure 1). It is from
points in these boxes that we try to “infect” neighboring cells, and we refer to these boxes as seed

boxes or infection boxes. For two adjacent cells Q and Q�, we let I(Q,Q�) denote the seed box
lying in Q against the face shared by Q and Q�. Suppose, as before, that there is a set F ⊂ X
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of forbidden points. For a point y ∈ X ∩ I(Q,Q�), let ∆◦
y(i) denote the points of X that can

be reached from y using i directed edges of Γ+
n without using any point lying outside of Q� or in

F , except for y itself. Let Jy(Q,Q�) be the event that ∆◦
y(�kd/2�) contains a point lying in the

central box of Q�:
Jy(Q,Q�) = {∆◦

y(�kd/2�) ∩ C(Q�) �= ∅}.

Then, for R ⊂ X∩ I(Q,Q�), we let JR(Q,Q�) = ∪y∈RJy(Q,Q�). The event JR(Q,Q�) is called
a link event.

Lemma 2. Let Q and Q�
be two adjacent cells. Suppose that Q�

is δ-good for δ ∈ (0, 1/4) and

that supS∈S (Q) |F ∩ S| < δ0nr2n for δ0 < 1/(4d)2. Then, for every k, and d there exists n0 such

that for every n ≥ n0, and for any set R ⊆ X ∩ I(Q,Q�), we have

P(JR(Q,Q�) |X) ≥ 1− exp

�
− |R|
(10βd2)kd

�
,

where β = (1 + δ)(1/(2d) + (k/(16d2)).

Proof. Write h = �kd/2�. Let L0 = I(Q,Q�), L1, . . . , Lh = C(Q�) denote the sequence of
boxes on the straight line from I(Q,Q�) to C(Q�). For JR(Q,Q�) to occur, it suffices that for
some y ∈ R, one has |∆◦

y(i) ∩ Li| ≥ 1, for every i = 1, . . . , h; call E◦
y the corresponding event.

The E◦
y , y ∈ R, are not independent because the sets ∆◦

y(i), i ≥ 1, might not be disjoint. However,
on {∩y∈R∆◦

y(i) = ∅}, the events E◦
y , y ∈ R, are independent. Consider the ordering of the points

in R induced by the ordering in X, and write x < x� if x = Xi and x� = Xj for i < j. To
simplify the proof, we only consider a single path from any given point y ∈ R. Consider the path
defined by P0(y) = y, and for i ≥ 1, Pi(y) = Y1(Pi−1(y)); this is well defined since ξi ≥ 1 with
probability one. Let Ey be event that for every i = 1, 2, . . . , h, one has Pi(y) ∈ Li. Then we have
Ey ⊂ E◦

y .
Note that since Q� is δ-good, for any box S ∈ S (Q) we have:

|X ∩ S| ≥ (1− δ)nr2n
4d2

and |S ∩X ∩ F c| ≥ nr2n
8d2

since δ < 1/4 and δ0 < 1/(4d)2. Furthermore, at most |R|h of the points of X ∩ S ∩ F c lie in
∪y∈RPi(y), for some i = 1, 2, . . . , h. Now, for y ∈ R, let τy := inf{i ≥ 1 : Pi(y) �∈ Li}. Let
G−
y be the sigma-algebra generated by {Pi(y) : 0 ≤ i < τy}, y� < y. Since every cell is δ-good,

for every x ∈ [0, 1]2, we have |X ∩ B(x, rn)| ≤ βnr2n. Then, for every y ∈ R, and all n large
enough, we have

P
�
Ey | G−

y

�
≥

�
1

10βd2

�h

≥
�

1

10βd2

�kd

=: η, (3)

where the last expression serves as the definition for the constant η. Here we used the fact that
10βd2 ≥ 1. It follows that |{y ∈ R : Ey}| dominates a binomial random variable Bin(|R|; η) with
parameters |R| and η:

P(∃y ∈ R : E◦
y) ≥ P (∃y ∈ R : Ey) ≥ P(Bin(|R|; η) > 0)

≥ 1− e−η|R|.

Replacing η by its expression in (3) yields the claim.
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3.4 Building the web: the percolation process

In this section, percolation arguments are used to show how the node and link events can be used
to build the “web”, a connected component that visits most cells. The construction is based on an
algorithm to decide which edges to expose depending on what we have seen so far. Once again,
fix a point set X such that every cell is δ-good and work conditionnally.

DEFINING A PARTIAL PERCOLATION CONFIGURATION ON THE SQUARE GRID OF CELLS. We
encode an exploration process on the digraph Λ+

m of cells by defining a partial and joint site/bond

percolation process using the node and link events defined above. At the same time, we keep track
of the set of forbidden vertices F discussed in Sections 3.3 and 4.

For u ∈ [m]2, we let Qu ⊂ [0, 1]2 denote the corresponding cell. The nodes of [m]2 are ordered
lexicographically: for u = (u1, u2), v = (v1, v2) we write u � v if u1 ≤ v1 or if u1 = v1 and
u2 ≤ v2. We proceed with an exploration process in the lexicographic order, maintaining, at every
step i = 0, 1, 2, . . . of the process, a partition of [m]2 into three sets of nodes [m]2 = Ai∪Ei∪Ui,
where we call the nodes in Ai active, the ones in Ei explored, and those of Ui unseen. Initially, all
the nodes are unseen and therefore U0 = [m]2, A0 = ∅, E0 = ∅. The sets Ai, Ei, Ui, i ≥ 0, are
designed in such a way that,

• at any time i ≥ 0, any node u ∈ Ai has a distinguished vertex xu in the center box C(Qu)

for which we can check if the node event Nxu(Qu) (defined in Proposition 1) occurs; the set
of forbidden vertices that is used to assess this event is Fi to be defined shortly.

• The nodes u ∈ Ei are the ones that have been active from some time j < i and for which
the node event Nxu(Qu) has already been observed.

We now move on to the precise description of the algorithm and of the sets Ai, Ei, Ui ⊂ [m]2,
and Fi ⊂ X. Initially, we set F1 = ∅. Then we proceed as follows, for i ≥ 1. If Ei = [m]2, then
we have already “tested” a node event for each node and we are done, and we now suppose that
Ei �= [m]2. Then, there must be some node in either Ai or Ui.

(i.) Suppose first that Ai �= ∅. Then, let ui be the node of Ai that is lowest in the lexicographic
order. By construction, there is a distinguished vertex xui ∈ C(Qui). Say that the node ui is open

and set σ̃(ui) = 1 if the node event Nxui
(Qi) succeeds. If this is the case, all four seed boxes in

Qui contain a set of points of the bush constructed in Qui of cardinality at least E[ξ]k
2/2 that are all

connected to xui within Qui . Consider all the oriented links uiv, where v ∈ Ui, and let Ruiv be the
set of points that are lying in the seed box S(Qui , Qv) of Qui that is adjacent to Qv. For any such
link uiv, we declare the oriented link open and set σ̃(uiv) = 1 if the link event JRuiv

(Qui , Qv)

(defined just before Lemma 2) succeeds. (Note that we liberally use the notation σ̃(·) to indicate
either openness of a node u by σ̃(u) or the openness of an oriented link uv by σ̃(uv)).

Let Vi = {v ∈ Ui : σ̃(uiv) = 1}. For every v ∈ Vi, since JRuiv
(Qui , Qv) succeeds, we have,

by construction, a non-empty set of points of the center box C(Qv) that are connected to Rui,v by
directed links in Γ+

n ; we let xv be the one of these points that has the lowest index in X. Then,
update the sets by putting Ei+1 = Ei ∪ {ui}, Ai+1 = Ai ∪ Vi \ {ui}, Ui+1 = Ui \ Vi. As for
the set of forbidden vertices, let fi+1 be the collection of points Xu ∈ X whose choices Yj(Xu),
1 ≤ j ≤ ξu, have been exposed when determining the node event Gxui

(Qui) and the potential
following link events. Then, let Fi+1 = Fi ∪ fi+1.
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(ii.) If, on the other hand, Ai = ∅, then Ui �= ∅. Note that if this happens, it means that
we have not succeeded in finding a point x ∈ C(Qui) that is connected to the points previously
explored and we need to start the exploration of a new connected component of Γ+

n . Let ui ∈ Ui

be the node with lowest lexicographic order. Then, set Ai+1 = {ui}, Ei+1 = Ei and Ui+1 =

Ui \{ui}. We then let xui be the point of X∩C(Qui) that has the lowest index in X. Such a point
exists by the assumption of δ-goodness and because the number of forbidden points in each cell is
bounded (see Lemma 3 below).

Note that the distinguished point xu of a cell Qu is chosen when the corresponding vertex is
activated, which happens once and only once for every node u ∈ [m]2.

In order to use Proposition 1 and Lemma 2 for estimating the probability of node events and
link events, we need to make sure that the number of forbidden points stays under control.

Lemma 3. If k is sufficiently large, then for every cell Q, during the entire process, we have

|F ∩Q| ≤ κ2k
2
.

Proof. To reveal a node event Nx(Q), one only needs to expose ∆x(k2) for a single point x ∈ Q.
This requires to look at the edge choices of at most k2κk2 vertices, all of which lie in Q. The
points exposed during the evaluation of a link event account for a total of at most 4 ·k2κk2 ·kdκkd.
The claim follows easily.

COMPLETING THE PERCOLATION CONFIGURATION. Once the exploration process is finished,
every node has been declared open or not, and we have assigned a value to every σ̃(u), u ∈ [m]2.
However, we have not defined the status of all the oriented links uv. See Figure 2. In particular,
σ̃(uv) has only been defined if σ̃(u) = 1 and if σ̃(v) had not been set to one before. For every
oriented link uv, let θ(uv) be the indicator that a link event has been observed for uv. Let H+

m

denote the open subgraph of Λ+
m, that consists of nodes u and directed links uv for which σ̃(u) =

1 and σ̃(uv) = 1, respectively. A subset K of nodes in [m]2 is called an oriented connected

component of H+
m if σ̃(u) = 1 for all u ∈ K and for all u, v ∈ K there is an oriented open

path between u and v, that is, a sequence u = u1, u2, . . . , u� = v of nodes in K such that
σ̃(uiui+1) = 1 for all i = 1, . . . , �− 1.

In order to prove that H+
m contains an oriented connected component containing most nodes

—and therefore proving the existence of the web—, we embed H+
m in an unoriented complete

mixed site/bond percolation configuration on the digraph Λ+
m. Then we use results from the theory

of percolation to assert the existence of a connected component containing most vertices.
In a general mixed site/bond percolation configuration, every node is open independently with

a certain probability p, and every undirected link is also open independently with probability q.
Fix η ∈ (0, 1) and choose the parameters k, d,λ, and δ such that each node event occurs with
probability at least 1− η and each (oriented) link event occurs with probability at least 1− η/2. In
order to define the mixed site/bond percolation configuration, we first assign states to the oriented
links uv for which θ(uv) = 0. Let (σ̃(uv) : uv ∈ E+

m, θ(uv) = 0) be a collection of i.i.d.
Bernoulli random variables with success probability 1 − η/2. Now we declare an unoriented
link uv open if σ̃(uv) = σ̃(vu) = 1. Observe that although we have assigned a configuration
(σ̃(u), u ∈ [m]2; σ̃(e), e ∈ E+

m) to the digraph Λ+
m, this collection of random variables is not
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Figure 2: The partial percolation configuration after exploring all node and link events with the
obtained oriented connected components. White nodes are those for which the node event Nx(Q)

succeeds. Crossed arrows represent failed link events. The numbers near the nodes indicate the
order in which the node events are tested.

independent. For instance, for any two nodes, the σ̃(u) and σ̃(v) are dependent for they interact
through the set of F of forbidden nodes which is random. However,

inf
1≤i≤m2

P (σ̃(ui) = 1 |X, Fi) ≥ 1− η and

inf
1≤i≤m2

inf
uiv∈E+

m

P (σ̃(uiv) = 1 |X, Fi) ≥ 1− η/2 ,

which implies that there exists two independent collections of i.i.d. Bernoulli random variables
(σ(u), u ∈ [m]2), and (σ(uv), uv ∈ E+

m) with success probabilities 1−η and 1−η/2, respectively
such that almost surely σ̃(u) ≥ σ(u) for u ∈ [m]2 and σ̃(uv) ≥ σ(uv) for uv ∈ E+

m. The
configuration defined by σ is a proper mixed site-bond percolation configuration.

By construction, in the configuration σ, every node and every unoriented link of [m]2 is
equipped with an independent Bernoulli random variable with success probability at least 1 − η.
Each node and each link is open if the corresponding Bernoulli variable equals 1. This is the mixed

site/bond percolation model considered, for example, by Hammersley [19]. In such a configura-
tion, we say that two nodes u, v ∈ [m]2 are bond-connected in the configuration if there exists a
sequence of open nodes u = u1, u2, . . . , u� = v for which every link uiui+1, 1 ≤ i < � is also
open. This equivalence relation naturally defines bond-connected components. Clearly, each bond
connected component is also an oriented open component in H+

m and therefore it suffices to show
that the mixed site/bond percolation configuration has a bond-connected component containing
almost all nodes, with high probability.

In order to prove this, we use results of Deuschel and Pisztora [11] for high-density site per-
colation by reducing the mixed site/bond percolation problem to pure site percolation as follows:

Lemma 4. Consider mixed site/bond percolation on [m]2 as defined above where each node is

12



open with probability p and each link is open with probability q, independently. The size of the

largest bond-connected component is stochastically dominated by the size of the largest open com-

ponent in site percolation on [m]2 where each node is open with probability pq2.

Proof. Split each link in the mixed model into two half-links, and let each half-link be indepen-
dently open with probability √

q. We say that a link is open if both half-links are open.
Next, for a node v in the mixed model, we call event D(v) the event that the node and its four

adjacent half-links are open. This occurs with probability r := pq2. Now, consider a coupled site
percolation model, also on the m × m torus, in which the node v is open if D(v) occurs. These
are independent events. So, we have a site percolation model with node probability r = pq2. It is
clear that if a path exists in the site percolation model then a path exists in the mixed model, so the
mixed model percolates (strictly) better.

Now it follows from [11] that in our mixed site/bond percolation model where nodes and links
are open with probability at least 1 − η, the following holds: for every � > 0 there exists η > 0

such that for all m large enough,

P
�
there exists a bond-connected component of size > (1− �)m2

�
> 1− � .

Now, for us the constant η is controlled by k, d, δ and γ. Putting everything together, we have
proved the existence of the web:

Proposition 2. Let � > 0. There exist k0, d0, δ, γ such that if k > k0, d > d0, and rn >

γ
�
log n/n, then for all n large enough, if all cells are δ-good, then, with probability (conditional

on X) at least 1 − �, there exists a connected component of Γ(rn, ξ) such that at least (1 − �)-

fraction of all boxes contain at least E[ξ]k
2/2

vertices of the component.

3.5 Finale: gathering most remaining points

In the previous sections we saw that after exploring only a constant number of points per cell (at
most m2κ2k

2 ≤ 2κ2k
2
/(k2r2n) in total by Lemma 3) with high probability, we can construct a

connected component —the so-called web— of the graph Γ(rn, ξ) that contains at least E[ξ]k
2/2

points in a vast majority of boxes. Recall that each box is a square of side length r�n/(2d) where d

is a fixed but large odd integer.
It remains to prove that most other vertices belong to the same component as the web, with

high probability. To this end, first we show that any not yet explored vertex is contained in the
same component as the web, with high probability. As before, we fix a sufficiently small δ > 0

and fix a point set X such that every cell is δ-good. Suppose that the exploration process of the
previous sections has been carried out, revealing the edge choices of at most κ2k2 points per cell
(and thus also at most this many per box). If n is so large that δ2γ log n/(4d2) > κ2k

2 , then even
after removing all vertices whose choices have already been exposed, every cell remains 2δ-good.
Let xi ∈ X be one of the still unseen vertices. We shift the coordinate system so that the box
containing xi becomes the central box of the first cell. Since the boxes in the new coordinate
system were also boxes in the original coordinates, every cell is still 2δ-good in the new system.

Now we build a second web, with the aim that it contains xi with probability close to one.
We start the same exploration process from the vertex xi as in the construction of the web but
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now we place all vertices of the first web in the set of forbidden points. If δ is sufficiently small,
then Proposition 2 applies and, with probability at least 1 − �, we obtain another web that has
at least E[ξ]k

2/2 vertices in at least (1 − �)-fraction of the boxes. The newly built web may not
contain the vertex xi. However, by the homogeneity of the mixed site/bond percolation process,
each cell is equally likely to be contained in the newly built web and therefore, with probability at
least (1− �)2 vertex xi is contained in a component that has at least E[ξ]k

2/2 vertices in at least a
(1− �)-fraction of the boxes. It is clear from the proof of Proposition 1 that, in fact, each of these
boxes contains at least E[ξ]k

2/2 points whose edge choices have not been revealed in the process
of building the second web. Thus, with probability at least (1 − �)3, at least (1 − 2�)-fraction of
the boxes contain at least E[ξ]k

2/2 points of the first web and at least E[ξ]k
2/2 points of the second

web that contains the vertex xi. Now we may reveal the edge choices of the vertices of the second
web that have not been explored. Since the diameter of a box is less than rn, the probability that
the two webs do not connect —if they have not been connected already— is at most

�
1− E[ξ]k

2/2

(1− 2δ)nr2n/(4d
2)

�m2(1−2�)

= o(1)

whenever rn = o(n−1/4).
Thus, conditionally on the fact that all cells are δ-good, the expected number of vertices that

do not connect to the web is o(n). Finally, Markov’s inequality, and Lemma 1 complete the proof
of Theorem 1.

4 Getting out of the central box: Proof of Proposition 1

4.1 Constructing a branching random walk

Most of the work consists in estimating the probability of the local events, while ensuring inde-
pendence. In this section, we consider a single cell Q of side length kr�n/2. As we have already
explained, the local bushes are constructed by a process that resembles a branching random walk

in the underlying geometric graph. The main differences with an actual branching random walk
are that

• the potential individuals are the elements of X, and so they are fixed conditionnaly on X),

• an element of X only gets to choose its neighbors once; in particular, if a vertex Xi is
chosen that has already used up its ξi choices, the corresponding branch of the exploration
must stop (if we were to continue the exploration, it would trace steps that have already been
discovered).

The entire argument in this section is conditional on the location of the points, assuming the
regularity property that the cell Q is δ-good. Recall that a cell Q of side-length kr�n/2 is called δ-
good if the numbers of points within every box S it contains lies within a multiplicative [1−δ, 1+δ]

range of its expected value E|X ∩ S|. By Lemma 1, for any � > 0, the probability that every cell
is δ-good is at least 1 − � for all n large enough (provided the constant γ in rn = γ

�
log n/n is

large enough).

14



r

x

Ax

Figure 3: Any circle of radius rn centered at x fully contains a Ax which is a copy of a fixed

collection of boxes.

Fix a cell Q, in which we want to analyze the node event. Then, for every i ∈ [n] such that
Xi �∈ Q, we work with an independent copy of ξi. Since such points Xi are not considered when
analyzing the node event on X, this has no effect on the event Nx(Q), for x ∈ X∩C(Q). However,
this makes the proofs a little smoother since we can look at all k2 neighborhoods without worrying
(at least in a first stage) whether the points are in Q or not. Note the important fact that this is only
used for the analysis, and that the actual exploration is not carried out when the points leave the
cell Q. In particular, this thought experiment does not affect the number of forbidden vertices.

DISCRETIZING THE STEPS. We define a skimmed version of the neighborhood exploration in
which we drop some of the points in order to guarantee simplified dynamics. The simplification
uses the refined discretization of the space into boxes. Let S denote the collection of all boxes
(open squares). For a point x ∈ [0, 1]2, we let S(x) ⊂ Q denote the box containing the point x
(this is well-defined for every point of Q with probability one).

For a given point x ∈ Q ⊆ [0, 1]2, let A◦
x ⊆ Q denote the union of the boxes that are fully

contained in the ball of radius rn and centered at x. Then, for any box S ∈ S and x ∈ S define

Ax =
�

y∈S
A◦

y

(Figure 3). Write Ax for the collection of boxes whose union is Ax, and let a denote the number
of boxes that compose Ax, for x ∈ [0, 1]2.

Lemma 5. For any δ ∈ (0, 1/4) there exist constants k0, d0 and n0 such that for all k ≥ k0,

d ≥ d0 and n ≥ n0, we have

|a− πd2| ≤ δd2.

Proof. First, every box that is fully contained in B(x, rn) accounts for an area of (r�n/d)2, so we
must have a(r�n/d)

2 ≤ πr2n. Now, since (1 − krn)rn ≤ r�n ≤ rn (see just below the definition in
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(2)), it follows that

a ≤ πd2
�
rn
r�n

�2

≤ πd2 · 1

1− krn
≤ πd2(1 + δ),

provided that krn ≤ δ/2 < 1/4.
On the other hand, the boxes that intersect the ball B(x, rn) but are not fully contained in

it must touch the boundary of B(x, rn). So any such box must lie entirely inside the annulus
B(x, rn + r�n

√
2/d) \B(x, rn − r�n

√
2/d). In particular, the number of these boxes is at most

π

(r�n/d)
2

��
rn +

r�n
√
2

d

�2

−
�
rn − r�n

√
2

d

�2�
≤ 4π

√
2d

rn
r�n

.

Since (1− krn)rn ≤ r�n ≤ rn, it follows that

a ≥ πd2
�
rn
r�n

�2

− 4πd
√
2
rn
r�n

≥ πd2 − 8πd
√
2,

for all k and rn such that 2krn ≤ 1. The result follows readily.

EXTRACTING A DISCRETE BRANCHING RANDOM WALK. Next we obtain lower bounds for the
sizes of neighbourhoods of points x in the irrigation graph. It is here that the discretization in
boxes is important since it ensures that the process S(y), y ∈ ∆x, of boxes containing the points
which may be reached from x using directed edges dominates a branching random walk. In order
to properly extract this branching random walk on the set of boxes

• we artificially reduce the number of points in each box so that the distributions of the number
of offspring of the spatial increments are homogeneous, which fixes the spatial component,
and

• we then ensure that the offspring of every individual has the same distribution, so that the
underlying genealogy is a Galton–Watson tree.

We now define the discrete branching random walk as a process indexed by the infinite plane
tree

U =
�

n≥0

{1, 2, 3, . . . }n,

where the individuals in the n-th generation are represented by a word of length n on the alphabet
{1, 2, . . . }. The tree U is seen as rooted at the empty word ∅. The descendants of an individual u
are represented by the words have u as a prefix. The children of u ∈ U are ui, i ≥ 1. If v = ui

for some u ∈ U and i ≥ 1, u is the parent of v and is denoted by p(v) = u. For u, v ∈ U we write
u � v if u is an ancestor of v, potentially u = v.

EXPLORING THE NEIGHBORHOODS IN Γ+
n AND THE SPATIAL COMPONENT. Consider any δ-

good cell Q, and a point x ∈ Q. We define the tree-indexed process (Z◦
u, u ∈ U) corresponding

to the exploration of the neighborhoods of x in the directed irrigation graphs Γ+
n . To properly
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prune the tree we introduce a cemetery state ∂, that is assigned to the words of U that do not
correspond to a vertex of X. More precisely, we first define an auxiliary process (Z◦

u, u ∈ U). We
set Z◦

∅ = x; then if Z◦
u = z ∈ X for some u ∈ U , we define Z◦

ui = Yi(z), for 1 ≤ i ≤ ξz , and
Z◦
ui = ∂ for i > ξz and similarly for any word w with ui as a prefix. Then, for m ≥ 0 integer,

{Z◦
u : |u| = m,Z◦

u �= ∂} is precisely the set of points of X that can be reached from x using a
path of length exactly m. However, some points may appear more than once in the process.

We now skim the process in order to extract a subprocess for which all the points are distinct,
and for which we can guarantee that the process induced on the set of boxes visited by the points
is a branching random walk. Although it is not crucial, it is natural to skim the tree in the breadth-
first order, where for u, v ∈ U we write u �b v if |u| < |v| or if there exists w ∈ U and u = wi,
v = wj for i < j. We let Tx(u) be the event that Z◦

u �= Z◦
v for every v �b u.

The skimming is done by maintaining a set of valid points, which ensures that a point choosen
at random among the valid points in a certain subset of the boxes is contained in a uniformly
random box in that subset. Initially, we have a set of valid points V ⊆ X \ F , that are points
whose choices have not yet been exposed, but maybe not all such points. We choose V in such a
way that for every box S ∈ S , the number of elements of V ∩ S is the same, and we denote by
c this the common cardinality. We do this in such a way that the set V has maximal cardinality.
Let (wi, i ≥ 0) be the breadth-first ordering of the elements of the set {u : Z◦

u �= ∂, |u| ≤ k2}.
Set V∅ = V . If x �∈ V∅, set Z�

∅ = ∂ as well as for all the words u ∈ U ; set Vw1 = V∅.
Otherwise x ∈ V∅, and we set Z�

∅ = x. Then, we update the set of valid points. For each box
S ∈ S \ {S(x)}, let X(∅)(S) be the point of V∅ ∩ S which has minimum index in X, if such a
point exists, or X(∅)(S) = ∂ otherwise. Then we set

Vw1 := V∅ \
�
{X(∅)(S) : S ∈ S } ∪ {x}

�
,

which ensures that the number of points in Vu1 ∩ S is the same and equal to c − 1 for every box
S ∈ S , since precisely one point has been removed from every box.

Suppose now that we have defined Z�
wj

for all j < i, and Vwj for j ≤ i. Then, if Z◦
wi

∈
Vwi ∩ AZp(wi)

, we set Z�
wi

= Z◦
wi

. Otherwise define Z�
wi

= ∂. Then, for every box S ∈ S , let
X(i)(S) be the point in Vwi ∩ S which has minimum index in X, and define

Vwi+1 =

�
Vwi \

�
{X(i)(S) : S ∈ S \ {S(Z�

wi
)}} ∪ {Z�

wi
}
�

if Z�
wi

�= ∂

Vwi \ {X(i)(S) : S ∈ S } if Z�
wi

= ∂.

SKIMMING THE UNDERLYING GENEALOGY. The process of interest is (S(Z�
u), u ∈ U). Note

that for u, v ∈ U , with u the parent of v in U , u = p(v), conditional on Z�
u, Z

�
v �= ∂, and say

S(Z�
u) = s, the box S(Z�

v ) which contains Zv is uniformly random in As. So for every sequence
of words (vi, i ≥ 0) in U with |vi| = i, conditional on Zv� �= ∂, the process (S(Z�

vi))0≤i≤� is a
random walk with i.i.d. increments. The only reason why the entire process (S(Z�

u), u ∈ U) is
not a branching random walk is that the individuals do not all jump to ∂ with the same probability
(in other words the individuals do not all have the same offspring distribution) either because of
the inhomogeneity of the point set X, or because of the changing number of valid points. We now
construct the (truncated) branching random walk (Zu, |u| ≤ k2) by homogenizing the offspring
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distribution. For u ∈ U , and s ≥ 0, define

αi :=
a(c− i)

ρ(Z�
p(wi)

)
, (4)

that is the probability that the node wi, which is a child of p(wi), is such that Z�
wi

�= ∂. Let also
α := inf{αi : 1 ≤ i ≤ im}, where im := #{u : Z◦

u �= ∂, |u| ≤ k2}. Let Ui, i ≥ 1, be a collection
of i.i.d. random variables uniformly distributed on [0, 1], and finally define

Zwi =

�
Z�
wi

if Ui ≤ (1− α)/(1− αi)

∂ otherwise.

Then, for every u, |u| < k, writing ζu := #{ui : Zui �= ∂} for the offspring of u, (ζu : |u| < k2)

is a collection of i.i.d. random variables; write ζ for the typical copy of this random variable. More
precisely, ζu is distributed like a binomial random variable with parameters ξu and α. In particular,

α ≥ (π − δ)d2(η − δ) log n− κ2k
2

(π + δ)d2(η + δ) log n
, (5)

and if we write E[ξ] = 1+ � for � > 0, it is possible to choose δ, d1, n1 large enough such that for
d ≥ d1 and n ≥ n1, we have

E[ζ] ≥ 1 + �/2.

4.2 Analyzing the discrete branching random walk.

In this section, we slightly abuse notation and identify the set of boxes and their representation as
the discrete torus. Furthermore, since for n large enough, the difference between the torus and Z2

cannot be felt by a walk of k2 steps, we talk about Z2. In particular, we let A denote the subset of
Z2 corresponding to the boxes in A0, which is the set of potential spatial increments of our walks.

We now consider the (truncated) branching random walk (Zu, |u| ≤ k2) taking values in
Z2, that we complete into a branching random walk by generating the missing individuals using
an independent family of random variables for the offspring and the spatial displacements. By
definition, an individual u located at Zu gives birth to ζu individuals, such that the displacements
are i.i.d. uniform in A. Furthermore, every individual behaves in the same way and independently
of the others. For S ∈ S and i ≥ 0, define

Mi(S) := #{u ∈ U : |u| = i, Zu ∈ S},

the number of individuals u ∈ U in generation i such that Zu ∈ S.

Lemma 6. Let q > 0 be the extinction probability of the Galton–Watson process underlying the

branching random walk (Zu)u∈U . Then, for all k large enough, we have

P
�
#{v ∈ U : |v| = k2, Zv ∈ S} ≤ E[ζ]2k

2/3
�
≤ 2q.

Before proving Lemma 6, we show that the extinction probability q in the bound may be made
as small as we want by choice of the constants. By the bound in (5), this reduces to showing that
the extinction probablity goes to zero as α → 1.
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Lemma 7. Let q be the extinction probability of a Galton–Watson process with offspring distribu-

tion ζ = Bin(ξ,α) such that E[ξ]α > 1 and ξ ≥ 1. Then,

q ≤ 1− α

1−E[(1− α)ξ]−E[ξα(1− α)ξ−1]
.

Proof. To prove this, we use the standard fact that q is the smallest x ∈ [0, 1] such that x = E[xζ ]

[1]. Note the simple fact that if f(x) and g(x) are probability generating functions, then if f(x) ≤
g(x) for all x ∈ [0, 1] the corresponding extinction probabilities qf and qg satisfy qf ≤ qg. So
it suffices to find an upper bound on E[xζ ] which gives us a computable (and small) extinction
probability. Writing pi = P (ζ = i), and p≥2 = 1− p0 − p1, we have, for every x ∈ [0, 1],

E[xζ ] ≤ p0 + (1− p0 − p≥2)x+ p≥2x
2 .

It follows readily that

q ≤ (p0 + p≥2)− |p0 − p≥2|
2p≥2

=
min{p0, p≥2}

p≥2
≤ p0

p≥2
.

Here, p≥2 = 1 − E[(1 − α)ξ] − E[ξα(1 − α)ξ−1] and since ξ ≥ 1, we have p0 ≤ 1 − α, which
completes the proof.

The proof of Lemma 6 goes in two steps. First, one shows that for some δ > 0, the branching
random walk has at least (1+�/2)δk individuals in the δk-th generation, that all lie within distance
k/4 of the center of the cell. We call such individuals decent. The decent individuals are the
starting points of independent branching random walks. In order to prove the claim, we show that,
with probability no smaller than a polynomial in 1/k, a single of these decent individuals produces
enough decendants for #{v ∈ U : |v| = k2, Zu ∈ S} ≥ E[ζ]2k

2/3 to occur.

Proof of Lemma 6. Consider the genealogical tree of the branching random walk (Zu)u∈U , and
write (Mi)i≥0, for the associated Galton–Watson process. So we have

Mi = #{Zu : u ∈ U , |u| = i}.

As we already mentioned, we have E[ζ] > 1 and the process is supercritical. Furthermore, the
offspring distribution is bounded (ζ ≤ κ) so that Doob’s limit law [1] implies that, as m → ∞, we
have as � → ∞,

M�

E[M1]�
→ W

in distribution, for some random variable W that is absolutely continuous, except possibly at
0. Furthermore, the limit random variable satisfies P (W = 0) = q, where q is the extinction
probability of the Galton–Watson process (Mi)i≥0.

Since q ∈ (0, 1), we can find a β > 0 such that P (2β < W < 1/(2β) | W > 0) > 1− q. It
follows that

lim inf
�→∞

P

�
M�

E[M1]�
∈
�
β,

1

β

��
≥ P

�
W ∈

�
2β,

1

2β

��
> (1− q)2,

and in particular, for any µ ∈ (0, 1/2) and k large enough,

P
�
M�µk� ≥ βE[M1]

µk−1
�
≥ (1− q)2
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Recall that an individual v is decent if �Zv� ≤ k/4, where � ·� denotes the Euclidean distance.
However, the spatial increments are bounded, and for every v such that |v| = �µk�, we have

�Zv� ≤ µ ≤ µk2d.

It follows that for µ ∈ (0, 1/(8d)), every individual v with |v| = �µk� is decent. Fix now such a
µ. Writing Dm for the number of decent individuals at level m, we have

P
�
D�µk� < βE[M1]

µk−1
�
≤ 1− (1− q)2. (6)

For every decent individual at depth �µk�, there is a subtree that might well give us enough
individuals at generation k2 all lying in S. In order to ensure some level of concentration, we only
consider the individuals u, |u| = �µk�, for which the corresponding Doob limit Wu in the subtree
rooted at u satisfies 2β < Wu < 1/(2β). For � ≥ 0 and u such that |u| ≤ � write

M�(u) := #{v : u � v, |v| = �}.

Then, for all k large enough,

E [ Mk2(u) | 2β < Wu < 1/(2β), u decent ] ≥ βE[M1]
k2−�µk� · k−c

for some c > 0 whose existence is guaranteed by Lemma 8 below. However, for every such
individual u, on the event {2β < Wu < 1/(2β)}, we have for all k large enough

Mk2(u, S) := #
�
v : u � v, |v| = k2, Zv ∈ S

�
≤ β−1E[M1]

k2−�µk�.

It follows that

P

�
Mk2(u, S) ≥

β

2
E[M1]

k2−�µk�k−c

���� 2β < Wu < 1/(2β), u decent
�

≥ β

2
· k−c,

hence
P

�
Mk2(u, S) ≥

β

2
E[M1]

k2−�µk�k−c

���� u decent
�

≥ β

2
k−c(1− q)2. (7)

Finally, combining (6) and (7), we see that, for k large enough, the probability that we do not
have at least E[M1]2k

2/3 individuals of the k2-th generation that lie in B is at most

P
�
D�µk� < βE[M1]

µk−1
�
+P

�
Mk2(u, S) < E[M1]

2k2/3
��� u decent

�βE[M1]µk−1

≤ 1− (1− q)2 + κ−kµ +

�
1− β

2
k−c(1− q)2

�βE[M1]µk

≤ 2q,

for k sufficiently large.

It remains to prove the following key ingredient of the proof of Lemma 6.

Lemma 8. Let (Ri)i≥0 be a random walk on Z2
where the increments are i.i.d. uniformly random

in A (where A is defined above just before Lemma 6). Then, for any µ ∈ (0, 1/2), there exists a

constant c > 0, such that for any x ∈ {−�kd/4�, . . . , �kd/4�}2 and y ∈ {−�kd/2�, . . . , �kd/2�}2,

P
�
Rk2−µk = y;Ri ∈ S , 0 ≤ i ≤ k2 − µk

�� R0 = x
�
≥ k−c,

for all k large enough.
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Proof. Let S = [−�kd/2�, �kd/2�]2 be the scaled version of the cell. The argument relies on
the strong embedding theorem of Komlós, Major, and Tusnády [22] or, more precisely, its multi-
dimensional version by Zaitsev [27] (see also [14]): there exists a coupling of (Ri)0≤i≤k2 with a
Brownian motion (Ξt)0≤t≤k2 such that for every c2 > 0 there exists a c1 > 0 such that, for every
k large enough,

P

�
max

0≤i≤k2
�Ri − Ξi� ≥ c1 log k

�
≤ k−c2 , (8)

where � · � denotes Euclidean norm in R2. We now consider such a coupling, and for a constant
c1 to be chosen later, let E = E(c1) be the event that �Ri − Ξi� ≤ c1 log k for every 0 ≤ i ≤ k2.
Let y ∈ {−�kd/2�, . . . , �kd/2�}2, and recall that S(y) denotes the corresponding box in S . On
E, if it turns out that Ξk2−µk−m ∈ S(y), then Rk2−µk−m is reasonably close to y and there is a
decent chance that it ends up at y at time k2 − µk. More precisely, if for some integer m ≤ k we
have Ξk2−µk−m ∈ S(y), then �Rk2−µk−m − y� ≤ c1 log k, and we let H = H(c1,m) denote the
latter event. Then, we have

P
�
H,Ri ∈ S , 0 ≤ i ≤ k2 − µk −m

�

≥ P
�
H,Ri ∈ S , 0 ≤ i ≤ k2 − µk −m,E

�

≥ P
�
Ξk2−µk−m = S(y),Ξi ∈ S , 0 ≤ i ≤ k2 − µk −m,E

�

≥ P
�
Ξk2−µk−m = S(y),Ξi ∈ S , 0 ≤ i ≤ k2 − µk −m

�
−P (Ec) .

Now, by the local limit theorem, for all k large enough, one has

inf
0≤m≤k

P

�
Ξk2−µk−m ∈ S(y); inf

1≤i≤k2
d(Ξi,S

c) ≤ c1 log k

�
≥ k−2

where d(x,S c) denotes the distance from x ∈ R2 to the set S c. Choosing c1 be the constant
such that c2 = 3 in (8), we obtain

inf
0≤m≤k

P
�
H,Ri ∈ S , 0 ≤ i ≤ k2 − µk −m

�
≥ k−3, (9)

for all k large enough. In particular, with m = �c1 log k/(2d)� it is possible for the random walk
to go to y within the m steps, while staying within S . It follows that, with a := |A| the number
of potential increments at every step,

P
�
Rk2−µk = y,Rk2−µk−i ∈ S , 0 ≤ i ≤ m

�� H(c1,m)
�
≥ a−m. (10)

Putting (9) and (10) together completes the proof for c = 3 + c1 log a.

5 An upper bound on the size of the largest component for c = 1

In this section, we prove Theorem 2 about the size of the largest component of Γn(rn, 1). Write
C1 = C1(Γn(rn, 1)) for the size of the largest connected component. Although Theorem 2 is
suboptimal, the condition on rn cannot be replaced altogether, because it is easy to show that for
fixed rn > 0, C1 = Θ(n) with high probability when ξ = 1 almost surely. This is also the case
for sequences rn that tend to 0 slowly with n.

The main technical result is the following tail bound on the size of the largest connected com-
ponent.

21



Lemma 9. Let rn > 0, t ≥ 1, � > 0. Then,

P
�
C1 ≥ 2 + (1 + tnr2n)

3(1 + �)2 log2 n
�
≤ n

−�+ 1
1+tnr2n + n2e(n−2)πr2n(t−1−t log t).

Proof. For ξ = 1, the structure of the graph is that of a mapping and Γn is of a collection of
connected components each of which consist of either a tree or a unique cycle from which some
trees are pending. In order to bound the size C1 of the largest connected component, we first
bound the length of the longest directed path in Γ+

n . Since the edges bind vertices that are at most
rn apart, this bounds the extent of the connected components hence their sizes.

Recall that ρrn(x) = |B(x, rn) ∩X| denotes the number of Xi’s in B(x, rn). We first show
that for t > 1 (and thus, t− 1− t log t < 0), we have

P

�
max
1≤i≤n

sup
s≥rn

ρs(Xi)− 2

ns2
≥ t

�
≤ n2e(n−2)πr2n(t−1−t log t).

Observe that the supremum in this inequality is reached for ρs(Xi) for some s = �Xi − Xj�.
Also, ρs(x) is distributed as a binomial random variable with parameters n and πs2 (we are in the
torus), and ρ�Xi−Xj�(Xi) is approximately equal to 2+Bin(n− 2;π�Xi−Xj�2). By Chernoff’s
bound [8] (see also [10, 20]), for u > 1,

P (Bin(k; p) ≥ ukp) ≤ ekp(u−1−u log u),

so that here, we have

P
�
Bin(n− 2,πs2) ≥ 2 + u(n− 2)πs2

�
≤ e(n−2)πs2(u−1−u log u).

Thus,

P

�
max
1≤i≤n

sup
s≥rn

ρs(Xi)− 2

ns2
≥ t

�
≤

�
n

2

�
sup
s≥rn

e(n−2)πs2(t−1−t log t)

≤ n2e(n−2)πr2n(t−1−t log t).

Introduce the event
A :=

�
max
1≤i≤n

sup
s≥rn

ρs(Xi)− 2

ns2
< t

�
.

Starting from a vertex i, we can follow the directed links in Γ+
n , forming a maximal path Pi of

distinct vertices. The last vertex j in this path must be pointing towards a vertex k of Pi (potentially
itself). From each vertex in Pi the probability of linking to a k higher up in the path is at least

1

ρrn(Xi)− 1
≥ 1

1 + tnr2n

if A occurs. Writing |Pi| for the number of vertices of Pi, we see that, since the choices of links
are independent,

P (|Pi| > �) ≤
�
1− 1

1 + tnr2n

��

.

By the union bound, conditional on X1, . . . , Xn such that A holds,

P

�
max
1≤i≤n

|Pi| > �

�
≤ n

�
1− 1

1 + tnr2n

��

≤ n exp

�
− �

1 + tnr2n

�
.
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Now, if the maximum length of a directed path maxi |Pi| is no more than �, then every vertex is
within � edges of any vertex of the unique cycle of the connected component. Thus, if this occurs,
then every connected component is contained within a ball B(Xj , rn�) for some 1 ≤ j ≤ n. It
follows that

P
�
C1 ≥ 2 + n(rn�)

2t
�
≤ P (Ac) +P

�
A,C1 ≥ 2 + n(rn�)

2t
�

≤ P (Ac) +P

�
A, max

1≤i≤n
|Pi| > �

�

≤ n2e(n−2)πr2n(t−1−t log t) + ne
− �

1+tnr2n .

For fixed � > 0, take � = �(1 + tnr2n)(1 + �) log n�. We conclude that

P
�
C1 ≥ 2 + (1 + tnr2n)

3(1 + �)2 log2 n
�
≤ n

−�+ 1
1+tnr2n + n2e(n−2)πr2n(t−1−t log t),

which completes the proof of the lemma.

Proof of Theorem 2. Lemma 9 can be used for various ranges of rn. In the entire proof, we use
it with � = 2 to ensure that the first term in the upper bound there is o(1). We split the region
rn ∈ [0, o(n log n)−1/3] into two, and first consider

rn ≤
�

log n

πn
.

In this range, we define t as the solution of

t log t+ 1− t =
3 log n

πnr2n
.

Observe that since the right-hand side is at least 3 > 1, there is indeed a unique solution. Note
that this solution could have an infinite limit supremum, but its limit infimum is larger than one
(so that one can use Lemma 9 with this value for t). Moreover, one has

t = Θ

�
3 log n

πnr2n log
�3 logn

πnr2n

�

�
,

so that

(1 + tnr2n)
3(log n)2 = Θ

�
log5 n

log3
�3 logn

πnr2n

�

�
≤ Θ(log5 n).

By Lemma 9, in this range of rn, we have C1 ≤ C log5 n with probability tending to one as
n → ∞, where C is a fixed constant (uniform over all sequences rn in this range).

Next, consider

rn ≥
�

log n

πn
.

Define t0 = 3.59112167 . . . as the unique solution greater than one of t0 log t0 = t0+1. With this
choice, if t > t0, the upper bound in the inequality of Lemma 9 is o(1). Note that

(1 + tnr2n)
3(log n)2 = Θ

�
n3(log n)2r6n

�
,

which is o(n) if rn = o((n log n)−1/3). Overall, we have proved that C1 = o(n) as long as
rn = o((n log n)−1/3).
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6 Concluding remarks and open questions

From a practical point of view, the sparsification done via irrigation graphs is especially interesting
since an average degree of (1 + �) guarantees that the majority of the nodes are part of the net-
work. It is proved in [6] that catching all the outsiders would require an average degree of about
Θ(

�
log n/ log log n), so that it might not be worth the cost.

Theorem 2 is suboptimal in the range it allows for r, and it would be interesting to find a wider
range of r for which one does not have a connected component of linear size. It is not quite clear
that there is a threshold since the property that there exists a connected component of size at least
cn is not clearly monotonic in r for fixed ξ. It would be of interest to know whether the property
that a giant exists with high probability is monotonic in rn (for fixed ξ): is it the case that if a
giant exists whp for a given rn and fixed ξ, then a giant also exists whp for any sequence r�n with
r�n ≥ rn and the same fixed ξ? Assuming this is the case, it would be interesting to study where
the threshold r� = r�(ξ) is for the existence of a giant when ξ = 1, but also for other (constant)
values.

The question of the spanning ratio of the giant component is another interesting one. Of course,
for ξ such that Eξ ≥ 1 + �, the largest connected component has unbounded spanning ratio if we
consider the definition

max
1≤i,j≤n

�Xi −Xj�
dΓ(i, j)

,

where dΓ denotes the graph distance in Γn(rn, ξ). However, even if we disallow the pairs of points
that are either disconnected or too close, that is for which �Xi − Xj� ≤ r, it is not clear that
the ratio becomes bounded. Indeed, our construction only guarantees that most points in the same
cells get connected via two webs that hook up potentially far from that cell. In [6] it is shown that
the spanning ratio of Γ(rn, cn) is bounded whp when rn ≥ γ

�
log n/n and cn ≥ µ

√
log n for

sufficiently large constants γ and µ.
Finally, our techniques only show that when E [ξ] > 1 the largest connected component spans

most of the vertices, but we have no control on the number of vertices that are left over. The ques-
tion of the size of the second largest connected component may possibly be tackled by guessing
which configurations are most “economical” in terms of avoiding to connect to the outside world,
as in [6].
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A Proof of uniformity lemma

Proof of Lemma 1. For any box S, the number points |X∩S| is distributed like a binomial random
variable with parameters n and r�2/(4d2). By a classical concentration bound for binomial random
variables [see, e.g., 5, 20], we have for δ ∈ (0, 1) and p ∈ (0, 1),

P(|Bin(n, p)− np| ≥ δnp) ≤ 2e−npδ2/3. (11)
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Now, every cell Q contains k2d2 boxes, and by the union bound we have, for all n large enough,

P (Q is not δ-good) ≤ 2k2d2e−nr�2n δ2/(3·4d2)

≤ 2k2d2n−γ2δ2/(24d2),

since
√
2r�n ≥ rn for any k ≥ 1 and all n large enough. Furthermore, if there exists one cell that

is not δ-good, then one of the (mkd)2 boxes has a number of points that is out of range, so that as
n → ∞,

P (∃Q : Q is not δ-good) ≤ 2(mkd)2n−γ2δ2/(24d2)

≤ n1−γ2δ2/(24d2)+o(1),

which tends to zero provided that γ2 ≥ 24d2/δ2.

References

[1] K. B. Athreya and P. E. Ney. Branching Processes. Springer, Berlin, 1972.

[2] E.A. Bender. Asymptotic methods in enumeration. SIAM Review, 16:485–515, 1974.

[3] E.A. Bender. An asymptotic expansion for the coefficients of some formal power series.
Journal of the London Mathematical Society, 2:451–458, 1975.

[4] B. Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 2001.

[5] S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities—A Nonasymptotic

Theory of Independence. Oxford University Press, Oxford, 2012.

[6] N. Broutin, L. Devroye, N. Fraiman, and G. Lugosi. Connectivity threshold for Bluetooth
graphs. Random Structures & Algorithms, 2013. To appear.

[7] N. Broutin, L. Devroye, and G. Lugosi. Connectivity of sparse Bluetooth networks.
Manuscript, 2014.

[8] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum
of observations. Annals of Mathematical Statistics, 23:493–507, 1952.

[9] P. Crescenzi, C. Nocentini, A. Pietracaprina, and G. Pucci. On the connectivity of Bluetooth-
based ad hoc networks. Concurrency and Computation: Practice and Experience, 21(7):
875–887, 2009.

[10] A. Dembo and O. Zeitouni. Large Deviation Techniques and Applications. Springer, 1998.

[11] J.D. Deuschel and A. Pisztora. Surface order large deviations for high-density percolation.
Probability Theory and Related Fields, 104:467–482, 1996.
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List of notation
[n] The set {1, 2, . . . , n} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ax The collection of boxes arranged in a “discrete disk” around the point x . . . . . . . . . . . . . . . . . . . . . .14
a The common cardinality of Ax, for x ∈ [0, 1]2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
B(x, r) The ball of radius r centered at x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
C1(G) The number of vertices of the largest connected component of the graph G . . . . . . . . . . . . . . . . . . . . 3
C(Q) The central box of cell Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Gn(rn) the random geometric graph with n random points and radius of visibility rn T . . . . . . . . . . . . . . . 1
I(Q) The collection of four seed/infection boxes of the cell Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
I(Q,Q�) The infection box in Q on the face shared by Q and Q� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
M (Mi)i≥0 the Galton–Watson process underlying the branching random walk Z . . . . . . . . . . . . . . . 18
Nx(Q) The node event in cell Q started from x ∈ C(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
p(u) The parent of u ∈ U , u �= ∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Q A cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
(Ri)i≥0 The random walk on Z2 used in the strong coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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