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1. Introduction: Quantum Teleportation—Meaning and Influence

In 1993, Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres,
and William K. Wootters published their seminal paper presenting quantum teleportation,
titled “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen
channels” [1]. Their paper presents and answers the question “Can we transmit an unknown
quantum state without physically sending it?” Namely, can we send enough information about our
unknown quantum state, in a way that would enable the receiver to obtain (i.e., regenerate) it?
Their paper provides a striking answer: “Yes. An arbitrary state of a quantum bit (denoted by
|ψ⟩ ! cos

(
θ
2

)
|0⟩ + eiφ sin

(
θ
2

)
|1⟩) can be transmitted if both the sender and the receiver share

a maximally entangled quantum state (for example, the singlet state, denoted by |Ψ−⟩ ! |01⟩− |10⟩√
2

)
and the sender can transmit classical messages (only two standard/classical bits) to the receiver”.
This answer, which presented the quantum teleportation protocol, has revolutionized the field of
quantum communication.

Intuitively, the teleportation paper proves the equivalence “a quantum communication channel =
a shared entangled state + a classical communication channel”. In particular, “sending an unknown
state of one quantum bit can be done by sharing (ahead of time) one maximally entangled state of two
quantum bits + sending two classical bits”. The above equivalence is very important, because quantum
channels tend to be much less reliable (and much more prone to losses and errors) than classical
channels; moreover, even if the sender and the receiver only share (many) noisy entangled states,
they can still employ quantum teleportation by first distilling (a fewer number of) nearly maximally
entangled states [2]. (This method, in particular, makes it possible to transmit arbitrarily faithful
quantum states over a noisy quantum channel [2], even without using quantum error-correcting
codes [3]).

To see how surprising this result is, let us represent the quantum bit as an arrow directed at some
arbitrary direction in the three-dimensional space (see Figure 1 for a two-dimensional illustration).
The arrow’s direction can be represented in spherical coordinates by the two angles θ, φ (note that
θ, φ are also the two angles that appear in the mathematical representation |ψ⟩ ! cos

(
θ
2

)
|0⟩ +

eiφ sin
(

θ
2

)
|1⟩ of the quantum bit). Therefore, the corresponding classical question is “Can we transmit

the arrow’s direction without physically sending the arrow?” The obvious classical answer is “Yes, but only
if we send the real numbers θ, φ”. Namely, in the classical case, even when the sender knows the
arrow’s direction, a very large number of classical bits must be sent so that the receiver can reconstruct
the approximate direction of the arrow (the degree of precision dictates the number of sent bits;
infinite precision requires an infinite number of bits). On the other hand, two classical bits would give
us a very limited amount of information, not allowing the receiver to recover the arrow’s direction
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at any reasonable amount of precision. This is true even if the sender and the receiver share some
information in advance, assuming that the arrow’s direction is chosen randomly and independently
of the shared information. (In a limited classical case, where the sender wants the receiver to get the
probability distribution of one biased coin, we can have some kind of “classical teleportation”, even if
that distribution is unknown to the sender; see details in [4]).

Figure 1. We illustrate the power of quantum teleportation by representing the quantum bit as an arrow
(a two-dimensional arrow in this drawing; a three-dimensional arrow in general) inside a unit sphere.
In the general three-dimensional case, this representation is known as the Bloch sphere representation.
The sender would like to transmit the arrow’s direction to the receiver, without physically sending
the arrow.

The quantum case seems even worse: if the sender holds the unknown quantum state |ψ⟩ and
wants to transmit it to the receiver, the sender apparently still has to send the two real numbers θ, φ.
Moreover, due to the peculiar properties of quantum mechanics, those real numbers are now not even
known to the sender, because the description of |ψ⟩ ! cos

(
θ
2

)
|0⟩+ eiφ sin

(
θ
2

)
|1⟩ is unknown to the

sender. (Note that the sender cannot discover the description of |ψ⟩, and any attempt to do so would
irreversibly damage the quantum state). Nonetheless, the quantum teleportation paper proves that by
using the extraordinary power of quantum entanglement, only two classical bits need to be sent.

The teleportation paper is one of the most prominent examples of the counterintuitive power of
quantum communication; other notable examples include quantum cryptography [5,6], violations of
Bell’s inequality [7], and even the basic phenomena of quantum entanglement and EPR pairs [8].

2. The Discovery of Quantum Teleportation: History, Notes, and Stories

Like any groundbreaking result, there are several interesting stories surrounding the discovery of
quantum teleportation. Perhaps most interesting of all is the story of the actual invention of quantum
teleportation, as recounted by Gilles Brassard and printed here for the first time (except for an earlier
personal account in French [9]):

“It all started in August 1992, when I was attending the annual CRYPTO conference.
Charlie Bennett gave me a paper that had appeared in Physical Review Letters one year
earlier, saying ‘I think this will interest you’. Right he was! That was the paper by Asher
Peres and William (Bill) K. Wootters [10] in which they considered the following problem:
if two participants hold identical copies of an unknown quantum state |ψ⟩, so that the state
of their joint system is |ψ⟩A ⊗ |ψ⟩B, how much information can they discover about |ψ⟩
if they are restricted to local quantum operations and classical communication (this is of
course what became known later as LOCC)? In that paper, Peres and Wootters studied
so-called ping-pong protocols in which more information can be obtained by increasing the
number of interaction rounds, but they were unable to get quite as much information as
if the two identical quantum states were in the same location, enabling the possibility of a
joint measurement. Their paper left open the following question: can LOCC measurements
provide as much information as joint measurements?

At the time, I had never met Peres or Wootters, and in fact I had never heard of them. I met
them both a few months later by a pleasant coincidence, at the October 1992 Workshop on
Physics and Computation held in Dallas. After discussing the paper with its authors, I invited
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Bill to come to Montréal to give a talk about it the following month. Somehow, I had a
feeling this would be momentous, and therefore I invited Claude Crépeau (who was in
Paris at the time) and Charlie Bennett to attend the talk at my expense. Richard Jozsa
was in the audience as well because he was my research assistant at the time. After Bill
explained the conundrum, Charlie raised his hand and asked an apparently inane question:
‘What difference would it make if the two participants shared an EPR pair?’ (that’s what we
called entanglement in those days). Not surprisingly, Bill replied ‘I don’t know!’ and then
went on with his talk. Immediately afterwards, we all moved to my office and brainstormed
about Charlie’s question. By the next morning, the answer was clear: in the presence of
entanglement, one party teleports |ψ⟩ to the other, who then performs the optimal joint
measurement. It is fair to say that we were able to invent quantum teleportation within
less than 24 hours because none of us was trying to achieve this obviously impossible task!
Of course, we realized that this invention was far more important than the solution it offered
to the problem at hand, but I don’t think any of us anticipated how important it would
become. We quickly invited Asher to join the collaboration and, within eleven days, the paper
was submitted to Physical Review Letters. The rest is history”.

The writing process of that seminal paper was not exempt from dilemmas. Gilles Brassard
describes one of them—the length of the paper:

“Once we had a version of the paper that we really liked, we noticed that it was just a little
too long for the then strict limit of four pages imposed by Physical Review Letters. We could
not find anything that we would be comfortable leaving out. That was when a devilish idea
came to me. Given that the type is smaller in figure captions (8.5 points) than in the main text
(9.5 points), why not squeeze in some content there? We relegated the proof that successful
teleportation of one qubit requires the transmission of two classical bits to what became a
27-line caption for Figure 2 (see [1]), which saved exactly the required amount of space to fit
the paper snuggly in four pages. Ironically, we ended up being the first paper of its issue,
and the space needed for the journal header made us spill on a fifth page!”

Another important dilemma was the order of the authors’ names. Readers unfamiliar with the
advantages and disadvantages of alphabetical order may not be able to understand and appreciate
the subtleties of the following story. Alphabetical order for authors’ names is customary in our field,
in contrast to the “contribution order”, which is conventional in many others. There are researchers
who participate only or mostly in alphabetical-order papers, and it is very important to many of them
to avoid combining the two methods: combining in that way could have a negative potential impact on
both their own research career and the careers of their alphabetic co-authors.

The original teleportation paper listed authors in alphabetical order. Charles Bennett,
who frequently held the position of first author due to his last name, with many papers being cited
as “Bennett et al”. felt he was being over-credited in the eyes of those accustomed to contribution
order. For this reason, at some point before submission of the teleportation paper, he suggested the use
of reverse alphabetical order for the authors, which would have placed Bill Wootters as first author.
This idea was almost immediately rejected by Wootters himself. Gilles Brassard, who has never once
strayed from alphabetical order throughout his entire career, told us years later that he felt so strongly
about this issue, that he would have withdrawn his name from the paper had Bennett’s reverse
authorship idea been carried out. Of course he could not have known this at the time, but taking
himself off the paper might have prevented him from sharing the Wolf Prize with Charles Bennett
one quarter of a century later. (Details about the Wolf Prize won by Bennett and Brassard, which they
received both for quantum cryptography and quantum teleportation, are provided at the end of the
current section).

Yet another dilemma was the name of the new method. Asher Peres objected to the original
name “teleportation” because it mixed the Greek prefix “tele-” with the Latin-based root “port”.
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Peres suggested the alternative name “telepheresis”, but the other authors disagreed, so the name
remained “teleportation”.

The quantum teleportation paper received excellent reviews before being accepted to Physical
Review Letters. One of the reviewers, N. David Mermin, described the paper as a “charming, readable,
thought-provoking paper”, and predicted that “this novel method [. . . ] will become an important one
of the intellectual tools available to anybody [. . . ]” (see Mermin’s paper [11], where he disclosed his
full referee report on the quantum teleportation paper). Finally, the paper was published on 29 March
1993 [1] in Physical Review Letters, profoundly advancing the field of quantum communication and
bringing new researchers to the fast-evolving field of quantum information processing. In particular,
it influenced Tal Mor, who is one of the authors of this editorial, as he describes below.

When the teleportation paper was published (1993), I was an M.Sc. student in Tel Aviv
University (Israel) in the group led by Yakir Aharonov, together with Sandu Popescu
(who was a Ph.D. student at the time) and Lev Vaidman (who was a postdoctoral researcher).
All three of us (Popescu, Vaidman, and I) were extremely excited about the teleportation
paper: Popescu suggested a method [12] leading to the first experimental realization
of quantum teleportation [13] (note that quantum teleportation was experimentally
demonstrated in 1997–1998 by three research groups [13–15]); Vaidman suggested
teleportation of continuous quantum variables [16], leading to a theoretical extension [17]
and its experimental realization [15]; and I decided to start my Ph.D. with Asher Peres,
who was one of the teleportation paper’s authors. Although I concentrated on quantum
cryptography, I also gave a lot of thought to quantum teleportation: I presented teleportation
as a special case of POVM (generalized measurements) in my first talk at an international
conference [18–20], and I suggested how a classical variant of teleportation could look like
(a concept I published years later [4]).

The quantum teleportation paper and its experimental realizations intrigued not only
scientists, but also media reporters. When one of them asked Peres whether quantum
teleportation teleports only a person’s body, or also the soul, Peres answered that it teleports
only the soul [21]—a funny, thought-provoking reply from someone like Peres, who enjoyed
describing himself as a devout atheist!

During my Ph.D. and postdoctoral research, I became acquainted with all six authors of the
teleportation paper. I even asked them to autograph an original reprint of the paper—so I
now own the only copy of the quantum teleportation paper signed by all six co-authors!
(Admittedly, it was pretty hard to obtain this signed copy. Unfortunately, Gilles Brassard,
who was the last co-author to sign, lost the copy signed by the five other co-authors in his
office; later, he sent me an e-mail including the “good news”—that he found the signed copy
of the teleportation paper—and the “bad news”—that he lost it again; finally, he found it
again, signed it, and immediately mailed it from Canada to me in Israel, and I received it.
Then, I lost it in my office. . . where I may find it again some day).

Subsequently, I had two opportunities to celebrate the quantum teleportation paper and
honor some of its authors at my institution (Technion, Haifa, Israel): when I organized the
QUBIT 2003 conference, celebrating 10 years of quantum teleportation, with Asher Peres
as the guest of honor [22]; and when I organized the QUBIT 2018 conference, celebrating
the Wolf Prize of Charles Bennett and Gilles Brassard, with both of them as the keynote
speakers [23].

Charles Bennett and Gilles Brassard won the 2018 Wolf Prize in physics “for founding and
advancing the fields of Quantum Cryptography and Quantum Teleportation”. The jury panel
acknowledged the enormous importance of quantum teleportation:

“In the 1990’s they [Bennett and Brassard], together with four colleagues, invented quantum
teleportation which allows the communication of quantum information over classical
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channels, also a task previously believed to be impossible. Two decades after their proposal,
quantum teleportation has now been demonstrated over distances exceeding 1000 kilometers
and is clearly destined to play a major role in future secure communications”. [24]

3. The Papers in This Special Issue

This special issue is dedicated to celebrating the silver jubilee of the seminal teleportation paper,
and it features contributions from various areas of quantum communication.

Francesco De Martini and Fabio Sciarrino, in their paper “Twenty years of quantum state
teleportation at the Sapienza University in Rome” [25], review various experiments of quantum
teleportation that were conducted at the Sapienza University in Rome, ranging from the first
teleportation experiment (1997) to several variations and generalizations of teleportation, such as
active teleportation and quantum machines based on teleportation.

Nicolas Gisin, in his paper “Entanglement 25 years after quantum teleportation: Testing joint
measurements in quantum networks” [26], discusses quantum entanglement from an unusual
perspective: that of entangled measurements rather than entangled states. In particular, Gisin raises
the question of whether entangled measurements can be used for generating non-classical output
correlations in various quantum networks, and suggests a few candidates that may present such
non-classical correlations.

Gilles Brassard, Luc Devroye, and Claude Gravel, in their paper “Remote sampling with
applications to general entanglement simulation” [27], provide a (classical) sampling scheme:
their scheme allows the user to sample exactly from a discrete probability distribution when the
defining parameters of this probability distribution are partitioned between several remote parties.
Furthermore, they apply their sampling scheme to the classical simulation of quantum entanglement
measurements in the most general scenario, and analyze its communication complexity.

William K. Wootters, in his paper “A classical interpretation of the Scrooge distribution” [28],
shows how to derive a special quantum ensemble of pure states, known as the “Scrooge ensemble”
(or “Scrooge distribution”), from a classical communication scenario. Specifically, he proves that a
real-amplitude variant of the Scrooge distribution naturally appears in a classical communication
scheme, and that the standard (complex-amplitude) Scrooge distribution appears in a modified version
of the same communication scheme.

Michel Boyer, Rotem Liss, and Tal Mor, in their paper “Attacks against a simplified experimentally
feasible semiquantum key distribution protocol” [29], explore the security of a semiquantum key
distribution (SQKD) protocol that seems easy to implement in practice. In particular, they analyze a
simplified variant of the previously published “Mirror” SQKD protocol, and prove that unlike the
original Mirror protocol (which was proved completely robust), its simplified variant is completely
insecure if the tolerated loss rate is high.

Kan Wang, Xu-Tao Yu, Xiao-Fei Cai, and Zai-Chen Zhang, in their paper
“Probabilistic teleportation of arbitrary two-qubit quantum state via non-symmetric quantum
channel” [30], propose a variant of quantum teleportation: their scheme allows teleporting an arbitrary
two-qubit state from Alice to Bob, given that Alice and Bob share one partially entangled pure
three-qubit state and one partially entangled pure two-qubit state. Their teleportation scheme is
probabilistic and unambiguous: namely, it may fail with constant probability, but the users know
whether it succeeded or failed.

We hope that the papers in this special issue give insight regarding the different areas
of quantum communication—most notably, quantum teleportation, quantum entanglement, and
quantum cryptography.
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Abstract: Quantum teleportation is one of the most striking consequence of quantum mechanics
and is defined as the transmission and reconstruction of an unknown quantum state over arbitrary
distances. This concept was introduced for the first time in 1993 by Charles Bennett and coworkers,
it has then been experimentally demonstrated by several groups under different conditions of
distance, amount of particles and even with feed forward. After 20 years from its first realization,
this contribution reviews the experimental implementations realized at the Quantum Optics Group
of the University of Rome La Sapienza.
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1. Introduction

Entanglement is today the core of many key discoveries ranging from quantum teleportation [1],
to quantum dense coding [2], quantum computation [3–5] and quantum cryptography [6,7].
Quantum communication protocols such as device-independent quantum key distribution [8] are
heavily based on entanglement to reach nonlocality-based communication security [9]. The prototype
for quantum information transfer using entanglement as a communication channel is the quantum
state teleportation (QST) protocol, introduced for the first time in 1993 by Charles Bennett et al. [1],
where a sender and a receiver share a maximally entangled state which they can use to perfectly transfer
an unknown quantum state. Undoubtedly, quantum teleportation is one of the most counterintituitive
consequences of quantum mechanics and it is defined as the transmission and reconstruction over
arbitrary distances of an unknown quantum state.

This protocol represents a milestone in theoretical quantum information science [10–12] and
lies at the basis of many technological applications such as quantum communication via quantum
repeaters [13,14] or gate teleportation [15]. Experimentally, this protocol has been demonstrated by
several groups [16–22]. It has been implemented over hundreds of kilometers in free-space [23,24]
and more recently in a ground-to-satellite experiment [25]. Employed platforms include mainly
photonic qubits [16–18,20–22,26,27], but also nuclear magnetic resonance [28], atomic ensembles [29,30],
trapped atoms [31,32] and solid-state systems [33–35]. The progress from the fundamental and
technological point of view has continued, allowing the achievement of teleportation of multiple degrees
of freedom of a single photon [27]. A quantum space race has started with the satellite-based distribution
of entangled photon pairs to two locations, separated by 1203 kilometers on Earth [36], and the first
satellite based quantum teleportation. Quantum teleportation experiments using deployed optical fibres
for the distribution of entangled pairs have been also recently reported [37–39]: A key ingredient to build
a quantum repeater. Quantum teleportation is a key primitive for quantum information processing, that
has also been adopted for fundamental tests of quantum mechanics, such as one of the first loophole free
Bell tests where entanglement swapping was exploited [40].

The present manuscript reviews the different experiments related to the teleportation of quantum
states carried out in the Department of Physics, Sapienza University of Rome. In Section 2 we will
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briefly summarize the quantum teleportation protocol and its extension to entangled photon pairs:
The so-called entanglement swapping. As the first experimental focus, in Section 3, we will describe
the first quantum teleportation experiment performed in Rome. This scheme adopted two photons in
order to encode the three qubits evolved in the QST protocol. This implementation had the unique
capability to discriminate the four Bell states involved in an Alice node. We will then move to Section 4,
where a different experimental approach has been adopted. There all the qubits are encoded in the
vacuum-one photon Fock basis. This encoding further simplifies the required apparatus. The following
step, described in Section 5, has then be to address a missing key ingredient in all the previous
implementations of QST: The unitary operator Ui to be implemented from Bob depending on the Alice
outcome. This achievement was accomplished again, exploiting the concept of the vacuum-one photon
qubit. This realization completed the contributions on the implementation of the original QST scheme.
However, new scenarios arose from the modification of the teleportation. In 2004, we could identify
how to modify the QST procedure in order to implement two fundamental optimal quantum machines:
the universal NOT gate, and the universal optimal quantum cloning: these Universal Quantum
Machines are discussed in Section 6. Finally, the last two sections are Sections 7 and 8 are, respectively,
devoted to a brief discussion on how to address the classical-quantum transition exploiting optimal
quantum cloners, and on the future perspective of teleportation within quantum networks.

2. Teleportation and Entanglement Swapping

2.1. Quantum Teleportation Protocol

The scheme of the teleportation protocol is depicted in Figure 1. By exploiting one maximally
entangled state of the Bell basis, we can perform an experimental protocol of quantum teleportation,
where two parties, named respectively Alice and Bob, are involved. The photon A of the entangled

pair |Ψ−⟩A,B =
1√
2
(|01⟩AB − |10⟩AB) is sent to Alice and the other photon B to Bob in order to share

an entangled state. Let us consider that an unknown quantum state |Ψ⟩T = α |0⟩T + β |1⟩T was sent to
Alice in order to be teleported, then the state of the whole system can be written as:

|Ψ⟩T ⊗
∣∣Ψ−〉

A,B = − 1
2
∣∣Ψ−〉

T,A (α |0⟩B + β |1⟩B) (1)

− 1
2
∣∣Ψ+〉

T,A (α |0⟩B − β |1⟩B) (2)

+
1
2
∣∣Φ−〉

T,A (α |1⟩B + β |0⟩B) (3)

+
1
2
∣∣Φ+〉

T,A (α |1⟩B − β |0⟩B) . (4)

At this point in order to transfer the unknown state to Bob’s particle we must perform a Bell state
measurement (BSM) in Alice’s station. The BSM is a projective measurement in the Bell basis, able
to discriminate among the four two-mode entangled states. After the measurement performed by
Alice, the state on Bob’s side is Ui |Ψ⟩T . The result of the measurement performed by Alice must be
communicated to Bob by means of a classical channel and, according to this one, Bob applies the
appropriate Pauli operations ( σx, σz, σy or nothing) on his station to complete the teleportation process
and retrieve the input state since U†

i Ui |Ψ⟩T = |Ψ⟩T . Without the communication of the BSM result the
particle B would be described by a fully mixed state.

2.2. Entanglement-Swapping Protocol

Is it possible to get entanglement between particles which have never interacted in the past?
This simple question has motivated many theoretical and experimental works [1,41,42]. In order to
better explain this protocol we will need four parties: Alice, Bob, Victor and Thomas. Let Alice share
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a maximally entangled state |Φ+⟩AB =
1√
2
(|00⟩AB + |11⟩AB) with Bob while Victor and Thomas share

the same state between them |Φ+⟩VT . At this point the state of the whole system can be written as:

∣∣Φ+〉
AB ⊗

∣∣Φ+〉
VT . (5)

The previous state can be designed in such a way that the particles of Alice and Thomas have
never interacted before. If Bob and Victor perform a Bell state measurement (BSM), it turns out that for
any of the outcomes the particles of Alice and Thomas will collapse to some Bell state. By exploiting
classical communication Bob and Victor can send Thomas the measurement outcomes, and then
Thomas can perform local rotations in order to obtain the entangled state |φ+⟩AT . After the BSM the
particles of Alice and Thomas become entangled although they have never interacted directly before
as they can be created by different sources in highly separated places. One sees that this protocol is
basically an extension of the teleportation one, where one member of the first Einstein–Podolsky–Rosen
(EPR) pair (between Alice and Bob) is teleported to the second EPR pair (between Victor and Thomas).
We must keep in mind that any pair can be chosen as the teleported pair or the channel. The idea of
entanglement swapping was developed in order to distribute the entanglement over long distances,
this is a fundamental feature to implement a quantum repeater [43]. This idea was also generalized to
multipartite scenarios [44] which are particularly useful when working with quantum cryptography.

Figure 1. Pictorial representation of a teleportation protocol. Description of a teleportation protocol.
The two stations A and B share an entangled state and a classical communication channel (dashed
black line), which is used to communicate the result i of the Bell state measurement (BSM) performed in
A in order to drive a unitary operation Ui. The initial quantum state |Ψ⟩T , which is physically present
in A, is thus teleported in B.

3. The First Teleportation

Following the original teleportation paper and its continuous-variables version, an intensive
experimental effort started for the experimental realization of teleportation. Here we focus on the first
experiment carried out in Rome. As recently reported by Nicolas Gisin in Nature [45]:

"Two groups achieved the feat of quantum teleportation in 1997—just four years after the theoretical
breakthrough. First, it was the team of Boschi et al. based in Italy, followed only a few months later by
the team of Bouwmeester et al. in Austria."

The scheme adopted in Rome exploited the approach proposed by Sandu Popescu in 1995 [46].
A total of two photons, rather than three as done in Innsbruck by Zeilinger’s group [16], were used.
Let us briefly summarize the description provided in Figure 2. The two photon entangled state
exhibited a path entanglement while the polarization degree of freedom of one of the photons was
employed for preparing the unknown state. This approach avoided the difficulties associated with
having three photons, as done in [16], and made the Bell measurement complete. This scheme is
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equivalent to the original scheme up to a local operation (since, in principle, any unknown state of
a particle from outside could be swapped onto the polarization degree of freedom of Alice’s EPR
particle by a local unitary operation as discussed below). In particular, if the preparer does not tell Alice
what state he has prepared then there is no way Alice can find out what the state is. It is worthwhile
mentioning that this approach leads to a 100% success rate for the Bell measurement in the ideal case
rather than 50% as in three photon based schemes.

Figure 2. Experimental scheme adopted in the 1998 experiment showing the separate roles of the
preparer, Alice and Bob. Pairs of polarization entangled photons are created directly using type II
degenerate parametric down-conversion. By means of quarter wave plates acting in the same way
on paths a1 and b1 the polarization degree of freedom of photon 1 is used to prepare the state to be
teleported. For Alice, the polarization of path b1 is first rotated by a further 90◦. Then paths a1 and b1
impinge on the two input ports of an ordinary 50:50 beamsplitter (BS). At this beamsplitter each of
the two polarizations h, and v interfere independently. After the beamsplitter there are two polarizers
which are set either to transmit h or to transmit v polarization to the detector DA± . At Bob’s end,
path b2 is rotated through 90◦ by a half waveplate. The paths a2 and b2 are combined at a polarizing
beamsplitter orientated to transmit vertical and reflect horizontal polarization, then letting it impinge
on a polarizing beamsplitter followed by two detectors DB(θB). PBS, IF, and BBO stand, respectively,
for Polarizing Beam Splitter, Interferential Filter and Beta Barium Borate. Picture from [17].

The scheme adopted in the experimental realization is reported in Figure 2. Pairs of polarization
entangled photons were created directly using type-II degenerate parametric down-conversion.
The article reported results for the teleportation of a linearly polarized state and of an elliptically
polarized state. It showed that the experimental results cannot be explained in terms of a classical
channel alone. The Bell measurement could distinguish between all four Bell states simultaneously
allowing, in the ideal case, a 100% success rate of teleportation. As said, this scheme exploited two
degrees of freedom of the same particle (polarization and path) to implement two different qubits:
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This approach allows the achievement of a deterministic Control-NOT gate leading to a complete Bell
state measurement apparatus.

Let us note that the merging of the polarization quantum state of two photons into one
photon has been recently reported by the Roma group in collaboration with the University of
Naples Federico II [47]. This physical process has been named ‘quantum joining’, in which the
two-dimensional quantum states of two input photons are combined into a single output photon,
within a four-dimensional Hilbert space. This process provides a flexible quantum interconnect to
bridge multi-particle protocols of quantum information with multidegree-of-freedom ones. Hence,
by exploiting the quantum joining, it is possible to join the quantum state to be teleported with the
photon A of the entangled pair. By this approach it is then possible to teleport any external quantum
states via the “Roma” teleportation scheme. The scheme demonstrated in [47] is probabilistic with
a success probability equal to 1/8, to be compared with the success probability of 1/2 for the scheme
adopted by [16]. Nevertheless it is possible to enhance the merging probability up to 1 by increasing
the number of ancillary photons and then the complexity of the related scheme [48]. Alternatively,
by adopting gigantic nonlinear interactions among photons currently under development [49],
deterministic schemes for quantum-state joining and splitting should also become possible [48].

The experiment carried out in Rome was submitted to Physical Review Letters on 28 July 1997
and posted on arXiv 2 October 1997 [17]. We refer to [50] for a complete comparison between
the experiments carried out in Rome [17] and Innsbruck [16]. Here we are not describing how
to adapt the QST protocol to continuous variable systems [26]: a very exhaustive review on these
concept and implementations can be found in [12]. We refer to [51] and [12] for an exhaustive
description of Quantum Teleportation with Continuous Variables. It is worth mentioning that a
long debate has addressed the differences between unconditional (or deterministic) and conditional
quantum teleportation: the different points of view, respectively, of the continuous and discrete variable
community are properly summarized in [12] and [52].

4. Teleportation of Vacuum-One Photon

The Roma team addressed a qubit teleportation with a large fidelity by adopting the concept
of entanglement of one photon with the vacuum [18]. The underlying motivation was to identify
and implement the simplest scheme to observe the essence of the teleportation of a quantum state.
By this approach, each quantum superposition state, i.e., a qubit, was physically implemented by a
two dimensional subspace of Fock states of a mode of the electromagnetic field, specifically the space
spanned by the “vacuum” and the 1-photon state. In other words, the field’s modes rather than the
photons associated with them have been properly taken as the information and entanglement carriers.

The following details are taken from reference [53], where a complete description of the scheme
and related experiment is available. If A and B represent two different modes of the field, with
wavevectors kA and kB directed respectively towards two distant stations (Alice and Bob), these
ones may be linked by a non-local channel expressed by an entangled state implying the quantum

superposition of a single photon, e.g., by the singlet: |Ψ−⟩A,B =
1√
2
(|0⟩kA |1⟩kB − |1⟩kA |o⟩kB) Here

the mode indexes 0 and 1 denote respectively the vacuum and 1-photon Fock state population of the
modes kA, kB and the superposition state may be simply provided by an optical beam splitter (BS), as
we shall see.

Conceptually this experiment represents one of the first (if not the first) application of
“single-photon nonlocality”, a paradigm first introduced by Albert Einstein in a context close to
the formulation of the Einstein-Podolsky-Rosen paradox [54] and later elaborated by [55,56]. Moreover
this scheme is highly connected with single particle entanglement adopted as a key resource in the
method proposed by Knill, Laflamme and Milburn [57] to implement universal quantum computing
with linear optics.
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Of course, in order to make use of the entanglement present in this picture we need to use the
second quantization procedure of creation and annihilation of particles and/or use states which are
superpositions of states with different numbers of particles. Another puzzling aspect of this second
quantized picture is the need to define and measure the relative phase between states with different
number of photons, such as the relative phase between the vacuum and one photon state. In order
to control these relative phases we need, in analogy with classical computers, to supply all gates and
all sender/receiving stations of a quantum information network with a common clock signal, e.g.,
provided by an ancillary photon or by a multi-photon, Fourier transformed coherent pulse.

The quantum system whose state we want to teleport is a qubit defined on the Hilbert space
spanned by the vacuum state |0⟩S and the one Fock-state |1⟩S of the mode kS. Thus the mode kS can
be considered the qubit to be teleported. Suppose now that the qubit kS is in an arbitrary pure state
α |0⟩S + β |1⟩S. The overall state of the system and the non-local channel is then:

|Φtotal⟩ = 2−
1
2 (α |0⟩S + β |1⟩S) (|1⟩A |0⟩B − |0⟩A |1⟩B)

= 2−
1
2 α

∣∣Ψ1〉
SA |1⟩B + 2−

1
2 α

∣∣Ψ2〉
SA |0⟩B +

2−1 ∣∣Ψ3〉
SA (α |0⟩B + β |1⟩B) +

2−1 ∣∣Ψ4〉
SA (α |0⟩B − β |1⟩B)

(6)

where the states
∣∣∣Ψj

SA

〉
, j = (1, 2, 3, 4) are defined below in Equations (7)–(10). The teleportation

proceeds with Alice performing a partial Bell measurement. She combines the modes kS and kA on
a symmetric beam splitter BSA whose output modes k1 and k2 are coupled to two detectors D1 and
D2, respectively. As a consequence, we obtain

∣∣∣Ψ1
SA

〉
= |0⟩S |0⟩A = |0⟩1 |0⟩2 (7)

∣∣∣Ψ2
SA

〉
= |1⟩S |1⟩A = 2−

1
2 (|2⟩1 |0⟩2 − |0⟩1 |2⟩2) (8)

∣∣∣Ψ3
SA

〉
= 2−

1
2 (|0⟩S |1⟩A − |1⟩S |0⟩A) = |1⟩1 |0⟩2 (9)

∣∣∣Ψ4
SA

〉
= 2−

1
2 (|0⟩S |1⟩A + |1⟩S |0⟩A) = |0⟩1 |1⟩2 . (10)

The state
∣∣Ψ3

SA
〉

is a Bell type state. From Equation (9) we see that its realization implies a single
photon arriving at the detector D1 and no photons at D2 in Figure 3. Similarly,

∣∣Ψ4
SA

〉
is a Bell type state

and it implies a single photon arriving at the detector D2 and no photons at D1. In both these cases the
teleportation is successful. On the other hand, when Alice finds

∣∣Ψ1
SA

〉
or

∣∣Ψ2
SA

〉
the teleportation fails.

From Equation (6) we see that teleportation is successful in 50% of the cases. By using appropriate
entangled resources the teleportation step can be made near deterministic by means of linear optics,
photon counting and fast feedforward.

5. Active Teleportation

Up to 2002 all the implementation of quantum state teleportation, including the one reported
in the previous Sections, corresponded to simplified “passive” schemes where the transformation
Ui at Bob’s side was not implemented. In all these experiments the success of the protocol was
demonstrated indirectly by the detection of the correlations established a posteriori between the
extreme stations, Alice and Bob. These passive realizations had the advantage of avoiding the difficult
implementation of the final stage of the protocol, i.e., of the unitary transformations Ui restoring the
exact input qubit at Bob’s site depending on the outcome of Alice’s Bell measurement. The main
problem faced here was due to the relatively long time needed to activate, under single-photon
excitation by Alice’s Bell-measurement apparatus, an Electro-Optic Pockels cell, which implements the
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necessary U-unitaries at Bob’s site. The following details are again taken from [53], where a complete
description is available.

The work realized in [19] reported for the first time the complete, i.e., active, qubit teleportation
process by completing the corresponding optical scheme according to the full quantum teleportation
protocol. This achievement was accomplished exploiting the concept of vacuum-one photon qubit
introduced in the previous section. The experimental setup, Figure 4, can be somewhat considered to
be the “folded” configuration of the one reported in Figure 3. The significant changes consisted of the
addition of the optical delay line and of a different measurement apparatus at Bob’s site.

Figure 3. Experimental scheme adopted in the 2002 teleportation of a vacuum–one-photon qubit. EOP
denotes a high-voltage Electro-Optic Pockels cell, BS denote beam splitter and D detectors. Picture
from [18].

Figure 4. ”Active” teleportation of a quantum bit. The experimental set-up can be somewhat considered
to be the ”folded” configuration of the one reported in Figure 2. The significant changes consisted of the
addition of the optical delay line (DL) and of a different measurement apparatus at Bob’s site where a
high-voltage micro Electro Optics Pockels cell (EOP) performs a unitary transformation U ≡ σz. In the
inset is reported the diagram of the fast electronic switch of (EOP). Picture from [19].
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6. Optimal Quantum Machines Based on Teleportation

In 2002, the focus of the Rome research activities moved from the implementation of quantum
state teleportation protocol to the physical realization of different optimal quantum machines. Let us
first briefly summarize the scientific background. We will then highlight the connection with the QST.

At a fundamental level quantum information (QI) consists of the set of rules that identify and
characterize the physical transformations that are applicable to the quantum state of any information
system. Because of the constraints established by the quantum rules it is found that several classical
information tasks are forbidden or cannot be perfectly extended to the quantum world. A well known
and relevant QI limitation consists of the impossibility of perfectly cloning (copying) any unknown
qubit |φ⟩ [58]. In other words, the map |φ⟩ → |φ⟩ |φ⟩ cannot be realized by nature because it does
not belong to the set of completely positive (CP) maps. Another forbidden operation is the NOT gate
that maps any |φ⟩ in its orthogonal state

∣∣φ⊥〉 [59]. Even if these two processes are unrealizable in
their exact forms, they can be optimally approximated by the so-called universal optimal quantum
machines, which exhibit the minimum possible noise.

A complete understanding of these processes is important since the exact characterization of
the quantum constraints within basically simple QI processes is useful to design more sophisticated
algorithms and protocols and to assess the limit performance of complex networks. The efficiency of
a gate, that measures how close its action is to the desired one, is generally quantified by the fidelity
F.F = 1 implies a perfect implementation, while noisy processes correspond to: F < 1. The universal
NOT (UNOT) gate, the optimal approximation of the NOT gate, maps N identical input qubits |φ⟩ into
M optimal flipped ones in the state σout. It achieves the fidelity: F∗

N→M(
∣∣φ⊥〉 , σout) = ⟨φ⊥|σout

∣∣φ⊥〉 =
(N + 1)/(N + 2) that depends only on the number of the input qubits [60]. Indeed the fidelity of
the UNOT gate is exactly the same as the optimal quantum estimation fidelity [61]. This means
that such process may be modeled as a “classical”, i.e., exact, preparation of M identical flipped
qubits following the quantum, i.e., inexact, estimation of N input states. Only this last operation is
affected by noise. Differently from the UNOT gate, the universal optimal quantum cloning machine
(UOQCM), which transforms N identical qubits |φ⟩ into M identical copies ρout, achieves as optimal
fidelity: FN→M(|φ⟩ , ρout) = ⟨φ|ρout |φ⟩ = (N + 1 + β)/(N + 2) with β = N/M ≤ 1 [62–64]. As we
can see FN→M(|0⟩ , ρout) is larger than the one obtained by the N estimation approach and reduces
to that result for β → 0, i.e., for an infinite number of copies. The extra positive term β in the above
expression accounts for the excess of quantum information which is originally stored in N states and
is optimally redistributed by entanglement among the M − N remaining blank qubits encoded by
UOQCM. The UNOT gate and the UOQCM can be implemented following two different approaches:

(i) The first one has been based on finding a suitable unitary operator UNM , acting on N input
qubits and on 2(M − N) ancillary qubits: Figure 5a. At the output of this device we obtain M
and M − N qubits which are, respectively, the optimal clones and the best flipped qubits of the
input ones. The transformation UNM can be deterministically realized by means of a quantum
network, as proposed by Buzek et al. [65].

(ii) The second approach to implement the N → M cloning and the N → (M − N) flipping is
a probabilistic method that exploits a symmetrization process: Figure 5b. The initial state of
the overall system consists of the N input qubits and of (M − N) pairs of entangled qubits.
The two optimal quantum machines are performed by applying a projective operation on the
symmetric subspace to the N input qubits and to (M − N) ancilla qubits, each one belonging
to a different entangled pair. This scheme corresponds to a modified QST scheme: Instead
of performing a Bell state measurement a project over the symmetric subspace is performed.
This transformation assures the uniform distribution of the initial information into the overall
system and guarantees that all output clone qubits are indistinguishable. The success probability

is equal to
1

2M−N
1 + M
1 + N

. The (M− N) optimal flipped qubits are teleported in a different location

since there is no interaction between the N input qubits and the (M − N) flipped ones.
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Qubits Symmetrization: Linear Optics Implementation

Let us consider the scenario where there is N = 1 initial qubit and the goal is to obtain M = 2
optimal clones and 1 optimal flipped qubit.

The protocol that realizes the 1 → 2 UOQCM and 1 → 1 Tele-UNOT gate, involves two distant
partners: Alice (A) and Bob (B). A holds the unknown input qubit S in a generic state |φ⟩S, while B
shall finally receive this qubit encoded optimally by the UNOT transformation of |φ⟩S. Let A and B
share the entangled singlet state of two qubits A,B:|Ψ−⟩AB = 21/2(|φ⟩A

∣∣φ⊥〉
B −

∣∣φ⊥〉
A |φ⟩B), as in

a quantum teleportation protocol [1]. The choice of the singlet state guarantees, in virtue of its SU(2)
invariance, the universality of the overall process. The overall state of the system reads |Ω⟩SAB =
2−1/2 |φ⟩S (|φ⟩A

∣∣φ⊥〉
B −

∣∣φ⊥〉
A |φ⟩B). Let A to apply to the overall initial state |Ω⟩SAB the projective

operator PSA over the symmetric subspace of the qubits S and A:

PSA = (ISA −
∣∣Ψ−〉

SA ⟨Ψ−|SA). (11)

The projection is successfully realized with probability p = 3/4. In this case the normalized
output state is:

|Θ⟩SAB =
√

2/3 |φ⟩S |φ⟩A

∣∣∣φ⊥
〉

B

− 1√
6
(|φ⟩S

∣∣∣φ⊥
〉

A
+

∣∣∣φ⊥
〉

S
|φ⟩A) |φ⟩B .

(12)

One bit of classical communication sent by A announces to B the success of the symmetrization
protocol. Note that the presence of the entangled state |Ψ−⟩AB is not strictly necessary for the sole
implementation of the quantum cloning process. Indeed, for this purpose, we could apply PSA to the

initial state |φ⟩S ⟨φ|S ⊗
IA
2

as shown in [66,67].
In the experiments reported in [68] and [67], the input qubit was codified into the polarization

state of a single photon belonging to the input mode kS : |φ⟩S = α |H⟩S + β |V⟩S, whereas an
entangled pair |Ψ−⟩AB of photons A and B, was generated on the modes kA and kB by spontaneous
parametric down conversion (SPDC). The projective operation in the space H = HA ⊗ HS was realized
exploiting the linear superposition of the modes kS and kA generated by a 50:50 beam-splitter, BSA
(Figure 6). This superposition allows a partial Bell measurement on the BSA output states which is
needed to implement the cloning machine and the Tele-UNOT gate. Consider the overall output
state realized on the two modes k1 and k2 of the BSA and expressed by a superposition of the Bell
states: (|Ψ−⟩SA , |Ψ+⟩SA , |Φ−⟩SA , |Φ−⟩SA). The realization of the singlet |Ψ−⟩SA is identified by the
emission of one photon on each output mode of BSA, while the realization of the other three Bell
states implies the emission of two photons either on mode k1 or on mode k2. This Hong-Ou-Mandel
interference process, expressing a Bose mode coalescence (BMC) of the two photons over the same
mode, was experimentally identified by a coincidence event between two detectors coupled to the
output mode k2 by means of an additional 50:50 beam-splitter by a post-selection technique. The
projection into the symmetric space lies at the core of the cloning process.

By this approach two relevant quantum information processes, forbidden by quantum mechanics
in their exact form, have been found to be connected contextually by a modified quantum state
teleportation scheme in an optimal way. The complete implementation of this protocol has been
successfully performed by a fully linear optical setup, which has also been shown to be scalable to
a larger number of particles.
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Figure 5. General scheme for the simultaneous realization of the universal NOT (UNOT) gate and of
the universal quantum cloning machine. (a) Unitary transformation acting on the N-input qubits and
2(M-N) ancilla qubits initially in the state |0⟩. (b) Symmetrization process acting on the input qubits
and (M-N) entangled pairs of qubits. Picture partially from [68].
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7. Micro and Macro Entanglement

As a following step, the goal has been to extend the previous results to a larger number of particles.
To this scope non-linear optics interaction have been exploited for an extended research focused on
the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up
of photons. This intriguing, fundamental quantum condition is at the core of the famous argument
conceived by Schrodinger in 1935. One of the main experimental challenges to the actual realization of
this object resides in unavoidable interactions with the environment, leading to the cancellation of any
evidence of the quantum features associated with the macroscopic system.

The experimental scheme adopted a nonlinear process, “quantum-injected optical parametric
amplification”, which, by a linearized cloning process maps the quantum coherence of a single
particle state, i.e., a microqubit, onto a macroqubit consisting of a large number M of photons in
quantum superposition: Figure 7. Since the adopted scheme was found resilient to decoherence,
a MQS demonstration was carried out experimentally at room temperature with M = 104.
The result led to an extended study of quantum cloning, quantum amplification, and quantum
decoherence. Several experiments have been carried out, such as the test of the “nosignaling theorem”.
In addition, the consideration of the microqubit-macroqubit entanglement regime has been extended
to macroqubit-macroqubit conditions. The MQS interference patterns for large M are revealed in the
experiment and bipartite microqubit-macroqubit entanglement was also demonstrated for a limited
number of generated particles. For a complete description of this activity the reader can refer to [69].

8. Summary and Perspectives

The original work by Bennett et al. [1] has rapidly triggered a large number of investigations [10]
for a broad range of applications [12]. Teleportation schemes were shown to enable new approaches for
universal quantum computation [15,70], in particular as one-way quantum computers [71]. From the
experimental perspective, numerous achievements have been reported on photonic platforms proving
the feasibility of the scheme already with state-of-the-art technology. After the first demonstrations
in 1997–1998 [16,17], one further proof appeared with the unconditional teleportation of optical
coherent states with squeezed-state entanglement [26]. Later on, [72] provided a proof of the
nonlocality of the process and of entanglement swapping. One year later, as shown in the previous
sections, [18] teleported qubits were encoded in vacuum–one-photon states. The new century
witnessed a worldwide race towards more complex implementations. In 2004, a single-mode discrete
teleportation scheme using a quantum dot single-photon source has been demonstrated [73] based
on the scheme of [18]. At the same time, several experiments addressed teleportation over larger
distances [20–22,39]. Teleportation was also reported on squeezed entangled states: We refer to the
review [12]. To bridge the gap between discrete and continuous variables, a hybrid approach has been
recently reported [74]. Finally, achievements on photonic teleportation have been demonstrated with
the first implementation on integrated circuits [75], as well as schemes with simultaneous teleportation
of multiple degrees of freedom [27] and teleportation of qudits [76].

The past decade has seen a strong effort directed towards the development of matter-light
interfaces as building blocks for quantum computation and communication, where entanglement
between single-photon states and atomic ensembles represents an effective solution. The last few
years have seen the implementation of quantum teleportation in scenarios of growing complexity.
The following step is to exploit these results in order to achieve quantum networks over large distances
thanks to the adoption of quantum repeaters. Concerning the research effort, the Quantum Information
Lab is currently focused on experimental quantum causality. A promising direction is to exploit
teleportation and entanglement swapping within such a framework [77].
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Figure 7. Three different configurations for the amplification of quantum states. (a) Schematic diagram
of a noncollinear quantum-injected optical parametric amplifier (OPA). The injection is provided
by an external spontaneous parametric downconversion source of polarization-entangled photon
states. (b) Double injection of the optical parametric amplifier. (c) Collinear quantum-injected optical
parametric amplifier. Picture from [69]. Spontaneous parametric down conversion (SPDC).
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Abstract: Twenty-five years after the invention of quantum teleportation, the concept of entanglement
gained enormous popularity. This is especially nice to those who remember that entanglement was
not even taught at universities until the 1990s. Today, entanglement is often presented as a resource,
the resource of quantum information science and technology. However, entanglement is exploited
twice in quantum teleportation. Firstly, entanglement is the “quantum teleportation channel”,
i.e., entanglement between distant systems. Second, entanglement appears in the eigenvectors of the
joint measurement that Alice, the sender, has to perform jointly on the quantum state to be teleported
and her half of the “quantum teleportation channel”, i.e., entanglement enabling entirely new kinds
of quantum measurements. I emphasize how poorly this second kind of entanglement is understood.
In particular, I use quantum networks in which each party connected to several nodes performs a
joint measurement to illustrate that the quantumness of such joint measurements remains elusive,
escaping today’s available tools to detect and quantify it.

Keywords: quantum teleportation; quantum measurements; nonlocality

1. Introduction

In 1993 six co-authors surprised the world by proposing a method to teleport a quantum state
from one location to a distant one [1,2]. Twenty five years later the surprise is gone, but the fascination
remains; how can an object submitted to the no-cloning theorem disappear here and reappear there
without anything carrying any information about it transmitted from the sender, Alice, to the receiver,
Bob? Today, the answer seems well known and has a name: entanglement [3]. This merely shifts the
mystery, and thus the fascination, to entanglement. However, entanglement appears twice in quantum
teleportation. The first and most obvious appearance of entanglement is as the “quantum teleportation
channel”, i.e., entanglement between two systems, the first one controlled by Alice, the second one
controlled by Bob. This sort of entanglement is by now pretty well (though no fully) understood.
But entanglement appears a second time in quantum teleportation: the measurement that Alice has
to perform jointly on the quantum state to be teleported and her half of the “quantum teleportation
channel” has all its eigenstates maximally entangled.

Without this second appearance of entanglement, quantum teleportation would be impossible.
This can be understood intuitively as follows [4]. First, observe that two (maximally) entangled systems
are characterized by the property that if one asks both of them the same question—i.e., perform
the same measurement on each of them, then both systems deliver the same answer (see
Endnote [5]—which refers to References [1,2]). Well, for singlets it’s just the opposite, they get
opposite results instead of identical ones, but that’s just a matter of systematically flipping one of
the answers. Now, the joint measurement essentially asks to two independent systems the following
“strange question”: “if I would perform the same measurement on both of you, would you provide the
same answer?” This is a question about the relation between the two systems, not a pair of questions
to each system whose answers are then combined in some clever way. Indeed, classical systems,
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including humans, can’t answer such unusual joint questions. But quantum systems can. For example,
the two systems can answer “yes” and get (maximally) entangled in such a way that whatever identical
questions are later asked to them, they’ll provide the same answer. Or the answer could be “no” and
the two systems get into a different (maximally) entangled state such that their answer to arbitrary but
identical questions would always be opposite. As is well-known, in order to terminate the quantum
teleportation process, Alice has to communicate (classically) which result she obtained to her “strange
question”. Then Bob knows whether his system will provide the same answer as had the question
been asked to the original system, the one to be teleported, or whether he will receive just the opposite
answer. It is important to notice that this classical communication from Alice to Bob carries exactly
zero information about the teleported quantum state.

Well, in quantum theory the situation is a bit more complicated, with four possible answers to
the joint “strange” measurement and a bit more involved relations between the answer and Bob’s
system. But the essential is there and it calls for understanding! Physics requires an understanding
of such joint measurements of similar quality as our understanding of entanglement between
distant systems, i.e., of entanglement as quantum teleportation channels. The quality of today’s
understanding of entanglement between distant systems is illustrated by its relation to Bell non-locality
(i.e., Bell inequality violation) [6], to quantum steering [7] and, highly illuminating in my opinion,
by the conceptual tool of the non-local PR-boxes that summarizes in a beautifully simple equation,
a ⊕ b = x · y, the involved mathematical concept of entanglement [8]. Something analogous for joint
measurements is still missing.

2. Quantum Teleportation and High-Impact Journals

On request of the editor, let me stress that “this section presents the author’s own opinion
regarding publication trends in quantum information” (see Endnote [9]).

Since the advent of quantum teleportation, especially since its first experimental
demonstrations [10–12], it has become quasi-mandatory to publish in journals with high impact
factors, like Nature, Nature Physics, Nature Photonics, Science and PRL. For example, all papers on
long-distance quantum teleportation followed that trend (well, probably I am missing some, precisely
those that do not follow that pattern): [13–18]. So, what happens if you resist the trend? We tried.
We published an experiment in which the state to be teleported was carried by a photon produced long
after the entangled photons constituting the quantum teleportation channel had left the laboratory.
This required that the entangled photons and the photon carrying the state to be teleported were
produced by different laser pulses (though from the same laser). This appeared in J. Opt. Soc. Am. B [19]
and received a relatively low number of citations. This is the price to pay for independence. But who
cares about independence today (see Endnote [20]—which refers to Reference [13])?

I am not complaining, but find it interesting to be aware of the huge impact quantum teleportation
had on our community’s trend to overvalue high-profile journals, with all the frustration that too often
comes along. Unfortunately, that trend spread all over quantum information science. Admittedly, I am
not the least responsible person for that (see Endnote [21]). Sorry.

3. The Bell-State Measurement in Quantum Networks

The joint measurement exploited in quantum teleportation, known as a Bell state measurement
(BSM), is characterized by all its eigenvectors being maximally entangled. For instance, teleportation
of qubits require the BSM whose eigenvectors are the four Bell states:

|φ±⟩ = (|0, 0⟩± |1, 1⟩)/
√

2 (1)

|ψ±⟩ = (|0, 1⟩± |1, 0⟩)/
√

2 (2)

As already pointed out in the original paper [1], quantum teleportation can be extended to
teleportation of entanglement, known as entanglement swapping. This, in turn, can be extended to
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teleportation over entire and complex networks [22], as illustrated in Figure 1. In such networks, each
node with more than one edge performs a joint measurement, possibly on more than two systems.
For simplicity, here we concentrate on only two cases, either a line or a triangle, see Figures 2 and 3.
Notice that here only players with a single edge get inputs, denoted x and y, that determine which
measurement to perform.

Figure 1. Example of a quantum network. Each edge represents a resource shared by the connected
nodes. The resource are entangled quantum states, or, in order to compare with classical networks,
correlated local variables (i.e., shared randomness). In this paper we consider only cases where inputs
are provided to parties connected by a single edge.

Figure 2. (N-1)-local scenario in a line [23]. The λj’s represent independent quantum states, or, in the
classical scenario used for comparison, random independent local variables. Only the first and last
parties get inputs, x and y respectively.

Figure 3. The triangle configuration for three parties [23]. Each pair of parties shares either a quantum
state and performs quantum measurements—quantum scenario, or shares independent random
variables α, β and γ and outputs a function of the random variables to which they have access.
Notice that the three random variables are only used locally, hence the terminology three-local scenario.
The “quantum grail” is to find a quantum scenario (without external inputs) leading to a probability
p(a, b, c) which can’t be reproduced by any three-local scenario.
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Let us first consider the triangle, see Figure 3. If Alice, Bob and Charlie each perform the BSM, then
there is a simple classical model that reproduces the statistics of their outcomes, p(a, b, c)—notice that
there are no inputs (see Endnote [24]—which refers to Reference [25]). Hence, somewhat surprisingly,
in this case the joint measurement doesn’t produce any quantum signature: such a triangle with BSM
displays no quantumness.

Let’s now consider the line of Figure 2. Start with only two edges. This corresponds to the
scenario of entanglement swapping, i.e., of quantum teleportation of entanglement. For this simple
case we name the parties with their usual names, i.e., Alice, Bob and Charlie, instead of A1, A2 and
A3, and similarly for the outcomes. Depending on Bob’s outcome b, Alice’s and Charlie’s qubits
get projected onto different entangled states; which exact entangled state depends on b. This can be
checked with some entanglement witness, or, in a device-independent way, with some Bell inequality.
For the Clauser-Horne-Shimony-Holt (CHSH) inequality, assuming perfect (noise-free) measurements,
a violation is obtained if the product of the visibilities (see Endnote [26]) satisfies W1 · W2 > 1/

√
2.

In the symmetric case, W1 = W2, which implies Wj > 2−1/4 ≈ 84%. Such a high visibility has been
achieved experimentally, e.g., [27], but with non-independent sources for the two quantum states ρ1
and ρ2 represented by the edges.

However, in such an entanglement scenario with independent sources, like e.g., [28], it is very
natural to check for quantumness by comparing it with classical correlations under the assumption
that the local (hidden) variables are also independent:

P(λ1, λ2) = P(λ1) · P(λ2). (3)

Such a case is called bi-local [23,29], to contrast it with the usual Bell locality. In case of n
independent sources, the achievable classical correlations are called n-local [30–32].

In the bi-locality scenario it has been proven that a visibility product of W1 ·W2 > 1
2 suffices to prove

quantumness, i.e., to prove a quantum advantage over bi-local classical correlations [23,29]. Accordingly,
in the symmetric case Wj < 1/

√
2 ≈ 71% suffices, as, e.g., in the experiment of Reference [28]. In this

scenario, an explicit non-linear inequality (non-linear because the set of n-local correlations in non convex
for all n ≥ 2) has been found and fully analyzed [33]. The analyses show that this bi-local scenario is
essentially identical to the old and well-known CHSH-Bell inequality between two parties. The relation
builds on the fact that the two-bit outcome of the BSM is equivalent to the outcome of σz ⊗ σz for the first
bit and σx ⊗ σx for the second bit. Hence, in a nutshell, Bob measures both of his qubits in the x–z bases,
while Alice and Charlie measure in the ±45◦ bases, exactly as in the CHSH case.

This is quite disappointing, as the threshold visibility per singlet, 1/
√

2, is identical to the simpler
case of CHSH between two parties. Apparently, the assumption of independent local variables λ1
and λ2 plays no role. But that cannot be! Independence is a strong assumption, it should thus lead
to consequences. This illustrates how poorly we understand joint measurements. Could it be that
increasing the number of inputs at Alice and Charlie’s side, or studying longer linear chains, allows
one to lower the threshold visibility per singlet? Reference [30], which considers n-locality in longer
lines, and reference [31], which derives n-local inequalities from Bell inequalities, suggest the contrary
and, so far, numerous numerical searches lead to disappointing results, see though the interesting
findings in [34–37].

The mentioned negative results are no proof that the bi-local scenario is useless to lower the
threshold visibility per singlet. But they call for alternative ideas. One nice idea is to go for a star
network [31,38], though so far results seem very similar to the bi-local case.

The next section recalls results first presented in [39], a paper I never submitted to any journal,
hence parts of it are reproduced here. In a nutshell, it presents another joint measurement and applies
it to a three-partite scenario in the triangle configuration with three independent sources.
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4. The Elegant Joint Measurement on Two Qubits

In order to study joint measurements different from the BSM we like to find a two-qubit basis
with four partially entangled eigenstates, all with the same degree of entanglement and some nice
symmetries. For this, we start with the four vertices of the tetrahedron inscribed in the Poincaré sphere:

m⃗1 = (1, 1, 1)/
√

3 (4)

m⃗2 = (1,−1,−1)/
√

3 (5)

m⃗3 = (−1, 1,−1)/
√

3 (6)

m⃗4 = (−1,−1, 1)/
√

3 (7)

Using cylindrical coordinates, m⃗j = (
√

1 − η2
j cos φj,

√
1 − η2

j sin φj, ηj), one obtains the natural

correspondence with qubit states (note that here ηj = ±1/
√

3 for all j):

|m⃗j⟩ =
√

1 − ηj

2
eiφj/2|0⟩+

√
1 + ηj

2
e−iφj/2|1⟩ (8)

Note that m⃗j = ⟨m⃗j |⃗σ|m⃗j⟩, as expected (with σ⃗ the three Pauli matrices).
Inspired by [40,41], we consider the following 2-qubit basis constructed on anti-parallel spins [39]:

|Φj⟩ =

√
3
2
|m⃗j,−m⃗j⟩+ i

√
3 − 1
2

|ψ−⟩ (9)

=

√
3 + 1

2
√

2
|m⃗j,−m⃗j⟩+

√
3 − 1

2
√

2
|− m⃗j, m⃗j⟩, (10)

where |− m⃗⟩ is orthogonal to |m⃗⟩: it has the same form as (8) but with η → −η and φ → φ + π. Notice
that in (10) the states Φj are written in their Schmidt bases.

In order to check that the Φj are normalized and mutually orthogonal one should use
⟨m⃗,−m⃗|ψ−⟩ = i/

√
2 for all m⃗ and ⟨m⃗j,−m⃗j|m⃗k,−m⃗k⟩ = 1/3 for all j ̸= k.

Using the corresponding one-dimensional projectors:

|Φj⟩⟨Φj| =
1
4

(
11 +

√
3

2
(m⃗j⃗σ ⊗ 11 − 11 ⊗ m⃗j⃗σ)−

3
2 ∑

n,k
mj,nmj,kσn ⊗ σk +

1
2

σ⃗ ⊗ σ⃗

)
, (11)

it is not difficult to compute the partial traces and observe the elegant properties:

⟨Φj |⃗σ ⊗ 11|Φj⟩ =
1
2

m⃗j (12)

⟨Φj|11 ⊗ σ⃗|Φj⟩ = −1
2

m⃗j. (13)

In words, the partial states (obtained by tracing out one party) point along the edges of the
tetrahedron, but with Bloch vectors of reduced lengths 1

2 .
We name the two-qubit measurement with eigenstates (9) and (10) the elegant joint measurement

(EJM). We believe it is unique with all four eigenstates having identical degrees of partial entanglement
and with all partial states of all eigenstates parallel or anti-parallel to the vertices of the tetrahedron.

5. Quantum Correlation from Singlets and the EJM in the Triangle Configuration

Consider three independent singlets in the triangle configuration and assume that Alice, Bob and
Charlie each perform the EJM on their two (independent) qubits, see Figure 3. Denote the resulting
correlation ptr(a, b, c), where a, b, c = 1, 2, 3, 4. By symmetry, ptr(a, b, c) is fully characterized by three
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numbers corresponding to the cases a = b = c, a = b ̸= c (and circular permutations, i.e., two outcomes
are equal, but the third differs) and a ̸= b ̸= c ̸= a. A not too complex computation gives [39]:

ptr(a = k, b = k, c = k) =
25

256
f or k = 1, 2, 3, 4 (14)

ptr(a = k, b = k, c = m) =
1

256
f or k ̸= m (15)

ptr(a = k, b = n, c = m) =
5

256
f or k ̸= n ̸= m ̸= k. (16)

The normalization holds: 4 · 25
256 + 36 · 1

256 + 24 · 5
256 = 1.

As expected ptr(a) = ptr(b) = ptr(c) = 1
4 . More interesting is the probabilities that two parties

get identical results:

ptr(a = k, b = k) = ptr(a = b = c = k) + ptr(a = b = k, c ̸= k)

=
25 + 3 · 1

256
=

7
64

. (17)

Hence, all pairs of parties are correlated, e.g., ptr(a|b) ̸= 1
4 . In worlds, given an outcome b = k for

Bob, Alice’s outcome has a large chance to take the same value: ptr(a = k|b = k) = ptr(a=k,b=k)
ptr(b=k) = 7

16 .
Accordingly:

ptr(a = b) = ∑
k

ptr(b = k)p(a = k|b = k) =
7

16
. (18)

The strength of the three-party correlation is even more impressive:

ptr(a = k|b = c = k) =
ptr(a = b = c = k)

ptr(b = c = k)
=

25
28

. (19)

Hence ptr(a = b = c) = 4 · 25
256 = 25

64 .
The high correlation displayed by ptr strongly suggests that it can’t be realized by any three-local

model. However, one has to be careful. Indeed, reference [39] presents two three-local models with
even higher correlations, though not symmetric and not reproducing the correlations (14)–(16) of ptr.
For completeness, these two models are reproduced in the next Section 6. Since [39] was posted on
the arXiv quite some researchers tried to prove or disprove the three-local nature of ptr. In particular
Elisa Bäumer and Elie Wolfe (private communications) devoted time to this fascinating question,
the first one with strong arguments in favour of a negative answer and the second one, using his
“inflation method” [42,43], arguing in favour of a positive answer. The fact is that the three-local
nature of ptr remains elusive. More generally, the existence/nonexistence of a quantum scenario that
can provably not be reproduced by any three-local model and that respects the triangle symmetry,
or some other closed symmetric loop, remains open, illustrating how poorly we understand joint
measurements. Let me emphasize that if such a quantum example exists, its quantumness could
only be due to the joint measurements, as in a loop there are no “ends”, hence no parties with inputs,
in strong contrast to the by now common Bell inequality scenarios. I elaborate on this in Section 7.

6. Is ptr(a, b, c) Three-Local?

In this section, we consider the question whether the quantum probability ptr(a, b, c) is three-local,
i.e., whether it can be reproduced by a 3-local model:

ptr
?
= ∑

αβγ

P(α)P(β)P(γ)P(a|β, γ)P(b|γ, α)P(c|α, β). (20)
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In such a three-local model of ptr(a, b, c) the Alice–Bob correlation could only be due to their
shared randomness γ. Similarly, the correlation between Bob and Charlie is necessarily due to α and
the Alice–Charlie correlation due to β. Accordingly, each local variable α, β and γ would contain
a four-dit, equally distributed among the values 1, 2, 3, 4, and with a relatively high probability
both Alice and Bob output the four-digit contained in γ, and similarly for the other pairs of parties.
Admittedly, this is only an argument, not a proof of the conjecture that ptr is non-local.

Accordingly, let’s consider the following natural type of three-local models. Let γ = (γ1, γ2),
where γ1 = 1, 2, 3, 4, each with equal probability and γ2 = 0, 1 with prob(γ2 = 1) = q. The idea is
that whenever γ2 = 1, then Alice and Bob results are given by γ1, hence Alice and Bob get perfectly
correlated. More explicitly, Alice’s output function reads:

a(β, γ) =

⎧
⎪⎨

⎪⎩

γ1 i f β2 = 0 and γ2 = 1
β1 i f β2 = 1 and γ2 = 0

β1|γ1 i f β2 = γ2

, (21)

where β1|γ1 indicates that a(β, γ) equals β1 or γ1 with equal probability 1
2 .

Table 1 indicates all possible outputs (where q̄ ≡ (1− q) = prob(α2 = 0) = prob(β2 = 0) = prob(γ2 = 0)).
Averaging the probabilities that a = b = c over the eight combinations of values of α2, β2 and γ2,

i.e., over the eight lines of Table 1, gives:

p3loc(a = b = c) =
13
64

(q̄3 + q3) +
3
4
(q̄2q + q̄q2)

=
13 + 9q − 9q2

64
(22)

Table 1. The eight lines correspond to the eight possible combinations of values of α2, β2 and γ2 (first
three columns). The next three columns indicate Alice, Bob and Charlie’s outputs. The seventh column
indicates the probability of the corresponding line and the last two columns the probability that a = b
and a = b = c, respectively.

α2 β2 γ2 a b c P Prob (a = b) Prob (a = b = c)

0 0 0 β1|γ1 α1|γ1 α1|β1 q̄3 7/16 13/64
0 0 1 γ1 γ1 α1|β1 q̄2q 1 1/4
0 1 0 β1 α1|γ1 β1 q̄2q 1/4 1/4
0 1 1 β1|γ1 γ1 β1 q̄q2 5/8 1/4
1 0 0 β1|γ1 α1 α1 q̄2q 1/4 1/4
1 0 1 γ1 α1|γ1 α1 q̄q2 5/8 1/4
1 1 0 β1 α1 α1|β1 q̄q2 1/4 1/4
1 1 1 β1|γ1 α1|γ1 α1|β1 q3 7/16 13/64

Hence, the maximal three-particle correlation of our three-local model is achieved for q = 1
2

and reads:
max

q
p3loc(a = b = c) =

61
256

(23)

This is much smaller than the value obtained in the quantum case with the elegant
joint measurement.

The above is not a proof, but leads us to conjecture that the quantum probability ptr(a, b, c) is not
three-local. Indeed, γ has to correlate A and B, i.e., γ contributes to the probability that a = b, and β

contributes to ptr(a = c) and α contributes to ptr(b = c). But then the three independent variables α, β

and γ can’t do the job for the three-particle correlation a = b = c.
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Note that if the outcomes are grouped two by two, such that outcomes are binary, then a three-local
model similar to (21) can reproduce the quantum correlation. But, again, with four outcomes per party
this seems impossible.

A Natural but Asymmetric Three-Local Model

There is another three-local model that we need to consider, directly inspired by the quantum
singlet states shared by each pair of parties. Assume that the three local variables α, β and γ each take
values (0, 1) or (1, 0) with 50% probabilities, where the first bit of α is sent to Bob and the second bit to
Charlie, and similarly for β and γ. Clearly, this three-local model assumes binary local variables, i.e.,
bits, but we like to keep the notation (0, 1) and (1, 0) for the two values.

The outcomes are then determined by the two bits that each party receives from the local variables
it shares with his two neighbours. We like to maximize the probability p(a = b = c). All output
functions that maximize p(a = b = c) are equivalent. One possible choice is:

(0, 0) ⇒ a = 2, b = 4, c = 3 (24)

(0, 1) ⇒ a = 1, b = 1, c = 1 (25)

(1, 0) ⇒ a = 3, b = 2, c = 4 (26)

(1, 1) ⇒ a = 4, b = 3, c = 2 (27)

Note that in this three-local model γ imposes that both Alice and Bob can only output one out of
two values. Which of the two values happens depends on the second local variable. This provides
intuition as to why this three-local model achieves p(a = b = c) = 1

2 , i.e., an even larger value than
the quantum probabilities with the EJM. Moreover p(a = b) = 1

2 , hence p(a = b = c|a = b) = 1.
However, this model does not respect the symmetries of the quantum scenario. In particular 20 out
of the 24 cases p(a = k, b = n, c = m) with k ̸= n ̸= m ̸= k take values 0 (recall that in the quantum
scenario all 24 probabilities take value 5

256 , see Equations (14)–(16)).
This simple three-local model shows that in order to prove the non-three-locality of ptr(a, b, c) it

is not sufficient to consider p(a = b = c), but one has to consider also the cases a ̸= b ̸= c.

7. Consequences of a Non-Three-Local Quantum Triangle

Let’s assume that there is a nicely symmetric quantum example of a triangle provably not
three-local, e.g., a probability distribution p(a, b, c) which derives from three independent quantum
states and identical quantum measurements in the triangle configuration, see Figure 3, that has no
three-local decomposition (20) (see Endnote [44]—which refers to References [24,25,45]). What would
that imply for our worldview? First, notice that in such a scenario there are no inputs. Accordingly,
one could imagine a toy universe consisting of only six qubits, without anything outside, which
nevertheless manifests quantumness, including provable randomness. Well, the outcomes a, b
and c should get out of this mini-quantum-universe in order to produce any evidence; one more
manifestation of the infamous quantum measurement problem [46,47]. This is in strong contrast
to the usual Bell inequality scenario where inputs provided from outside the systems under test
are essential to prove any quantumness. Of course, our six qubit toy universe must satisfy the
assumption of independence of the three sources (without any assumption, nothing can be proven).
But this assumption is really minimal: if the sources are spatially separated, then it is very natural to
assume that they are independent. The first source could be powered by solar power and produce
entangled photons, the second source powered by human energy and produce entangled atoms,
and the third source powered by nuclear power and produce some entangled quantum “stuff”,
e.g., cats or crystals [48].

Admittedly, one may argue that Alice, for instance, somehow gets inputs from the sources denoted
β and γ on Figure 3. But in Bell inequality scenarios, one never thinks of the source in-between Alice
and Bob as the inputs, the inputs are determining the measurement setting and, in Bell scenarios,
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necessarily come from outside the quantum systems. Nothing like this in the triangle scenario.
Quantumness would be proven from inside the six qubit toy universe (see Endnote [49]—which refers
to Reference [23]). Also quantum randomness would be proven within this toy universe.

A second interesting consequence of a “quantum triangle” appears when one moves the sources
α, β and γ close to one of the players, or even inside the players. Assume the source α is given to Bob,
β is given to Charlie and γ to Alice. In the quantum case, Alice, Bob and Charlie each emits some
quantum state, e.g., one qubit, and sends it to his partner counter-clock wise. In the classical case
they each send an arbitrarily large amount of classical information (possibly infinite) to their partner,
still counter-clock wise. The three-local assumption of independence translates into the assumption
that all communications are well enough synchronized to guarantee that each party sends out his
quantum state or classical information before receiving anything from his partner. In this way one
compares the power of quantum communication (of even just a qubit) with the power of classical
communication, possibly an infinite amount of classical information. Under the synchronization
assumption of the communications, one would prove the superiority of the former over the latter.

Admittedly, a similar story of replacing entanglement (shared randomness) by quantum (classical)
communication can be told for the standard Bell inequality scenario. Instead of an entanglement source
in-between Alice and Bob, Alice would send a quantum state to Bob prior to receiving her input x.
This would allow them to violate the CHSH-Bell inequality, while if Alice is restricted to sending
classical information—prior to receiving her input—they can’t violate any Bell inequality.

8. Conclusions

In summary, 25 years after the beautiful invention of quantum teleportation lots of progress has
been made on Bell-locality [6], on quantum steering [7] and more generally quantum information
theory. Likewise enormous progress happens in experimental, applied and engineering, even in
industrialization of quantum technologies [50–52]. But, quite surprisingly and disappointingly,
essentially no progress took place in improving our understanding of joint measurements
(see Endnote [53]—which refers to Reference [54–57]), i.e., on the second usage of entanglement
in quantum teleportation. For example, it was proven that there is no simple analog of PR-boxes
for joint measurements [58–61]. This is exciting, as it indicates that big surprises still await us in
the—hopefully not too far—future.
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Abstract: We show how to sample exactly discrete probability distributions whose defining parameters
are distributed among remote parties. For this purpose, von Neumann’s rejection algorithm is turned into
a distributed sampling communication protocol. We study the expected number of bits communicated
among the parties and also exhibit a trade-off between the number of rounds of the rejection algorithm
and the number of bits transmitted in the initial phase. Finally, we apply remote sampling to the
simulation of quantum entanglement in its essentially most general form possible, when an arbitrary
finite number m of parties share systems of arbitrary finite dimensions on which they apply arbitrary
measurements (not restricted to being projective measurements, but restricted to finitely many
possible outcomes). In case the dimension of the systems and the number of possible outcomes
per party are bounded by a constant, it suffices to communicate an expected O(m2) bits in order to
simulate exactly the outcomes that these measurements would have produced on those systems.

Keywords: communication complexity; quantum theory; classical simulation of entanglement;
exact sampling; random bit model; entropy

1. Introduction

Let X be a nonempty finite set containing n elements and p = (px)x∈X be a probability vector
parameterized by some vector θ = (θ1, . . . , θm) ∈ Θm for an integer m ≥ 2. For instance, the set Θ
can be the real interval [0, 1] or the set of Hermitian semi-definite positive matrices as it is the case
for the simulation of entanglement. The probability vector p defines a random variable X such that
P{X = x} def

= px for x ∈ X. To sample exactly the probability vector p means to produce an output x
such that P{X = x} = px. The problem of sampling probability distributions has been studied and is
still studied extensively within different random and computational models. Here, we are interested in
sampling exactly a discrete distribution whose defining parameters are distributed among m different
parties. The θi’s for i ∈ {1, . . . , m} are stored in m different locations where the ith party holds θi.
In general, any communication topology between the parties would be allowed, but, in this work,
we concentrate for simplicity on a model in which we add a designated party known as the leader,
whereas the m other parties are known as the custodians because each of them is sole keeper of the
corresponding parameter θ—hence there are m + 1 parties in total. The leader communicates in both
directions with the custodians, who do not communicate among themselves. Allowing inter-custodian
communication would not improve the communication efficiency of our scheme and can, at best,
halve the number of bits communicated in any protocol. However, it could dramatically improve
the sampling time in a realistic model in which each party is limited to sending and receiving a fixed
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number of bits at any given time step, as demonstrated in our previous work [1] concerning a special
case of the problem considered here. The communication scheme is illustrated in Figure 1.
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Figure 1. The communication scheme.

It may seem paradoxical that the leader can sample exactly the probability vector p with
a finite expected number of bits sent by the custodians, who may hold continuous parameters that
define p. However, this counterintuitive possibility has been known to be achievable for more
than a quarter-century in earlier work on the simulation of quantum entanglement by classical
communication, starting with Refs. [2–7], continuing with Refs. [8–14], etc. for the bipartite case and
Refs. [15–17], etc. for the multipartite case, and culminating with our own Ref. [1].

Our protocol to sample remotely a given probability vector is presented in Section 2. For this
purpose, the von Neumann rejection algorithm [18] is modified to produce an output x ∈ X with exact
probability px using mere approximations of those probabilities, which are computed based on partial
knowledge of the parameters transmitted on demand by the custodians to the leader. For the sake of
simplicity, and to concentrate on the new techniques, we assume initially that algebraic operations on
real numbers can be carried out with infinite precision and that continuous random variables can be
sampled. Later, in Section 4, we build on techniques developed in Ref. [1] to obtain exact sampling in
a realistic scenario in which all computations are performed with finite precision and the only source
of randomness comes from flipping independent fair coins.

In the intervening Section 3, we study our motivating application of remote sampling, which
is the simulation of quantum entanglement using classical resources and classical communication.
Readers who may not be interested in quantum information can still benefit from Section 2 and most
of Section 4, which make no reference to quantum theory in order to explain our general remote
sampling strategies. A special case of remote sampling has been used by the authors [1], in which
the aim was to sample a specific probability distribution appearing often in quantum information
science, namely the m-partite Greenberger–Horne–Zeilinger (GHZ) distribution [19]. More generally,
consider a quantum system of dimension d = d1 · · · dm represented by a density matrix ρ known by
the leader (surprisingly, the custodians have no need to know ρ). Suppose that there are m generalized
measurements (POVMs) acting on quantum systems of dimensions d1, . . . , dm whose possible outcomes
lie in sets X1, . . . , Xm of cardinality n1, . . . , nm, respectively. Each custodian knows one and only one
of the POVMs and nothing else about the others. The leader does not know initially any information
about any of the POVMs. Suppose in addition that the leader can generate independent identically
distributed uniform random variables on the real interval [0, 1]. We show how to generate a random
vector X = (X1, . . . , Xm) ∈ X = X1 × . . . ×Xm sampled from the exact joint probability distribution
that would be obtained if each custodian i had the ith share of ρ (of dimension di) and measured it
according to the ith POVM, producing outcome xi ∈ Xi. This task is defined formally in Section 3, where
we prove that the total expected number of bits transmitted between the leader and the custodians
using remote sampling is O(m2) provided all the di’s and ni’s are bounded by some constant. The exact
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formula, involving m as well as the di’s and ni’s, is given as Equation (14) in Section 3, where d and n
denote the product of the di’s and the ni’s, respectively. In Section 4, we obtain the same asymptotic
result in the more realistic scenario in which the only source of randomness comes from independent
identically distributed uniform random bits. This result subsumes that of Ref. [1] since all di’s and ni’s
are equal to 2 for projective measurements on individual qubits of the m-partite GHZ state.

2. Remote Sampling

As explained in the Introduction, we show how to sample remotely a discrete probability vector
p = (px)x∈X. The task of sampling is carried by a leader ignorant of some parameters θ = (θ1, . . . , θm)
that come in the definition of the probability vector, where each θi is known by the ith custodian only,
with whom the leader can communicate. We strive to minimize the amount of communication required
to achieve this task.

To solve our conundrum, we modify the von Neumann rejection algorithm [18,20]. Before
explaining those modifications, let us review the original algorithm. Let q = (qx)x∈X be a probability
vector that we know how to sample on the same set X, and let C ≥ 1 be such that px ≤ Cqx for all
x ∈ X. The classical von Neumann rejection algorithm is shown as Algorithm 1. It is well known that
the expected number of times round the repeat loop is exactly C.

Algorithm 1 Original von Neumann rejection algorithm
1: repeat

2: Sample X according to (qx)x∈X
3: Sample U uniformly on [0, 1]
4: if UCqX ≤ pX then

5: return X {X is accepted}
6: end if
7: end repeat

If only partial knowledge about the parameters defining p is known, it would seem that the
condition in line 4 cannot be decided. Nevertheless, the strategy is to build a sequence of increasingly
accurate approximations that converge to the left and right sides of the test. As explained below, the
number of bits transmitted depends on the number of bits needed to compute q, and on the accuracy
in p required to accept or reject. This task can be achieved either in the random bit model, in which only
i.i.d. random bits are generated, or in the less realistic uniform model, in which uniform continuous
random variables are needed. The random bit model was originally suggested by von Neumann [18],
but only later given this name and formalized by Knuth and Yao [21]. In this section, we concentrate
for simplicity on the uniform model, leaving the more practical random bit model for Section 4.

Definition 1. A t-bit approximation of a real number x is any x̂ such that |x − x̂| ≤ 2−t. A special case of
t-bit approximation is the t-bit truncation x̂ = sign(x)⌊|x|2t⌋/2t, where sign(x) is equal to +1, 0 or −1
depending on the sign of x. If α = a + bi is a complex number, where i =

√
−1, then a t-bit approximation

(resp. truncation) α̂ of α is any â + b̂i, where â and b̂ are t-bit approximations (resp. truncations) of a and
b, respectively.

Note that we assume without loss of generality that approximations of probabilities are always
constrained to be real numbers between 0 and 1, which can be enforced by snapping any out-of-bound
approximation (even if it is a complex number) to the closest valid value.

Consider an integer t0 > 0 to be determined later. Our strategy is for the leader to compute the
probability vector q = (qx)x∈X defined below, based on t0-bit approximations px(t0) of the probabilities
px for each x ∈ X. For this purpose, the leader receives sufficient information from the custodians to
build the entire vector q at the outset of the protocol. This makes q the “easy-to-sample” distribution
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required in von Neumann’s technique, which is easy not from a computational viewpoint, but in the
sense that no further communication is required for the leader to sample it as many times as needed.

Let
C = ∑

x

(
px(t0) + 2−t0

)
(1)

and
qx =

(
px(t0) + 2−t0

)
/C . (2)

Noting that ∑x qx = 1, these qx define a proper probability vector q = (qx)x∈X. Using the definition of
a t-bit approximation and the definition of qx from Equation (2), we have that

px ≤
(

px(t0) + 2−t0 = Cqx

)
≤ px + 2 × 2−t0 .

Taking the sum over the possible values for x and recalling that set X is of cardinality n,

1 ≤ C ≤ 1 + 21−t0 n . (3)

Consider any x ∈ X sampled according to q and U sampled uniformly in [0, 1] as in lines 2
and 3 of Algorithm 1. Should x be accepted because UCqx ≤ px, this can be certified by any
t-bit approximation px(t) of px such that UCqx ≤ px(t)− 2−t for some positive integer t since
px(t) ≤ px + 2−t. Conversely, any integer t such that UCqx > px(t) + 2−t certifies that x should
be rejected because it implies that UCqx > px since px(t) ≥ px − 2−t. On the other hand, no decision
can be made concerning UCqx versus px if −2−t < UCqx − px(t) ≤ 2−t. It follows that one can modify
Algorithm 1 above into Algorithm 2 below, in which a sufficiently precise approximation of px suffices
to make the correct decision to accept or reject an x sampled according to distribution q. A well-chosen
value of t0 must be input into this algorithm, as discussed later.

Algorithm 2 Modified rejection algorithm—Protocol for the leader

Input: Value of t0
1: Compute px(t0) for each x ∈ X

{The leader needs information from the custodians in order to compute these approximations}
2: Compute C and q = (qx)x∈X as per Equations (1) and (2)
3: Sample X according to q
4: Sample U uniformly on [0, 1]
5: for t = t0 to ∞ do

6: if UCqX ≤ pX(t)− 2−t then

7: return X {X is accepted}
8: else if UCqX > pX(t) + 2−t then

9: go to line 3 {X is rejected}
10: else

11: Continue the for loop
{We cannot decide whether to accept or reject because −2−t < UCqx − px(t) ≤ 2−t ;
communication may be required in order for the leader to compute pX(t + 1) ;
it could be that bits previously communicated to compute px(t) can be reused.}

12: end if
13: end for
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Theorem 1. Algorithm 2 is correct, i.e., it terminates and returns X = x with probability px. Furthermore, let
T be the random variable that denotes the value of variable t upon termination of any instance of the for loop,
whether the loop terminates in rejection or acceptation. Then,

E(T) ≤ t0 + 3 . (4)

Proof. Consider any x ∈ X and t ≥ t0. To reach T > t, it must be that −2−t < UCqx − px(t) ≤ 2−t.
Noting that qx ̸= 0 according to Equation (2), the probability that T > t when X = x is therefore
upper-bounded as follows:

P{T > t | X = x} ≤ P
{
−2−t < UCqx − px(t) ≤ 2−t}

= P
{

px(t)− 2−t

Cqx
< U ≤ px(t) + 2−t

Cqx

}

≤ px(t) + 2−t

Cqx
− px(t)− 2−t

Cqx
=

2 × 2−t

Cqx
≤ 2t0−t+1 . (5)

The last inequality uses the fact that

Cqx = px(t0) + 2−t0 ≥ 2−t0 .

It follows that the probability that more turns round the for loop are required decreases
exponentially with each new turn once t > t0 + 1, which suffices to guarantee termination of the
for loop with probability 1. Termination of the algorithm itself comes from the fact that the choice of X
and U in lines 3 and 4 leads to acceptance at line 7—and therefore termination—with probability 1/C,
as demonstrated by von Neumann in the analysis of his rejection algorithm.

The fact that X = x is returned with probability px is an immediate consequence of the correctness
of the von Neumann rejection algorithm since our adaptation of this method to handle the fact that
only approximations of pX are available does not change the decision to accept or reject any given
candidate sampled according to q.

In order to bound the expectation of T, we note that P{T > t | X = x} = 1 when t < t0 since
we start the for loop at t = t0. We can also use vacuous P{T > t0 | X = x} ≤ 1 rather than the
worse-than-vacuous upper bound of 2 given by Equation (5) in the case t = t0. Therefore,

E(T | X = x) =
∞

∑
t=0

P{T > t | X = x}

=
t0

∑
t=0

P{T > t | X = x}+
∞

∑
t=t0+1

P{T > t | X = x}

≤ t0 + 1 + 2t0+1
∞

∑
t=t0+1

2−t = t0 + 3 .

It remains to note that, since E(T | X = x) ≤ t0 + 3 for all x ∈ X, it follows that E(T) ≤ t0 + 3
without condition.

Let S be the random variable that represents the number of times variable X is sampled according
to q at line 3, and let Ti be the random variable that represents the value of variable T upon termination
of the ith instance of the for loop starting at line 5, for i ∈ {1, . . . , S}. The random variables Ti are
independently and identically distributed as the random variable T in Theorem 1 and the expected
value of S is C. Let X1, . . . , XS be the random variables chosen at successive passes at line 3, so that
X1, . . . , XS−1 are rejected, whereas XS is returned as the final result of the algorithm.

To analyse the communication complexity of Algorithm 2, we introduce function γx(t) for each
x ∈ X and t > t0, which denotes the incremental number of bits that the leader must receive from
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the custodians in order to compute px(t), taking account of the information that may already be
available if he had previously computed px(t − 1). For completeness, we include in γx(t) the cost of
the communication required for the leader to request more information from the custodians. We also
introduce function δ(t) for t ≥ 0, which denotes the number of bits that the leader must receive from
the custodians in order to compute px(t) for all x ∈ X in a “simultaneous” manner. Note that it could
be much less expensive to compute those n values than n times the cost of computing any single one
of them because some of the parameters held by the custodians may be relevant to more than one of
the px’s. The total number of bits communicated in order to implement Algorithm 2 is therefore given
by random variable

Z = δ(t0) +
S

∑
i=1

Ti

∑
t=t0+1

γXi (t) .

For simplicity, let us define function γ(t) def
= maxx∈X γx(t). We then have

Z ≤ δ(t0) +
S

∑
i=1

Ti

∑
t=t0+1

γ(t) ,

whose expectation, according to Wald’s identity, is

E(Z) ≤ δ(t0) + E(S) E

(
T

∑
t=t0+1

γ(t)

)
. (6)

Assuming the value of γ(t) is upper-bounded by some γ,

E(Z) ≤ δ(t0) + E(S)E(T − t0)γ

≤ δ(t0) + 3γC

≤ δ(t0) + 3γ
(
1 + 21−t0 n

)
(7)

because E(S) = C and using Equations (4) and (3).
Depending on the specific application, which determines γ and function δ(t), Equation (7) is key

to a trade-off that can lead to an optimal choice of t0 since a larger t0 decreases 21−t0 but is likely to
increase δ(t0). The value of γ may play a rôle in the balance. The next section, in which we consider the
simulation of quantum entanglement by classical communication, gives an example of this trade-off
in action.

3. Simulation of Quantum Entanglement Based on Remote Sampling

Before introducing the simulation of entanglement, let us establish some notation and mention the
mathematical objects that we shall need. It is assumed that the reader is familiar with linear algebra,
in particular the notion of a semi-definite positive matrix, Hermitian matrix, trace of a matrix, tensor
product, etc. For a discussion about the probabilistic and statistical nature of quantum theory, see
Ref. [22]. For convenience, we use [n] to denote the set {1, 2, . . . , n} for any integer n.

Consider integers m, d1, d2, . . . , dm, n1, n2, . . . , nm, all greater than or equal to 2. Define d = ∏m
i=1 di

and n = ∏m
i=1 ni. Let ρ be a d × d density matrix. Recall that any density matrix is Hermitian,

semi-definite positive and unit-trace, which implies that its diagonal elements are real numbers
between 0 and 1. For each i ∈ [m] and j ∈ [ni], let Mij be a di × di Hermitian semi-definite positive
matrix such that

∑
j∈[ni ]

Mij = Idi , (8)

where Idi is the di × di identity matrix. In other words, each set {Mij}j∈[ni ] is a POVM (positive-operator
valued measure) [22].
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As introduced in Section 1, we consider one leader and m custodians. The leader knows density
matrix ρ and the ith custodian knows the ith POVM, meaning that he knows the matrices Mij for all
j ∈ [ni]. If a physical system of dimension d in state ρ were shared between the custodians, in the
sense that the ith custodian had possession of the ith subsystem of dimension di, each custodian could
perform locally his assigned POVM and output the outcome, an integer between 1 and ni. The joint
output would belong to X def

= [n1]× [n2]× · · ·× [nm], a set of cardinality n, sampled according to the
probability distribution stipulated by the laws of quantum theory, which we review below.

Our task is to sample X with the exact same probability distribution even though there is
no physical system in state ρ available to the custodians, and in fact all parties considered are
purely classical! We know from Bell’s Theorem [23] that this task is impossible in general without
communication, even when m = 2, and our goal is to minimize the amount of communication required
to achieve it. Special cases of this problem have been studied extensively for expected [1,2,4–6], etc.
and worst-case [3,8], etc. communication complexity, but here we solve it in its essentially most
general setting, albeit only in the expected sense. For this purpose, the leader will centralize the
operations while requesting as little information as possible from the custodians on their assigned
POVMs. Once the leader has successfully sampled X = (X1, . . . , Xm), he transmits each Xi to the ith
custodian, who can then output it as would have been the case had quantum measurements actually
taken place.

We now review the probability distribution X that we need to sample, according to quantum
theory. For each vector x = (x1, . . . , xm) ∈ X, let Mx be the d × d tensor product of matrices Mixi for
each i ∈ [m]:

Mx =
m⊗

i=1
Mixi . (9)

The set {Mx}x∈X forms a global POVM of dimension d, which applied to density matrix ρ defines a
joint probability vector on X. The probability px of obtaining any x = (x1, . . . , xm) ∈ X is given by

px = Tr
(
ρMx

)
= Tr

(
ρ

(
m⊗

i=1
Mixi

))
. (10)

For a matrix A of size s × s and any pair of indices r and c between 0 and s − 1, we use (A)rc to
denote the entry of A located in the rth row and cth column. Matrix indices start at 0 rather than 1 to
facilitate Fact 2 below. We now state various facts for which we provide cursory justifications since
they follow from elementary linear algebra and quantum theory, or they are lifted from previous work.

Fact 1. For all x ∈ X, we have 0 ≤ px ≤ 1 when px is defined according to Equation (10); furthermore,
∑x∈X px = 1. This is obvious because quantum theory tells us that Equation (10) defines a probability
distribution over all possible outcomes x ∈ X, as sampled by the joint measurement. Naturally, this
statement could also be proven from Equations (8) and (10) using elementary linear algebra.

Fact 2. For each x = (x1, . . . , xm) ∈ X, matrix Mx is the tensor product of m matrices as given in
Equation (9). Therefore, each entry (Mx)rc is the product of m entries of the Mixi ’s. Specifically,
consider any indices r and c between 0 and d − 1 and let ri and ci be the indices between 0 and di − 1,
for each i ∈ [m], such that

r = r1 + r2d1 + r3d1d2 + . . . + rmd1 · · · dm−1,

c = c1 + c2d1 + c3d1d2 + . . . + cmd1 · · · dm−1 .

The ri’s and ci’s are uniquely defined by the principle of mixed-radix numeration. We have

(Mx)rc =
m

∏
i=1

(
Mixi

)
rici

.
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Fact 3. Let M be a Hermitian semi-definite positive matrix. Every entry (M)ij of the matrix satisfies

|(M)ij| ≤
√
(M)ii(M)jj .

This follows from the fact that all principal submatrices of any Hermitian semi-definite positive matrix
are semi-definite positive [24] (Observation 7.1.2, page 430). In particular, the principal submatrix

(
(M)ii (M)ij
(M)ji (M)jj

)

is semi-definite positive, and therefore it has nonnegative determinant:

(M)ii(M)jj − (M)ij(M)ji = (M)ii(M)jj − (M)ij(M)∗ij = (M)ii(M)jj − |(M)ij|2 ≥ 0

by virtue of M being Hermitian, where α∗ denotes the complex conjugate of α.

Fact 4. The norm |(ρ)ij| of any entry of a density matrix ρ is less than or equal to 1. This follows
directly from Fact 3 since density matrices are Hermitian semi-definite positive, and from the fact that
diagonal entries of density matrices, such as (ρ)ii and (ρ)jj, are real values between 0 and 1.

Fact 5. Given any POVM {Mℓ}L
ℓ=1, we have that

1. 0 ≤ (Mℓ)ii ≤ 1 for all ℓ and i, and
2. |(Mℓ)ij| ≤ 1 for all ℓ, i and j.

The first statement follows from the fact that ∑L
ℓ=1 Mℓ is the identity matrix by definition of

POVMs, and therefore ∑L
ℓ=1(Mℓ)ii = 1 for all i, and the fact that each (Mℓ)ii ≥ 0 because each Mℓ is

semi-definite positive. The second statement follows from the first by applying Fact 3.

Fact 6 (This is a special case of Theorem 1 from Ref. [1], with v = 0). Let k ≥ 1 be an integer and
consider any two real numbers a and b. If â and b̂ are arbitrary k-bit approximations of a and b,
respectively, then â + b̂ is a (k − 1)-bit approximation of a + b. If, in addition, a and b are known
to lie in interval [−1, 1], which can also be assumed without loss of generality concerning â and b̂
since otherwise they can be safely pushed back to the appropriate frontier of this interval, then âb̂ is
a (k − 1)-bit approximation of ab.

Fact 7. Let k ≥ 1 be an integer and consider any two complex numbers α and β. If α̂ and β̂ are arbitrary
k-bit approximations of α and β, respectively, then α̂ + β̂ is a (k − 1)-bit approximation of α + β.
If, in addition, k ≥ 2 and the real and imaginary parts of α and β are known to lie in interval [−1, 1],
which can also be assumed without loss of generality concerning α̂ and β̂, then α̂β̂ is a (k − 2)-bit
approximation of αβ. This is a direct consequence of Fact 6 in the case of addition. In the case of
multiplication, consider α = a + bi, β = c + di, α̂ = â + b̂i and β̂ = ĉ + d̂i, so that

αβ = (ac − bd) + (ad + bc)i and α̂β̂ = (âĉ − b̂d̂) + (âd̂ + b̂ĉ)i .

By the multiplicative part of Fact 6, âĉ, b̂d̂, âd̂ and b̂ĉ are (k − 1)-bit approximations of ac, bd, ad and
bc, respectively; and then by the additive part of the same fact (which obviously applies equally well
to subtraction), âĉ − b̂d̂ and âd̂ + b̂ĉ are (k − 2)-bit approximations of ac − bd and ad + bc, respectively.

Fact 8 (This is Corollary 2 from Ref. [1]). Let m ≥ 2 and k ≥ ⌈ lg m⌉ be integers and let {aj}m
j=1

and {âj}m
j=1 be real numbers and their k-bit approximations, respectively, all in interval [−1, 1].

Then, ∏m
j=1 âj is a (k − ⌈ lg m⌉)-bit approximation of ∏m

j=1 aj .

Fact 9. Let m ≥ 2 and k ≥ 2⌈ lg m⌉ be integers and let {αj}m
j=1 and {α̂j}m

j=1 be complex numbers
and their k-bit approximations, respectively. Provided it is known that |αj| ≤ 1 for each j ∈ [m],
a (k − 2⌈ lg m⌉)-bit approximation of ∏m

j=1 αj can be computed from knowledge of the α̂j’s. The proof
of this fact follows essentially the same template as Fact 8, except that two bits of precision may be
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lost at each level up the binary tree introduced in Ref. [1], due to the difference between Facts 6 and 7.
A subtlety occurs in the need for Fact 7 to apply that the real and imaginary parts of all the complex
numbers under consideration must lie in interval [−1, 1]. This is automatic for the exact values since
the αj’s are upper-bounded in norm by 1 and the product of such-bounded complex numbers is also
upper-bounded in norm by 1, which implies that their real and imaginary parts lie in interval [−1, 1].
For the approximations, however, we cannot force their norm to be bounded by 1 because we need
the approximations to be rational for communication purposes. Fortunately, we can force the real
and imaginary parts of all approximations computed at each level up the binary tree to lie in interval
[−1, 1] because we know that they approximate such-bounded numbers. Note that the product of two
complex numbers whose real and imaginary parts lie in interval [−1, 1], such as 1 + 2−ki and 1 − 2−ki,
may not have this property, even if they are k-bit approximations of numbers bounded in norm by 1.

Fact 10. Let s ≥ 2 and k ≥ ⌈ lg s⌉ be integers and let {αj}s
j=1 and {α̂j}s

j=1 be complex numbers and
their k-bit approximations, respectively, without any restriction on their norm. Then ∑s

j=1 α̂j is
a (k − ⌈ lg s⌉)-bit approximation of ∑s

j=1 αj . Again, this follows the same proof template as Fact 8,
substituting multiplication of real numbers by addition of complex numbers, which allows us to drop
any condition on the size of the numbers considered.

Fact 11. Consider any x = (x1, . . . , xm) ∈ X and any positive integer t. In order to compute a t-bit
approximation of px, it suffices to have (t + 1 + ⌈2 lg d⌉+ 2⌈ lg m⌉)-bit approximations of each entry
of the Mixi matrices for all i ∈ [m]. This is because

px = Tr(ρMx) =
d−1

∑
r=0

(ρMx)rr

=
d−1

∑
r=0

d−1

∑
c=0

(ρ)rc(Mx)cr

=
d−1

∑
r=0

d−1

∑
c=0

(ρ)rc
m

∏
i=1

(Mixi )ciri (11)

by virtue of Fact 2. Every term of the double sum in Equation (11) involves a product of m entries, one
per POVM element, and therefore incurs a loss of at most 2⌈ lg m⌉ bits of precision by Fact 9, whose
condition holds thanks to Fact 5. An additional bit of precision may be lost in the multiplication
by (ρ)rc, even though that value is available with arbitrary precision (and is upper-bounded by 1 in
norm by Fact 4) because of the additions involved in multiplying complex numbers. Then, we have
to add s = d2 terms, which incurs an additional loss of at most ⌈ lg s⌉ = ⌈2 lg d⌉ bits of precision by
Fact 10. In total, (t + 1 + ⌈2 lg d⌉+ 2⌈ lg m⌉)-bit approximations of the (Mixi )ciri ’s will result in a t-bit
approximation of px.

Fact 12. The leader can compute px(t) for any specific x = (x1, . . . , xm) ∈ X and integer t if he receives
a total of

(t + 2 + ⌈2 lg d⌉+ 2⌈lg m⌉)
m

∑
i=1

d2
i

bits from the custodians. This is because the ith custodian has the description of matrix Mixi of
size di × di, which is defined by exactly d2

i real numbers since the matrix is Hermitian. By virtue of
Fact 11, it is sufficient for the leader to have (t + 1 + ⌈2 lg d⌉+ 2⌈ lg m⌉)-bit approximations for all
those ∑m

i=1 d2
i numbers. Since each one of them lies in interval [−1, 1] by Fact 5, well-chosen k-bit

approximations (for instance k-bit truncations) can be conveyed by the transmission of k + 1 bits, one
of which carries the sign.

Note that the t-bit approximation of px computed according to Fact 12, say a + bi, may very well
have a nonzero imaginary part b, albeit necessarily between −2−t and 2−t. Since px(t) must be a real
number between 0 and 1, the leader sets px(t) = max(0, min(1, a)), taking no account of b, although
a paranoid leader may wish to test that −2−t ≤ b ≤ 2−t indeed and raise an alarm in case it is not
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(which of course is mathematically impossible unless the custodians are not given proper POVMs,
unless they misbehave, or unless a computation or communication error has occurred).

Fact 13. For any t, the leader can compute px(t) for each and every x ∈ X if he receives

δ(t) def
= (t + 2 + ⌈2 lg d⌉+ 2⌈lg m⌉)

m

∑
i=1

nid2
i

bits from the custodians. This is because it suffices for each custodian i to send to the leader
(t + 1 + ⌈2 lg d⌉+ 2⌈ lg m⌉)-bit approximations of all nid2

i real numbers that define the entire ith POVM,
i.e., all the matrices Mij for j ∈ [ni]. This is a nice example of the fact that it may be much less
expensive for the leader to compute at once px(t) for all x ∈ X, rather than computing them one by
one independently, which would cost

n(t + 2 + ⌈2 lg d⌉+ 2⌈lg m⌉)
m

∑
i=1

d2
i = (t + 2 + ⌈2 lg d⌉+ 2⌈lg m⌉)

m

∑
i=1

nd2
i ≫ δ(t)

bits of communication by applying n times Fact 12.

After all these preliminaries, we are now ready to adapt the general template of Algorithm 2 to
our entanglement-simulation conundrum, yielding Algorithm 3. We postpone the choice of t0 until
after the communication complexity analysis of this new algorithm.

Algorithm 3 Protocol for simulating arbitrary entanglement subjected to arbitrary measurements

1: Each custodian i ∈ [m] sends his value of ni to the leader, who computes n = ∏m
i=1 ni

2: The leader chooses t0 and informs the custodians of its value
3: Each custodian i ∈ [m] sends to the leader (t0 + 1 + ⌈2 lg d⌉+ 2⌈lg m⌉)-bit truncations

of the real and imaginary parts of the entries defining matrix Mij for each j ∈ [ni]
4: The leader computes px(t0) for every x ∈ X, using Fact 13
5: The leader computes C and q = (qx)x∈X as per Equations (1) and (2)
6: accept ← false
7: repeat

8: reject ← false
9: The leader samples X = (X1, X2, . . . , Xm) according to q

10: The leader informs each custodian i ∈ [m] of the value of Xi
11: The leader samples U uniformly on [0, 1]
12: t ← t0
13: repeat

14: if UCqX ≤ pX(t)− 2−t then

15: accept ← true {X is accepted}
16: else if UCqX > pX(t) + 2−t then

17: reject ← true {X is rejected}
18: else

19: The leader asks each custodian i ∈ [m] for one more bit in the truncation
of the real and imaginary parts of the entries defining matrix MiXi ;

20: Using this information, the leader updates pX(t) into pX(t + 1);
21: t ← t + 1
22: end if
23: until accept or reject
24: until accept
25: The leader requests each custodian i ∈ [m] to output his Xi
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To analyse the expected number of bits of communication required by this algorithm, we apply
Equation (7) from Section 2 after defining explicitly the cost parameters δ(t0) for the initial computation
of px(t0) for all x ∈ X at lines 3 and 4, and γ for the upgrade from a specific pX(t) to pX(t + 1) at lines 19
and 20. For simplicity, we shall ignore the negligible amount of communication entailed at line 1
(which is ∑m

i=1 ⌈ lg ni⌉ ≤ m + lg n bits), line 2 (⌈ lg t0⌉ bits), line 10 (also ∑m
i=1 ⌈ lg ni⌉ bits, but repeated

E(S) ≤ 1 + 21−t0 n times) and line 25 (m bits) because they are not taken into account in Equation (7)
since they are absent from Algorithm 2. If we counted it all, this would add O((1 + 21−t0 n) lg n + lg t0)
bits to Equation (13) below, which would be less than 10 lg n bits added to Equation (14), with no effect
at all on Equation (15).

According to Fact 13,

δ(t0) = (t0 + 2 + ⌈2 lg d⌉+ 2⌈lg m⌉)
m

∑
i=1

nid2
i .

The cost of line 19 is very modest because we use truncations rather than general approximations in
line 3 for the leader to compute px(t0) for all x ∈ X. Indeed, it suffices to obtain a single additional bit of
precision in the real and imaginary parts of each entry defining matrix MiXi from each custodian i ∈ [m].
The cost of this update is simply

γ = m +
m

∑
i=1

d2
i (12)

bits of communication, where the addition of m is to account for the leader needing to request new
bits from the custodians. This is a nice example of what we meant by “it could be that bits previously
communicated can be reused” in line 11 of Algorithm 2.

Putting it all together in Equation (7), the total expected number of bits communicated in
Algorithm 3 in order to sample exactly according to the quantum probability distribution is

E(Z) ≤ δ(t0) + 3γ
(
1 + 21−t0 n

)

≤ (t0 + 2 + ⌈2 lg d⌉+ 2⌈lg m⌉)
m

∑
i=1

nid2
i + 3

(
1 + 21−t0 n

)(
m +

m

∑
i=1

d2
i

)
. (13)

We are finally in a position to choose the value of parameter t0. First note that n = ∏m
i=1 ni ≥ 2m.

Therefore, any constant choice of t0 will entail an expected amount of communication that is
exponential in m because of the right-hand term in Equation (13). At the other extreme, choosing
t0 = n would also entail an expected amount of communication that is exponential in m, this time
because of the left-hand term in Equation (13). A good compromise is to choose t0 = ⌈ lg n⌉, which
results in 1 ≤ C ≤ 3 according to Equation (3), because in that case 2t0 ≥ n and therefore

1 ≤ C ≤ 1 + 21−t0 n = 1 +
2n
2t0

≤ 3 ,

so that Equation (13) becomes

E(Z) ≤ (⌈ lg n⌉+ ⌈2 lg d⌉+ 2⌈lg m⌉+ 2)
m

∑
i=1

nid2
i + 9

(
m +

m

∑
i=1

d2
i

)
. (14)

In case all the ni’s and di’s are upper-bounded by some constant ξ, we have that n = ∏m
i=1 ni ≤ ξm,

hence lg n ≤ m lg ξ, similarly lg d ≤ m lg ξ, and also ∑m
i=1 nid2

i ≤ mξ3. It follows that

E(Z) ≤ (3ξ3 lg ξ)m2 + O(m log m) , (15)

which is on the order of m2, thus matching with our most general method the result that was already
known for the very specific case of simulating the quantum m-partite GHZ distribution [1].

47



Entropy 2019, 21, 92

4. Practical Implementation Using a Source of Discrete Randomness

In practice, we cannot work with continuous random variables since our computers have finite
storage capacities and finite precision arithmetic. Furthermore, the generation of uniform continuous
random variables does not make sense computationally speaking and we must adapt Algorithms 2
and 3 to work in a finite world.

For this purpose, recall that U is a uniform continuous random variable on [0, 1] used in all the
algorithms seen so far. For each i ≥ 1, let Ui denote the ith bit in the binary expansion of U, so that

U = 0.U1U2 · · · =
∞

∑
i=1

Ui2−i.

We acknowledge the fact that the Ui’s are not uniquely defined in case U = j/2k for integers k > 0 and
0 < j < 2k, but we only mention this phenomenon to ignore it since it occurs with probability 0 when
U is uniformly distributed on [0, 1]. We denote the t-bit truncation of U by U[t]:

U[t] def
= ⌊2tU⌋/2t =

t

∑
i=1

Ui2−i .

For all t ≥ 1, we have that
U[t] ≤ U < U[t] + 2−t. (16)

We modify Algorithm 2 into Algorithm 4 as follows, leaving to the reader the corresponding
modification of Algorithm 3, thus yielding a practical protocol for the simulation of general
entanglement under arbitrary measurements.

Algorithm 4 Modified rejection algorithm with discrete randomness source—Protocol for the leader

Input: Value of t0
1: Compute px(t0) for each x ∈ X

{The leader needs information from the custodians in order to compute these approximations}
2: Compute C and q = (qx)x∈X as per Equations (1) and (2)
3: Sample X according to q
4: U[0] ← 0
5: for t = 1 to t0 − 1 do

6: Generate i.i.d. unbiased bit Ut
7: U[t] ← U[t − 1] + Ut 2−t

8: end for
9: for t = t0 to ∞ do

10: Generate i.i.d. unbiased bit Ut
11: U[t] ← U[t − 1] + Ut 2−t

12: if
(
U[t] + 2−t)CqX ≤ pX(t)− 2−t then

13: return X {X is accepted}
14: else if U[t]CqX > pX(t) + 2−t then

15: go to line 3 {X is rejected}
16: else

17: Continue the for loop
{We cannot decide to accept or reject because −(1 + CqX)2−t < U[t]CqX − pX(t) ≤ 2−t ;
communication may be required in order for the leader to compute pX(t + 1) ;
it could be that bits previously communicated to compute px(t) can be reused.}

18: end if
19: end for
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Theorem 2. Algorithm 4 is correct, i.e., it terminates and returns X = x with probability px. Furthermore, let
T be the random variable that denotes the value of variable t upon termination of any instance of the for loop
that starts at line 9, whether it terminates in rejection or acceptation. Then,

E(T) ≤ t0 + 3 + 2−t0 .

Proof. This is very similar to the proof of Theorem 1, so let us concentrate on the differences. First
note that it follows from Equation (16) and the fact that |pX(t)− pX| ≤ 2−t that

(
U[t] + 2−t)CqX ≤ pX(t)− 2−t =⇒ UCqX ≤ pX(t)− 2−t =⇒ UCqX ≤ pX

and
U[t]CqX > pX(t) + 2−t =⇒ UCqX > pX(t) + 2−t =⇒ UCqX > pX .

Therefore, whenever X is accepted at line 13 (resp. rejected at line 15), it would also have been
accepted (resp. rejected) in the original von Neumann algorithm, which shows sampling correctness.
Conversely, whenever we reach a value of t ≥ t0 such that

(
U[t] + 2−t)CqX > pX(t)− 2−t and

U[t]CqX ≤ pX(t) + 2−t, we do not have enough information to decide whether to accept or reject,
and therefore we reach line 17, causing t to increase. This happens precisely when

−(1 + CqX)2−t < U[t]CqX − pX(t) ≤ 2−t .

To obtain an upper bound on E(T), we mimic the proof of Theorem 1, but in the discrete rather than
continuous regime. In particular, for any x ∈ X and t ≥ t0,

P{T > t | X = x} ≤ P
{
−(1 + Cqx)2−t < U[t]Cqx − px(t) ≤ 2−t}

= P
{

px(t)− (1 + Cqx)2−t < U[t]Cqx ≤ px(t) + 2−t}

= P
{

2t px(t)
Cqx

− 1 + Cqx
Cqx

< 2tU[t] ≤ 2t px(t)
Cqx

+
1

Cqx

}

≤
[(

2t px(t)
Cqx

+
1

Cqx

)
−

(
2t px(t)

Cqx
− 1 + Cqx

Cqx

)
+ 1

]
2−t (17)

= 2
(

1 +
1

Cqx

)
2−t ≤ 2t0−t+1 + 21−t (

because Cqx ≥ 2−t0
)

. (18)

To understand Equation (17), think of 2tU[t] as an integer chosen randomly and uniformly
between 0 and 2t − 1. The probability that it falls within some real interval (a, b] for a < b is equal to
2−t times the number of integers between 0 and 2t − 1 in that interval, the latter being upper-bounded
by the number of unrestricted integers in that interval, which is at most b − a + 1.

Noting how similar Equation (18) is to the corresponding Equation (5) in the analysis of
Algorithm 2, it is not surprising that the expected value of T will be similar as well. Indeed, continuing
as in the proof of Theorem 1, without belabouring the details,

E(T | X = x) =
∞

∑
t=0

P{T > t | X = x}

=
t0+1

∑
t=0

P{T > t | X = x}+
∞

∑
t=t0+2

P{T > t | X = x}

≤ t0 + 2 + 2t0+1
∞

∑
t=t0+2

2−t + 2
∞

∑
t=t0+2

2−t = t0 + 3 + 2−t0 . (19)

We conclude that E(T) ≤ t0 + 3 + 2−t0 without condition since Equation (19) does not depend
on x.
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The similarity between Theorems 1 and 2 means that there is no significant additional cost in the
amount of communication required to achieve remote sampling in the random bit model. i.e., if we
consider a realistic scenario in which the only source of randomness comes from i.i.d. unbiased bits,
compared to an unrealistic scenario in which continuous random variables can be drawn. For instance,
the reasoning that led to Equation (7) applies mutatis mutandis to conclude that the expected number Z
of bits that needs to be communicated to achieve remote sampling in the random bit model is

E(Z) ≤ δ(t0) +
(
3 + 2−t0

)(
1 + 21−t0 n

)
γ ,

where δ and γ have the same meaning as in Section 2.
If we use the random bit approach for the general simulation of quantum entanglement studied

in Section 3, choosing t0 = ⌈ lg n⌉ again, Equation (14) becomes

E(Z) ≤ (⌈ lg n⌉+ ⌈2 lg d⌉+ 2⌈lg m⌉+ 2)
m

∑
i=1

nid2
i + 3(3 + 1/n)

(
m +

m

∑
i=1

d2
i

)
, (20)

which reduces to the identical

E(Z) ≤ (3ξ3 lg ξ)m2 + O(m log m)

in case all the ni’s and di’s are upper-bounded by some constant ξ, which again is on the order of m2.
In addition to communication complexity, another natural efficiency measure in the random bit

model concerns the expected number of random bits that needs to be drawn in order to achieve sampling.
Randomness is needed in lines 3, 6 and 10 of Algorithm 4. A single random bit is required each time
lines 6 and 10 are entered, but line 3 calls for sampling X according to distribution q. Let Vi be the
random variable that represents the number of random bits needed on the ith passage through line 3.
For this purpose, we use the algorithm introduced by Donald Knuth and Andrew Chi-Chih Yao [21],
which enables sampling within any finite discrete probability distribution in the random bit model
by using an expectation of no more than two random bits in addition to the Shannon binary entropy
of the distribution. Since each such sampling is independent from the others, it follows that Vi is
independently and identically distributed as a random variable V such that

E(V) ≤ 2 + H(q) ≤ 2 + lg n , (21)

where H(q) denotes the binary entropy of q, which is never more than the base-two logarithm of the
number of atoms in the distribution, here n.

Let R be the random variable that represents the number of random bits drawn when running
Algorithm 4. Reusing the notation of Section 2, let S be the random variable that represents the number
of times variable X is sampled at line 3 and let Ti be the random variable that represents the value
of variable T upon termination of the ith instance of the for loop starting at line 9, for i ∈ {1, . . . , S}.
The random variables Ti are independently and identically distributed as the random variable T in
Theorem 2 and the expected value of S is C. Since one new random bit is generated precisely each
time variable t is increased by 1 in any pass through either for loops (line 5 or 9), we simply have

R =
S

∑
i=1

(Vi + Ti) .

By virtue of Equations (3) and (21), Theorem 2, and using Wald’s identity again, we conclude that:

E(R) = E(S) (E(V) + E(T))

≤
(
1 + 21−t0 n

)(
lg n + t0 + 5 + 2−t0

)
.
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Taking t0 = ⌈ lg n⌉ again, remote sampling can be completed using an expected number of random
bit in O(lg n), with a hidden multiplicative constant no larger than 6. The hidden constant can be
reduced arbitrarily close to 2 by taking t0 = ⌈ lg n⌉+ a for an arbitrarily large constant a. Whenever
target distribution p has close to full entropy, this is only twice the optimal number of random bits that
would be required according to the Knuth–Yao lower bound [21] in the usual case when full knowledge
of p is available in a central place rather than having to perform remote sampling. Note, however, that,
if our primary consideration is to optimize communication for the classical simulation of entanglement,
as in Section 3, choosing t0 = ⌈ lg n⌉ − a would be a better idea because the summation in the left-hand
term of Equation (13) dominates that of the right-hand term. For this inconsequential optimization,
a does not have to be a constant, but it should not exceed lg(ξm), where ξ is our usual upper bound
on the number of possible outcomes for each participant (if it exists), lest the right-hand term of
Equation (13) overtake the left-hand term. Provided ξ exists, the expected number of random bits that
needs to be drawn is linear in the number of participants.

The need for continuous random variables was not the only unrealistic assumption in
Algorithms 1–3. We had also assumed implicitly that custodians know their private parameters
precisely (and that the leader knows exactly each entry of density matrix ρ in Section 3). This could be
reasonable in some situations, but it could also be that some of those parameters are transcendental
numbers or the result of applying transcendental functions to other parameters, for example cos π/8.
More interestingly, it could be that the actual parameters are spoon-fed to the custodians by examiners,
who want to test the custodians’ ability to respond appropriately to unpredictable inputs. However,
all we need is for the custodians to be able to obtain their own parameters with arbitrary precision,
so that they can provide that information to the leader upon request. For example, if a parameter
is π/4 and the leader requests a k-bit approximation of that parameter, the custodian can compute
some number x̂ such that |x̂ − π/4| ≤ 2−k and provide it to the leader. For communication efficiency
purposes, it is best if x̂ itself requires only k bits to be communicated, or perhaps one more (for the
sign) in case the parameter is constrained to be between −1 and 1. It is even better if the custodian can
supply a k-bit truncation because this enables the possibility to upgrade it to a (k + 1)-bit truncation
by the transmission of a single bit upon request from the leader, as we have done explicitly for the
simulation of entanglement at line 19 of Algorithm 3 in Section 3.

Nevertheless, it may be impossible for the custodians to compute truncations of their own
parameters in some cases, even when they can compute arbitrarily precise approximations. Consider
for instance a situation in which one parameter held by a custodian is x = cos θ for some angle θ for
which he can only obtain arbitrarily precise truncations. Unbeknownst to the custodian, θ = π/3 and
therefore x = 1/2. No matter how many bits the custodian obtains in the truncation of θ, however,
he can never decide whether θ < π/3 or θ ≥ π/3. In the first case, x < 1/2 and therefore the 1-bit
truncation of x should be 0, whereas in the second (correct) case, x ≥ 1/2 and therefore the 1-bit
truncation of x is 1/2 (or 0.1 in binary). Thus, the custodian will be unable to respond if the leader
asks him for a 1-bit truncation of x, no matter how much time he spends on the task. In this example,
by contrast, the custodian can supply the leader with arbitrarily precise approximations of x from
appropriate approximations of θ. Should a situation like this occur, for instance in the simulation of
entanglement, there would be two solutions. The first one is for the custodian to transmit increasingly
precise truncations of θ to the leader and let him compute the cosine on it. This approach is only
valid if it is known at the outset that the custodian’s parameter will be of that form, which was
essentially the solution taken in our earlier work on the simulation of the quantum m-partite GHZ
distribution [1]. The more general solution is to modify the protocol and declare that custodians can
send arbitrary approximations to the leader rather than truncations. The consequence on Algorithm 3 is
that line 19 would become much more expensive since each custodian i would have to transmit a fresh
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one-bit-better approximation for the real and imaginary parts of the d2
i entries defining matrix MiXi .

As a result, efficiency parameter γ(t) in Equation (6) would become

γ(t) = m + (t + 2 + ⌈2 lg d⌉+ 2⌈lg m⌉)
m

∑
i=1

d2
i ,

which should be compared with the much smaller (constant) value of γ given in Equation (12) when
truncations of the parameters are available. Nevertheless, taking t0 = ⌈ lg n⌉ again, this increase in
γ(t) would make no significant difference in the total number of bits transmitted for the simulation
of entanglement because it would increase only the right-hand term in Equations (14) and (20), but
not enough to make it dominate the left-hand term. All counted, we still have an expected number of
bits transmitted that is upper-bounded by (3ξ3 lg ξ)m2 + O(m log m) whenever all the ni’s and di’s are
upper-bounded by some constant ξ, which again is on the order of m2.

5. Discussion and Open Problems

We have introduced and studied the general problem of sampling a discrete probability
distribution characterized by parameters that are scattered in remote locations. Our main goal was to
minimize the amount of communication required to solve this conundrum. We considered both the
unrealistic model in which arithmetic can be carried out with infinite precision and continuous random
variables can be sampled exactly, and the more reasonable random bit model studied by Knuth and
Yao [21], in which all arithmetic is carried out with finite precision and the only source of randomness
comes from independent tosses of a fair coin. For a small increase in the amount of communication,
we can fine-tune our technique to require only twice the number of random bits that would be provably
required in the standard context in which all the parameters defining the probability distribution
would be available in a single location, provided the entropy of the distribution is close to maximal.

When our framework is applied to the problem of simulating quantum entanglement with classical
communication in its essentially most general form, we find that an expected number of O(m2) bits
of communication suffices when there are m participants and each one of them (in the simulated
world) is given an arbitrary quantum system of bounded dimension and asked to perform an arbitrary
generalized measurement (POVM) with a bounded number of possible outcomes. This result generalizes
and supersedes the best approach previously known in the context of multi-party entanglement, which
was for the simulation of the m-partite GHZ state under projective measurements [1]. Our technique also
applies without the boundedness condition on the dimension of individual systems and the number of
possible outcomes per party, provided those parameters remain finite.

It would be preferable if we could eliminate the dependency of the expected number of bits of
communication on the number of possible measurement outcomes. Is perfect simulation possible at all
when that number is infinite, regardless of communication efficiency, a scenario in which our approach
cannot be applied? In the bipartite case, Serge Massar, Dave Bacon, Nicolas Cerf, and Richard Cleve
proved that classical communication can serve to simulate the effect of arbitrary measurements on
maximally entangled states in a way that does not require any bounds on the number of possible
outcomes [6]. More specifically, they showed that arbitrary POVMs on systems of n Bell states can be
simulated with an expectation of O(n2n) bits of communication. However, their approach exploits the
equivalence of this problem with a variant known as classical teleportation [5], in which one party has full
knowledge of the quantum state and the other has full knowledge of the measurement to be applied to
that state. Unfortunately, the equivalence between those two problems breaks down in a multipartite
scenario and there is no obvious way to extend the approach. We leave as an open question the
possibility of a simulation protocol in which the expected amount of communication would only
depend on the number of participants and the dimension of their simulated quantum systems.

Our work leaves several additional important questions open. Recall that our approach provides
a bounded amount on the expected communication required to perform exact remote sampling.
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The most challenging open question is to determine if it is possible to achieve the same goal with
a guaranteed bounded amount of communication in the worst case. If possible, this would certainly
require the participants to share ahead of time the realization of random variables, possibly even
continuous ones. Furthermore, a radically different approach would be needed since we had based
ours on the von Neumann rejection algorithm, which has intrinsically no worst-case upper bound
on its performance. This task may seem hopeless, but it has been shown to be possible for special
cases of entanglement simulation in which the remote parameters are taken from a continuum of
possibilities [3,8], despite earlier “proofs” that it is impossible [2].

A much easier task would be to consider other communication models, in which communication
is no longer restricted to being between a single leader and various custodians. Would there be an
advantage in communicating through the edges of a complete graph? Obviously, the maximum
possible savings in terms of communication would be a factor of 2 since any time one participant wants
to send a bit to some other participant, he can do so via the leader. However, if we care not only about
the total number of bits communicated, but also the time it takes to complete the protocol in a realistic
model in which each party is limited to sending and receiving a fixed number of bits at any given
time step, parallelizing communication could become valuable. We had already shown in Ref. [1] that
a parallel model of communication can dramatically improve the time needed to sample the m-partite
GHZ distribution. Can this approach be generalized to arbitrary remote sampling settings?

Finally, we would like to see applications for remote sampling outside the realm of quantum
information science.
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Abstract: The Scrooge distribution is a probability distribution over the set of pure states of a quantum
system. Specifically, it is the distribution that, upon measurement, gives up the least information
about the identity of the pure state compared with all other distributions that have the same density
matrix. The Scrooge distribution has normally been regarded as a purely quantum mechanical
concept with no natural classical interpretation. In this paper, we offer a classical interpretation of
the Scrooge distribution viewed as a probability distribution over the probability simplex. We begin
by considering a real-amplitude version of the Scrooge distribution for which we find that there is a
non-trivial but natural classical interpretation. The transition to the complex-amplitude case requires
a step that is not particularly natural but that may shed light on the relation between quantum
mechanics and classical probability theory.

Keywords: subentropy; GAP measure; accessible information

1. Introduction

In the early days of quantum information theory, the term “quantum communication” would
typically have been understood to refer to the transmission of classical information via quantum
mechanical signals. Such communication can be done in a sophisticated way, with the receiver
making joint measurements on several successive signal particles [1,2], or it can be done in a relatively
straightforward way with the receiver performing a separate measurement on each individual signal
particle. In both cases, but especially in the latter case, a particularly interesting quantity, given an
ensemble of quantum states to be used as an alphabet, is the ensemble’s accessible information. This is
the maximum amount of information that one can obtain about the identity of the state, on average,
by making a measurement on the system described by the specified ensemble. The average here is over
the outcomes of the measurement, and the maximization is over all possible measurements. In general,
accessible information can be defined for ensembles consisting of pure and mixed states, but in this
paper, we consider only pure-state ensembles.

Any ensemble {(|ψj⟩, pj)} of pure quantum states with their probabilities has a unique density
matrix. However, for any given density matrix ρ representing more than a single pure state, there are
infinitely many ensembles—“ρ-ensembles”—described by that density matrix. Thus, it is natural to
ask the following question: for a given density matrix ρ, what pure-state ρ-ensemble has the greatest
value of the accessible information and what pure-state ρ-ensemble has the lowest value? The former
question was answered by an early (1973) result in quantum information theory [3]—the pure-state
ρ-ensemble with the greatest accessible information is the one consisting of the eigenstates of ρ with
weights given by the eigenvalues. The latter question was answered in a 1994 paper [4], in which
the ρ-ensemble minimizing the accessible information was called the Scrooge ensemble, or Scrooge
distribution, since it is the ensemble that is most stingy with its information.

To see a simple example, consider a spin-1/2 particle whose density matrix ρ has the |↑⟩ and
|↓⟩ states as its eigenvectors, with eigenvalues λ↑ and λ↓. The eigenstate ensemble for ρ, that is, the
ρ-ensemble from which one can extract the most information, is the two-state ensemble consisting of
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Entropy 2018, 20, 619

the |↑⟩ state with probability λ↑ and the |↓⟩ state with probability λ↓. The optimal measurement in
this case—the measurement that provides the most information—is the up-down measurement, and
the amount of information it provides is equal to the von Neumann entropy of the density matrix:

I = S(ρ) = −(λ↑ ln λ↑ + λ↓ ln λ↓). (1)

On the other hand, the Scrooge ensemble for this density matrix is represented by a continuous
probability distribution over the whole surface of the Bloch sphere. If λ↑ is larger than λ↓, then this
continuous distribution is weighted more heavily towards the top of the sphere. We can write the
Scrooge distribution explicitly in terms of the variable x = (1+ cos θ)/2, where θ is the angle measured
from the north pole:

σ(x) =
2

λ↑λ↓
· 1
( x

λ↑
+ 1−x

λ↓

)3 . (2)

The probability density σ(x) is normalized in the sense that
∫ 1

0 σ(x)dx = 1 (the distribution is uniform
over the azimuthal angle). Again, this is the ensemble of pure states from which one can extract
the least information about the identity of the pure state, among all ensembles with the density
matrix ρ. Somewhat remarkably, the average amount of information one gains by measuring this
particular ensemble is entirely independent of the choice of measurement, as long as the measurement
is complete—that is, as long as each outcome is associated with a definite pure state. This amount of
information comes out to be a quantity called the subentropy Q of the density matrix:

I = Q(ρ) = −
λ2
↑ ln λ↑ − λ2

↓ ln λ↓

λ↑ − λ↓
. (3)

We give more general expressions for both the Scrooge ensemble and the subentropy in Section 2 below.
In recent years, the Scrooge distribution has made other appearances in the physics literature.

Of particular interest is the fact that this distribution has emerged from an entirely different line of
investigation, in which the system under consideration is entangled with a large environment and
the whole system is in a pure state. In that case, if one looks at the conditional pure states of the
original system relative to the elements of an orthogonal basis of the environment, one typically
finds that these conditional states are distributed by a Scrooge distribution [5–8]. In this context,
the distribution is usually called a GAP measure (Gaussian adjusted projected measure, the three
adjectives corresponding to the three steps by which the measure can be constructed). On another
front, the Scrooge distribution has been used to address the difficult problem of bounding the locally
accessible information when there is more than one receiver [9].

Meanwhile, the concept of subentropy, which originally arose (though without a name) in
connection with the outcome entropy of random measurements [10,11], has appeared not only in
problems concerning the acquisition of classical information [12–14], but also in the quantification
of entanglement [15] and the study of quantum coherence [16–19]. Many detailed properties
of subentropy have now been worked out, especially concerning its relation to the Shannon
entropy [20–24].

Though it is possible to devise a strictly classical situation in which subentropy arises [22],
the Scrooge distribution has generally been regarded as a purely quantum mechanical concept. It is,
after all, a probability distribution over pure quantum states. The aim of this paper is to provide a
classical interpretation of the Scrooge distribution, and in this way, to provide a new window into the
relation between quantum mechanics and classical probability theory.

We find that it is much easier to make the connection if we begin by considering not the standard
Scrooge distribution, but rather the analogous distribution one obtains for the case of quantum theory
with real amplitudes. In that case, the dimension of the set of pure states is the same as the dimension
of the associated probability simplex, and we find that there is a fairly natural distribution within
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classical probability theory that is essentially identical to the real-amplitude version of the Scrooge
distribution. This distribution arises as the solution to a certain classical communication problem that
we describe in Section 4.

With this interpretation of the real-amplitude Scrooge distribution in hand, we ask how the
classical communication scenario might be modified to arrive at the original Scrooge ensemble for
standard, complex-amplitude quantum theory. As we will see, the necessary modification is not
particularly natural, but it is simple.

Thus, we begin in Sections 2 and 3 by reviewing the derivation of the Scrooge distribution and
by working out the analogous distribution for the case of real amplitudes. Then, in Section 4, we set
up and analyze the classical communication problem that, as we show in Section 5, gives rise to a
distribution that is equivalent to the real-amplitude Scrooge distribution. In Section 6, we modify the
classical communication scenario to produce the standard, complex-amplitude Scrooge distribution.
Finally, we summarize and discuss our results in Section 7.

2. The Scrooge Distribution

There are several ways in which one can generate the Scrooge distribution. In this section, we
review the main steps of the derivation given in Ref. [4], which applies to a Hilbert space of finite
dimension. (The distribution can also be defined for an infinite-dimensional Hilbert space [5–8].)
We begin by setting up the problem.

We imagine the following scenario. One participant, Alice, prepares a quantum system with an
n-dimensional Hilbert space in a pure state |x⟩ and sends it to Bob. Bob then tries to gain information
about the identity of this pure state. Initially, Bob’s state of knowledge is represented by a probability
density σ(x) over the set of pure states. (The symbol x represents a multi-dimensional parameterization
of the set of pure states.) Bob makes a measurement on the system and thereby gains information.
The amount of information he gains may depend on the outcome he obtains, so we are interested in
the average amount of information he gains about x, the average being over all outcomes.

The standard quantification of Bob’s average gain in information is the Shannon mutual
information between the identity of the pure state and the outcome of the measurement. We can
express this mutual information in terms of two probability functions: (i) the probability p(j|x) of the
outcome j when the state is |x⟩, and (ii) the overall probability p(j) =

∫
σ(x)p(j|x)dx of the outcome j

averaged over the whole ensemble. In terms of these functions, the mutual information is

I = −∑
j

p(j) ln p(j) +
∫

σ(x)
[
∑

j
p(j|x) ln p(j|x)

]
dx. (4)

The accessible information of the ensemble defined by σ(x) is the maximum value of the mutual
information I, where the maximum is taken over all possible measurements.

Again, for a given density matrix ρ, the Scrooge distribution is defined to be the pure-state
ρ-ensemble with the lowest value of the accessible information. One can obtain the Scrooge distribution
via the following algorithm [4].

We start by recalling the concept of “ρ distortion.” Consider for now a finite ensemble {(|ψi⟩, pi)}
of pure states (i = 1, . . . , m) whose density matrix is the completely mixed state:

m

∑
i=1

pi|ψi⟩⟨ψi| =
1
n

I. (5)

Let |ψ̃i⟩ be the subnormalized state vector |ψ̃i⟩ =
√pi|ψi⟩, so that

m

∑
i=1

|ψ̃i⟩⟨ψ̃i| =
1
n

I. (6)
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Under ρ distortion, each vector |ψ̃⟩ is mapped to another subnormalized vector |φ̃⟩ defined by

|φ̃i⟩ =
√

nρ|ψ̃i⟩. (7)

Note that the density matrix formed by the |φ̃i⟩’s is ρ:

m

∑
i=1

|φ̃i⟩⟨φ̃i| =
√

nρ

(
1
n

I
)
√

nρ = ρ. (8)

In terms of normalized vectors, the new ensemble is {(|φi⟩, qi)}, with the new probabilities qi equal to

qi = ⟨φ̃i|φ̃i⟩ = npi⟨ψi|ρ|ψi⟩. (9)

In this way, any ensemble having the completely mixed density matrix can be mapped to a “ρ distorted”
ensemble with a density matrix ρ.

The Scrooge ensemble is a continuous ensemble, not a discrete one, but the concept of ρ distortion
can be immediately extended to the continuous case, and the Scrooge distribution can be easily
characterized in those terms; it is the ρ distortion of the uniform distribution over the unit sphere in
Hilbert space. The uniform distribution is the unique probability distribution over the set of pure
states that is invariant under all unitary transformations.

Let us see how the ρ distortion works out in this case. First, for the uniform distribution, it is
convenient to label the parameters of the pure states by y instead of x, so that we can reserve x for the
Scrooge distribution. Let τ(y) be the probability density over y that represents the uniform distribution
over the unit sphere (a particular parameterization will be specified shortly). In terms of normalized
states, a ρ distortion maps each pure state |y⟩ into the pure state |x⟩ defined by

|x⟩ =
√

ρ|y⟩
√
⟨y|ρ|y⟩

. (10)

This mapping defines x as a function of y: x = f (y). (We write f explicitly below.) The resulting
probability density over x is obtained from the continuous version of Equation (9).

σ(x) = nτ(y)⟨y|ρ|y⟩J (y/x). (11)

Here, J (y/x) is the Jacobian of the y variables with respect to the x variables. On the right-hand side
of Equation (11), each y is interpreted as f−1(x), so that we get an expression that depends only on x.

To get an explicit expression for the Scrooge distribution—that is, an explicit expression for the
probability density σ(x)—we need to choose a specific set of parameters labeling the pure states. We
choose the same set of parameters to label both the uniform distribution (where we call the parameters
y) and the Scrooge distribution (where we call the parameters x). We define our parameters relative to
a set of normalized eigenstates |ej⟩ of the density matrix ρ. A general pure state |x⟩ can be written as

|x⟩ =
n

∑
j=1

aje−iθj |ej⟩, (12)

where each aj is a non-negative real number, and each phase θj runs from zero to 2π. For definiteness,
employing the freedom to choose an overall phase, we define θn to be zero. We take x (or y) to consist
of the following parameters: the squared amplitudes xj = a2

j for j = 1, . . . , n − 1, and the phases θj for
j = 1, . . . , n − 1. This set of 2n − 2 parameters uniquely identifies any pure state. Later, we also use the
symbol xn = 1 − x1 − · · ·− xn−1. Note that the xjs are the probabilities of the outcomes of a particular
orthogonal measurement associated with the eigenstates of ρ.
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In terms of these parameters, the uniform distribution over the unit sphere takes a particularly
simple form: it is the product of a uniform distribution over the phases and a uniform distribution
over the (n − 1)-dimensional probability simplex whose points are labeled by {x1, . . . , xn−1} [25].
The Scrooge distribution will likewise be a product and will be uniform over the phases but will
typically have a certain bias over the probability simplex. Because the phases are always independent
and uniformly distributed in the cases we consider, we omit the phases in our distribution expressions,
writing the probability densities as functions of {x1, . . . , xn−1} (or {y1, . . . , yn−1}).

Our aim now is to find explicit expressions for each of the factors appearing on the right-hand side
of Equation (11). Since the uniform distribution over the unit sphere induces a uniform distribution
over the probability simplex, the corresponding probability density τ(y) is a constant function, with
the value of the constant being (n − 1)! as required by normalization:

(n − 1)!
∫ 1

0

∫ 1−y1

0
· · ·

∫ 1−y1−···−yn−2

0
dyn−1 · · · dy2dy1 = 1. (13)

The function f (y) defined by the ρ-distortion map, Equation (10), is given by

xj =
λjyj

λ1y1 + · · ·+ λnyn
, j = 1, . . . , n − 1, (14)

where the λj’s are the eigenvalues of the density matrix ρ. One finds that the inverse map is

yj =
xj/λj

x1/λ1 + · · ·+ xn/λn
, (15)

and the Jacobian is

J (y/x) =
1

λ1 · · · λn
· 1
( x1

λ1
+ · · ·+ xn

λn

)n . (16)

Meanwhile, the factor ⟨y|ρ|y⟩ can be written as

⟨y|ρ|y⟩ = λ1y1 + · · ·+ λnyn =
1

x1
λ1

+ · · ·+ xn
λn

. (17)

By substituting the expressions from Equations (16) and (17) into Equation (11), we finally arrive at the
probability density defining the Scrooge distribution:

σ(x) =
n!

λ1 · · · λn
· 1
( x1

λ1
+ · · ·+ xn

λn

)n+1 . (18)

This probability density is normalized in the sense that the integral over the probability simplex
is unity:

∫ 1

0

∫ 1−x1

0
· · ·

∫ 1−x1−···−xn−2

0
σ(x)dxn−1 · · · dx2dx1 = 1. (19)

Now, how do we know that the distribution given by Equation (18) minimizes the amount of
accessible information? First, one can show that for this distribution the mutual information I is
independent of the choice of measurement as long as the measurement is complete [4]. So, one can
compute the value of the accessible information by considering any such measurement, and the easiest
one to consider is the orthogonal measurement along the eigenstates. The result is

accessible information = −
n

∑
k=1

(

∏
l ̸=k

λk
λk − λl

)
λk ln λk, (20)
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which defines the subentropy Q. One can also show that for any ρ-ensemble, the average mutual
information over all complete orthogonal measurements is equal to Q, which implies that Q is always
a lower bound on the accessible information. Since the Scrooge distribution achieves the value Q,
it achieves the minimum possible accessible information among all ρ-ensembles.

3. The Real-Amplitude Analog of the Scrooge Distribution

Though our own world is described by standard quantum theory with complex amplitudes,
we can also consider an analogous, hypothetical theory with real amplitudes. A pure state in the
real-amplitude theory is represented by a real unit vector, and a density matrix is represented by a
symmetric real matrix with non-negative eigenvalues and unit trace. Time evolution in this theory is
generated by an antisymmetric real operator in place of the antihermitian operator iH.

The question considered in the preceding section can also be asked in regard to the real-amplitude
theory. Given a density matrix ρ, we ask what ρ-ensemble has the smallest value of accessible
information. It turns out that essentially all of the methods used in the preceding section continue
to work in the real case. Again one begins with the uniform distribution over the unit sphere of
pure states, and again, one obtains the Scrooge ensemble (in this case the real-amplitude Scrooge
ensemble) via ρ distortion. The arguments leading to the conclusion that the ensemble produced in
this way minimizes the accessible information work just as well in the real-amplitude case as in the
complex-amplitude case.

The one essential difference between the two cases lies in the form of the initial probability density
τ(y) that is associated with the uniform distribution over the unit sphere in Hilbert space. Whereas in
the complex case the induced distribution over the probability simplex is uniform, in the real case,
the induced distribution over the probability simplex is more heavily weighted towards the edges
and corners.

We can see an example by considering the case with n = 2. Instead of starting with a uniform
distribution over the surface of the Bloch sphere, one starts with a uniform distribution over the unit
circle in a two-dimensional real vector space. Let γ be the angle around this circle measured from
some chosen axis (once a density matrix has been specified, we will take this axis to be along one
of the eigenstates of the density matrix). Then, γ is initially uniformly distributed. The parameter
analogous to y1 of the preceding section is y = sin2 γ. Note that y runs from 0 to 1 as γ runs from 0 to
π/2. The initial probability density τr(y) is therefore obtained from

τr(y)dy = (2/π)dγ, (21)

which leads to
τr(y) =

1
π

· 1√
y(1 − y)

(22)

(the subscript r represents “real”). This is in contrast to the function τ(y) = 1 that would apply in the
complex-amplitude case. We see that in the real case, τr(y) is largest around y = 0 and y = 1.

For n dimensions, we take as our parameters specifying a pure state (i) the first n − 1 probabilities
yj (j = 1, . . . , n − 1) of the outcomes of a certain orthogonal measurement (which we will choose to be
the measurement along the eigenvectors of the given density matrix), and (ii) a set of discrete phase
parameters (each of them taking the values ±1), which will always be independently and uniformly
distributed and therefore suppressed in our expressions for the probability densities.

For the uniform distribution over the unit sphere in the n-dimensional real Hilbert space, one can
show that the induced distribution over the parameters (y1, . . . , yn−1) is given by [26]

τr(y) =
Γ(n/2)

πn/2 · 1
√y1 · · · yn

, (23)
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where yn = 1 − y1 − · · ·− yn−1. This probability density is normalized over the probability simplex,
as in Equation (19):

∫ 1

0

∫ 1−y1

0
· · ·

∫ 1−y1−···−yn−2

0
τr(y)dyn−1 · · · dy2dy1 = 1. (24)

The general expression for σ(x) given in Equation (11) remains valid in the real case, as do
Equations (15)–(17) for the various factors in Equation (11). Again, the one difference is in τr(y), for
which we now use Equation (23). By combining these ingredients, we arrive at our expression for the
real-amplitude Scrooge ensemble:

σr(x) =
nΓ(n/2)

πn/2
√

λ1 · · · λn
√

x1 · · · xn
( x1

λ1
+ · · ·+ xn

λn

) n
2 +1 , (25)

where, as before, the λj’s are the eigenvalues of the density matrix whose Scrooge distribution is
being computed.

Though Equation (25) was derived as a distribution over the set of pure states in real-amplitude
quantum theory, it reads as a probability distribution over the (n − 1)-dimensional probability simplex
for a classical random variable with n possible values. One can therefore at least imagine that there
might be a classical scenario in which this distribution is natural. In the following section, we identify
such a scenario.

4. Communicating with Dice

Ref. [26] imagined the following classical communication scenario. Alice is trying to convey to
Bob the location of a point in an (n − 1)-dimensional probability simplex. To do this, she constructs
a weighted n-sided die that, for Bob, has the probabilities corresponding to the point that Alice is
trying to convey. She then sends the die to Bob, who rolls the die many times in order to estimate the
probabilities of the various possible outcomes. However, the information transmission is limited in that
Bob is allowed only a fixed number of rolls—let us call this number N (perhaps the die automatically
self-destructs after N rolls). So, Bob will always have an imperfect estimate of the probabilities that
Alice is trying to convey. Alice and Bob are allowed to choose in advance a discrete set of points
in the probability simplex—these are the points representing the set of signals Alice might try to
send—and they choose this set of points, along with their a priori weights, so as to maximize the
mutual information between the identity of the point being conveyed and the result of Bob’s rolls of
the die. The main result of that paper was that in the limit of a large N, the optimal distribution of
points in the probability simplex approximates the continuous distribution over the simplex expressed
by the following probability density:

τ̂(y) =
Γ(n/2)

πn/2 · 1
√y1 · · · yn

, (26)

where the yjs are the probabilities (we use a hat in our labels of probability densities that arise in a
classical context). This result is interesting because it is the same probability density as the one induced
by the uniform distribution over the unit sphere in real Hilbert space (Equation (23) above). Thus, in a
world based on real-amplitude quantum theory as opposed to the complex-amplitude theory, there is
a sense in which one could say that nature optimizes the transfer of information.

That paper—and closely related papers [27,28]—deal only with the uniform distribution over
the unit sphere, not with non-trivial Scrooge distributions. In the present section, we consider a
modification of the above communication scenario, and in the next section, we show that this modified
scheme yields the real-amplitude Scrooge distribution.

A natural way to generalize the above communication scheme is this: let the allowed number
N of rolls of the die vary from one die to another (that is, some dice last longer than others before
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they self-destruct). Now, once N is allowed to vary, it makes sense to let N itself be another random
variable that conveys information. We are thus led to consider the following scenario.

Alice is trying to convey to Bob an ordered n-tuple of non-negative real numbers (M1, . . . , Mn)
(Alice and Bob agree in advance on a specific set of such ordered n-tuples, any one of which Alice
might try to convey). Let us refer to such an n-tuple as a “signal.” In order to convey her signal, Alice
sends Bob an n-sided die that Bob then begins to roll over and over, keeping track of the number of
times each outcome occurs. Nj is the number of times that the outcome j occurs. At some point, the die
self-destructs. Alice has constructed both the weighting of the die and the self-destruction mechanism
so that the average value of Nj is Mj.

However, both the rolling of the die and its duration are probabilistic, and Alice cannot completely
control either the individual numbers Nj or their sum. For any given signal (M1, . . . , Mn), we assume
that each Nj is distributed independently according to a Poisson distribution with mean value Mj:

P(N1, . . . , Nn|M1, . . . , Mn) =
n

∏
j=1

e−Mj
M

Nj
j

Nj!
. (27)

This is equivalent to assuming that the total number N of rolls of the die is Poisson distributed with
a mean value of M = M1 + · · · + Mn and that for a given total number of rolls, the numbers of
occurrences of the individual outcomes are distributed according to a multinomial distribution with
weights Mj/M. That is, we are assuming the usual statistics for rolling a die, together with a Poisson
distribution for the total number of rolls (another model we could have used is to have Alice send Bob
a radioactive sample that can decay in n ways and that Bob is allowed to observe with detectors for a
fixed amount of time).

To make the problem interesting, and to keep Alice from being able to send Bob an arbitrarily
large amount of information in a single die, limits are placed on the sizes of M1, . . . , Mn. This is done
by imposing, for each j, an upper bound Mj (script M) on the expectation value of the number of
times the j outcome occurs. This expectation value is an average over all the possible signals that Alice
might send.

We also need to say in what sense Alice and Bob are optimizing their communication. There are
a number of reasonable options for doing this—e.g., we could say they maximize the mutual
information, or minimize the probability of error for a fixed number of signals—but it is likely
that many of these formulations will be essentially equivalent when the values of Mj become
very large. Here, we take a simple, informal approach. We say that, in order to make the various
signals distinguishable from each other, Alice and Bob choose their n-tuples (M1, . . . , Mn) so that
neighboring signals, say (M1, . . . , Mn) and (M1 + ∆M1, . . . , Mn + ∆Mn), are at least a certain distance
from each other, and we use the Fisher information metric to measure distance. Specifically, we require
the Fisher information distance between the probability distributions P(N1, . . . , Nn|M1, . . . , Mn)
and P(N1, . . . , Nn|M1 + ∆M1, . . . , Mn + ∆M1) to be greater than or equal to a specified value dmin
(or, equivalently for small ∆Mj/Mj, we require the Kullback–Leibler divergence to be at least
(1/2)d2

min). For the Poisson distribution and for small values of the ratios ∆Mj/Mj, this condition
works out to be

n

∑
j=1

(∆Mj)
2

Mj
≥ d2

min. (28)

For our purposes the exact value of dmin is not important. We also assume that the various signals
have equal a priori probabilities. This is a natural choice if one wants to convey as much information as
possible. Under these assumptions, Alice and Bob’s aim is to maximize the number of distinct signals.

The analysis will be much simpler if we parameterize each die not by (M1, . . . , Mn), but rather by
the variables

αj =
√

Mj, j = 1, . . . , n. (29)
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Then, for neighboring signals we can write

∆αj =
1

2
√

Mj
∆Mj, (30)

so that the condition in Equation (28) becomes

n

∑
j=1

(∆αj)
2 ≥ 1

4
d2

min. (31)

That is, in the space parameterized by α⃗ = (α1, . . . , αn), we want the points representing Alice’s signals
to be evenly separated from each other. Thus Alice’s signals will be roughly uniformly distributed
over some region of α⃗-space—she wants to pack in as many signals as possible without exceeding the
bounds Mj on the expectation values of the Njs. In what follows, we approximate this discrete but
roughly uniform distribution of the values of α⃗ by a continuous probability distribution. The probability
density is zero outside the region where Alice’s possible signals lie; inside that region, it has a constant
value of 1/V, where V is the volume of the region.

The communication problem then becomes a straightforward geometry problem—within the
“positive” section of α⃗-space (that is, the section in which each αj is non-negative), the aim is to find the
region R of largest volume that satisfies the constraints

1
VR

∫

R
α2

j d⃗α = Mj, j = 1, . . . , n, (32)

where VR is the volume of R. We maximize the volume because Alice’s signals have a fixed packing
density within R; thus the larger the volume, the more signals Alice has at her disposal.

It is not hard to see that the solution to this geometry problem is to make region R the positive
section of a certain ellipsoid centered at the origin. To see this, the conditions (32) can be written as

∫

R
α2

j d⃗α = Mj

∫

R
d⃗α, j = 1, . . . , n. (33)

Now, let β j = αj

/√
Mj. In terms of the β js, the above conditions become

∫

R′
β2

j dβ⃗ =
∫

R′
dβ⃗, j = 1, . . . , n, (34)

where R′ is the region of β⃗-space corresponding to the region R of α⃗-space. In particular, the equation
obtained by summing these n conditions must also be true:

∫

R′
β2 dβ⃗ = n

∫

R′
dβ⃗, (35)

where β2 = β2
1 + · · ·+ β2

n. That is, the average squared distance from the origin over region R′ must
be equal to n. The maximum volume region R′ satisfying this one condition is the positive section of a
sphere, and one can work out that the radius of the sphere must be

√
n + 2. Moreover, that region also

satisfies all of the conditions (34). So, that same region is the maximum volume region that satisfies
those conditions as well. Going back to the αj’s, we see that the maximum volume region satisfying
the conditions (32) is the positive section of an ellipsoid, with semi-axis lengths

αmax
j =

√
(n + 2)Mj. (36)

Thus, the strategy that Alice and Bob adopt is to choose a set of closely packed signals with
some minimum separation in α⃗-space that occupies the positive section of an ellipsoid centered at the
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origin. Again, in this paper, we treat this discrete but roughly uniform distribution of signals as if it
were actually uniform. This approximation becomes more and more reasonable as the values of the
Mjs increase.

5. A Distribution over the Probability Simplex

So far, we have not made any connection between our communication problem and the
real-amplitude Scrooge distribution. We do this now by seeing how the uniform distribution over the
ellipsoid in α⃗-space induces a certain probability distribution over the (n − 1)-dimensional probability
simplex for Alice’s n-sided die. We define this probability distribution as follows.

Let us imagine many rounds of communication from Alice to Bob: she has sent him many
dice for which the expected numbers of occurrences of the various outcomes, (M1, . . . , Mn), cover a
representative range of values: the corresponding values of α⃗ are distributed fairly uniformly over
the region R in α⃗-space. Bob has rolled each of these dice as many times as it can be rolled. Now
consider a small region of the probability simplex, say the region S(x, ∆x) for which the probability of
the jth outcome lies between xj and xj + ∆xj for j = 1, . . . , n − 1. Some of the dice Alice has sent to Bob
have probabilities lying in this region. The weight we want to attach to the region S(x, ∆x) is, roughly
speaking, the fraction of the total number of rolls that came from dice in this region. Note that for a die
at location α⃗, the expectation value of the number of times it will be rolled is α2 = α2

1 + · · ·+ α2
n. So, we

multiply the density of signals by the factor α2 to get the “density of rolls.” These considerations
lead us to the following definition of the weight σ̂(x)dx1 · · · dxn−1 that we assign to the infinitesimal
region S(x, dx):

σ̂(x)dx1 · · · dxn−1 =

∫
C(x,dx) α2d⃗α
∫
R α2d⃗α

. (37)

Here, C(x, dx) is the cone (within the region R) representing dice for which the probabilities of the
outcomes lie in S(x, dx):

C(x, dx) =
{

α⃗ ∈ R
∣∣∣xj ≤

α2
j

α2 ≤ xj + dxj

}
. (38)

Our use of the weighting factor α2 is reminiscent of the “adjustment” stage in the construction of the
GAP measure in Refs. [5–8], and the integration over C(x, dx) is reminiscent of the projection stage of
that same construction. We can express σ̂(x) more formally as

σ̂(x) =

∫
R

[
∏n−1

j=1 δ
(

xj −
α2

j
α2

)]
α2d⃗α

∫
R α2d⃗α

, (39)

where δ is the Dirac delta function.
It is not difficult to obtain an explicit expression for σ̂(x) starting with Equation (39). For example,

in the integral appearing in the numerator of that equation, one can use the integration variables
s1, . . . , sn−1 and α, where sj = αj/α. Then, d⃗α becomes (1/sn)αn−1ds1 . . . dsn−1dα, and the integral
becomes straightforward. Here, though, we take a different path to the same answer, starting with
Equation (37). This latter approach turns out to be more parallel to our derivation of the Scrooge
distribution in the quantum mechanical setting.

First, note that the numerator in Equation (37) can be written as
∫

C(x,dx)
α2d⃗α =

n
n + 2

α2
max · (volume of C(x, dx)), (40)

where αmax is the largest value of α over all points in R satisfying α2
j /α2 = xj for j = 1, . . . , n. We get

Equation (40) by writing d⃗α as kαn−1dα, with some constant k, for the purpose of integrating over the
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cone. We can find the value of αmax by finding the point of intersection between (i) the ellipsoid that
defines the boundary of R, given by

α2
1

(n + 2)M1
+ · · ·+ α2

n
(n + 2)Mn

= 1, (41)

and (ii) the line parameterized by α and defined by the equations

αj =
√

xjα, j = 1, . . . , n. (42)

The value of α at this intersection point is

αmax =

√
n + 2

x1
M1

+ · · ·+ xn
Mn

. (43)

We can therefore rewrite Equation (40) as
∫

C(x,dx)
α2d⃗α =

n
x1
M1

+ · · ·+ xn
Mn

· (volume of C(x, dx)). (44)

Meanwhile, it follows from Equation (32) that the denominator in Equation (37) is
∫

R
α2d⃗α = (M1 + · · ·+Mn)VR. (45)

Our next step is to compare σ̂(x) to the analogous distribution τ̂(y) induced by the uniform
distribution of the vector β⃗—the same β⃗ as in Section 4—over its domain R′ (recall that R′ is the
positive section of a sphere):

τ̂(y)dy1 · · · dyn−1 =

∫
C ′(y,dy) β2dβ⃗
∫
R′ β2dβ⃗

. (46)

Here, C ′(y, dy) is the cone in R′ for which yj ≤ (β j/β)2 ≤ yj + dyj. We can immediately write down an
explicit expression for τ̂(y). It is the same as the distribution (23) on the probability simplex induced by
the uniform distribution over the unit sphere in the n-dimensional real Hilbert space—the extra radial
dimension represented by β has no bearing on the distribution over the probability simplex. Thus,

τ̂(y) =
Γ(n/2)

πn/2 · 1
√y1 · · · yn

. (47)

The expression for σ̂(x) is determined by finding the factors by which the numerator and
denominator in Equation (46) change when the sphere in β⃗-space is stretched into an ellipsoid in
α⃗-space. In this transformation (in which αj = β j

√
Mj), the relation between y (in Equation (46)) and x

(in Equation (37)) is given by y = g(x), where g takes the point (α2
1/α2, . . . , α2

n−1/α2) in the probability
simplex to the point (β2

1/β2, . . . , β2
n−1/β2).

Essentially, any appearance of Mj in our expression (37) for σ̂(x)dx1 . . . dxn−1 becomes a 1 in
Equation (46). Thus, according to Equation (44), when we transform from β⃗ to α⃗, the numerator in
Equation (46) is multiplied by

n
x1
M1

+···+ xn
Mn

· (volume of C(x, dx))

n · (volume of C ′(y, dy))
, (48)
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and according to Equation (45), in this same transformation, the denominator in Equation (46) is
multiplied by

(M1 + · · ·+Mn)VR
nVR′

. (49)

For both the transitions C ′(y, dy) → C(x, dx) and R′ → R, the volume increases by a factor of√
M1 · · ·Mn. So, these volume factors cancel out. By inserting the other factors from Equations (48)

and (49), it is found that

σ̂(x) = τ̂(y)J (y/x)
n(

x1
M1

+ · · ·+ xn
Mn

)
(M1 + · · ·+Mn)

, (50)

where J (y/x) is the Jacobian of y with respect to x.
Let us now write y explicitly in terms of x:

yj =
β2

j

β2 =

α2
j

Mj

α2
1

M1
+ · · ·+ α2

n
Mn

=

xj
Mj

x1
M1

+ · · ·+ xn
Mn

. (51)

From this, we can get the Jacobian (very much like the one in Equation (16)):

J (y/x) =
1

M1 · · ·Mn
· 1
( x1
M1

+ · · ·+ xn
Mn

)n . (52)

By inserting the results of Equations (51) and (52) into Equation (50), we arrive at

σ̂(x) =
nΓ(n/2)

πn/2M
√
M1 · · ·Mn

√
x1 · · · xn

( x1
M1

+ · · ·+ xn
Mn

) n
2 +1 , (53)

where M = M1 + · · ·+Mn. This is essentially the same as the expression (25) obtained earlier as the
real-amplitude Scrooge distribution. The agreement can be made more explicit by defining the ratios
λj = Mj/M, in which case Equation (53) becomes exactly identical to Equation (25), with these λjs
playing the role of the eigenvalues of the density matrix.

Note that in the above derivation, we see an analog of ρ distortion. The stretching of the sphere in
β⃗-space into an ellipsoid in α⃗-space is very much like ρ distortion, though in place of the notion of a
density matrix, we have a uniform distribution within the sphere or ellipsoid.

It may seem that our communication set-up, in which Alice sends a die equipped with a
probabilistic self-destruction mechanism, is rather artificial. However, the mathematics is actually
fairly simple and natural. We are considering a set of Poisson-distributed random variables and are
basically constructing a measure on the set of values of these variables based on distinguishability
(this is the measure derived from the Fisher information metric). That measure then induces a measure
on the probability simplex which agrees with the real-amplitude Scrooge distribution.

6. A Classical Interpretation of the Complex-Amplitude Scrooge Distribution

We now show how to modify the above classical communication scenario to arrive at the original,
complex-amplitude Scrooge distribution.

Not surprisingly, we begin by doubling the number of sides of Alice’s dice. Let the outcomes be
labeled 1a, 1b, 2a, 2b, . . . , na, nb. The communication scheme is exactly as it was in Section 4, except that
instead of placing an upper bound on the expectation value of the number of times each individual
outcome occurs, the ja and jb outcomes are grouped together and an upper bound Mj is placed on
the expectation value of the total number of times the two j outcomes occur. This is done for each
j = 1, . . . , n. Again, Alice and Bob are asked to maximize the number of distinguishable signals
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under this constraint, where “distinguishable” again means having a Fisher-distance separation of at
least dmin.

As before, it is easiest to view the problem in α⃗-space; let us label the variables in the space αja
and αjb. We now look for the maximum-volume region R of the positive section of α⃗-space satisfying
the constraints

1
VR

∫

R
(α2

ja + α2
jb)d⃗α = Mj, j = 1, . . . , n. (54)

In terms of the variables β ja = αja

/√
Mj and β jb = αjb

/√
Mj, the constraints become

1
VR′

∫

R′
(β2

ja + β2
jb)dβ⃗ = 1, j = 1, . . . , n, (55)

where R′ is the region in β⃗-space corresponding to R. Upon summing these n constraints, the equation

1
VR′

∫

R′
β2dβ⃗ = n (56)

is obtained, where β2 = ∑n
j=1(β2

ja + β2
jb). Maximizing the volume under this constraint again gives a

sphere in β⃗-space, which becomes an ellipsoid in α⃗-space (restricted to the positive section).
Continuing as before, one finds that the induced probability distribution over the

(2n − 1)-dimensional probability simplex associated with a 2n-sided die is the analog of Equation (53),
the n values M1, . . . ,Mn now being replaced by the 2n values M1/2,M1/2, . . . ,Mn/2,Mn/2.

σ̂ab(x) =
nΓ(n)

πnλ1 · · · λn
√

x1ax1b · · · xnaxnb
( x1a+x1b

λ1
+ · · ·+ xna+xnb

λn

)n+1 , (57)

where λj = Mj/M. Here, xja and xjb are the probabilities of the outcomes ja and jb, and x refers to
the point (x1a, x1b, . . . , x(n−1)a, x(n−1)b, xna) in the (2n − 1)-dimensional probability simplex (the value
of xnb is determined by the requirement that the probabilities sum to unity).

Finally, a distribution over the (n − 1)-dimensional probability simplex is obtained by ignoring
the difference between the outcomes ja and jb. We can imagine an observer who, unlike Alice and Bob,
cannot see the a and b. For this “ab-blind” observer, the distribution of Equation (57) looks like the
following distribution over the (n − 1)-dimensional probability simplex:

σ̂(x) =
∫ n−1

∏
j=1

δ[xj − (xja + xjb)]σ̂ab(x)dx1adx1b · · · dxna. (58)

Here, δ is the Dirac delta function and the integral is over the (2n− 1)-dimensional probability simplex.
The integral in Equation (58) is straightforward, and it can be found that

σ̂(x) =
n!

λ1 · · · λn
· 1
( x1

λ1
+ · · ·+ xn

λn

)n+1 . (59)

This is the same as the original Scrooge distribution of Equation (18). The role of the eigenvalues of the
density matrix is now played by the set of values λj = Mj/(M1 + · · ·+Mn), where, again, Mj is
the maximum allowed expectation value of the number of times that the outcomes ja and jb occur.

7. Discussion

In this paper we have shown how the real-amplitude version of the Scrooge distribution emerges
naturally from a classical communication scenario in which information is transmitted via the values
of several random variables Nj. Essentially, the real-amplitude Scrooge distribution, regarded as
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a probability distribution over the probability simplex, is derived from an underlying distribution
based on distinguishability. Our analysis includes a transformation that plays something like the role
of a ρ distortion: in place of a density matrix, what is distorted is a distribution over the space of
potential signals.

In order to get the original complex-amplitude Scrooge distribution for dimension n, we needed
to consider a case with twice as many random variables, grouped into pairs, and then we imagined an
observer for whom only the sum of the variables within each pair was observable.

The reader will probably have noticed that the role played by the concept of information in our
classical communication problem seems to be exactly the opposite of the role it plays in the quantum
origin of the Scrooge distribution. In quantum theory, the Scrooge distribution is the distribution
over pure states that, upon measurement, provides an observer with the least possible amount of
information. In contrast, in our classical communication scenario, the Scrooge distribution emerges
from a requirement that Alice convey as much information as possible to Bob. What is common to
both cases is that the information-based criterion favors a distribution that is highly spread out over the
probability simplex. In the quantum case, a distribution spread out over many non-orthogonal states
tends to make it difficult for an observer to gain information about the state. In the classical case, Alice
and Bob want to spread their signals as widely as possible over the space of possibilities in order to
maximize the number of distinguishable signals. Thus, though the two scenarios are quite different,
their extremization criteria have similar effects.

An intriguing aspect of our classical scenario is that the probability simplex is not itself taken as the
domain in which the problem is formulated. Instead, the problem is formulated in terms of the number
of times each outcome occurs. The distribution over the probability simplex is a secondary concept,
being derived from a more fundamental distribution over the space of the numbers of occurrences of
the outcomes. That is, the Mj values are more fundamental in the problem than the probabilities of the
outcomes, which are defined in terms of the Mjs by the equation xj = Mj/M. In this specific respect,
then, the effort to find a classical interpretation of the Scrooge distribution seems to lead us away from
the models studied in Refs. [26,28], in which the set of frequencies of occurrence of the measurement
outcomes was the only source of information considered.

It is interesting to ask whether this feature of our scenario is necessary in order to get the
Scrooge distribution classically. To address this question, in Appendix A we consider another classical
communication problem, in which we impose a separate restriction for each outcome as in Section 4,
but now with Alice’s signals consisting purely of probabilities (which are estimated by Bob through
the observed frequencies of occurrence). For simplicity, we restrict our attention to the most basic case,
in which there are only two possible outcomes—so Alice’s die is now a coin to be tossed—and we are
aiming just for the real-amplitude Scrooge distribution as opposed to the complex-amplitude version.
We find that the resulting probability distribution over the probability simplex is not of the same
form as the real-amplitude Scrooge distribution. This result can be taken as one bit of evidence that
it is indeed necessary to go beyond the probability simplex and to work in a space of one additional
dimension in order to obtain the Scrooge distribution classically. In this connection, it is worth noting
that something very similar has been seen in research on subentropy—certain simple relations between
subentropy and the Shannon entropy can be obtained only by lifting the normalization restriction that
defines the probability simplex and working in the larger space of unnormalized n-tuples [21,23].

Finally, one might wonder about the potential significance of our need to invoke an “ab-blind”
observer in order to obtain the complex-amplitude Scrooge distribution. It is well known that the
number of independent parameters required to specify a pure quantum state (of a system with a
finite-dimensional Hilbert space) is exactly twice the number of independent probabilities associated
with a complete orthogonal measurement on the system. Here, we are seeing another manifestation of
this factor of two: the classical measurement outcomes, corresponding to the sides of a rolled die, have
to be grouped into pairs, and we need to imagine an observer incapable of distinguishing between
the elements of any pair. In our actual quantum world, one can reasonably ask whether there is any
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interesting sense in which we ourselves are “ab-blind.” This question, though, lies well beyond the
scope of the present paper.
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Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Communicating through Probabilities

Here, we consider a classical communication problem based directly on probabilities, as opposed
to being based on the number of times each outcome occurs. We restrict our attention to the case of
two outcomes, which we imagine as “heads” and “tails” for a tossed coin. The question is whether the
real-amplitude Scrooge distribution for n = 2 can be obtained in this way.

Alice is trying to convey to Bob the identity of a point in the one-dimensional probability
simplex (not the two-dimensional space with axes labeled “number of heads” and “number of tails”).
The “simplex” in this case is just a line segment, and the points of the simplex are labeled by the
probability x of heads occurring (the probability of tails occurring is 1 − x). Alice conveys her signal by
sending Bob a coin with weights (x, 1 − x). Bob tosses the coin in order to estimate the value of x, but
he is allowed to toss it only N times, at which point the coin will self-destruct. Alice chooses a set of
points in the probability simplex in advance that will serve as her potential signals, and she provides
Bob with the list of these points. Alice also chooses a function N(x) that determines how many times
Bob will be able to toss the coin if the coin’s weights are (x, 1 − x). However, Bob does not know the
function N(x) and is not allowed to use the observed total number of tosses in his estimation of the
value of x. He can use only the frequencies of occurrence of heads and tails.

We limit the amount of information that Alice can convey per coin by specifying the values of
two quantities: (i) the expectation value N of the total number of tosses, and (ii) the expectation value
NH of the number of heads. If we let ρ(x)dx be the number of signals lying between the values x and
x + dx, we can write these two restrictions as follows:

∫ 1

0
N(x)ρ(x)dx = N

∫ 1

0
ρ(x)dx. (A1)

∫ 1

0
xN(x)ρ(x)dx = NH

∫ 1

0
ρ(x)dx. (A2)

As before, we insist that Alice choose the signal values so that neighboring signals have a certain
minimum degree of distinguishability as quantified by the Fisher information metric. For the binomial
distributions we are dealing with here, this condition works out to be

∆x =

√
x(1 − x)

N(x)
dmin, (A3)

where ∆x is the separation between successive signals. The density ρ(x) of signals is therefore

ρ(x) =
1

∆x
=

√
N(x)

x(1 − x)
1

dmin
. (A4)

Alice wants to maximize the number of distinct signals. So, in choosing the function N(x), she
needs to solve the following optimization problem: maximize the quantity (from Equation (A4))

∫ 1

0

√
N(x)

x(1 − x)
dx, (A5)
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while satisfying the following two constraints (which come from Equations (A1) and (A2), combined
with Equation (A4))

∫ 1

0

N(x)3/2 −N N(x)1/2
√

x(1 − x)
dx = 0. (A6)

∫ 1

0

xN(x)3/2 −NH N(x)1/2
√

x(1 − x)
dx = 0. (A7)

This problem can be solved by the calculus of variations, and it can be found that Alice should
choose N(x) to be of the form

N(x) ∝
1

x
λ + 1−x

1−λ

. (A8)

Here, λ is a real number between zero and one, fixed by the requirement that the overall probability of
heads must equal NH/N (we could have written the result in other ways; we use λ only to facilitate
our later comparison with the Scrooge distribution). Once the value of λ is set, the constant factor
multiplying the right-hand side is fixed by Equation (A6).

We now use this result to generate the probability distribution σ̂(x) over the probability simplex.
We define it as follows: in many rounds of communication, we want σ̂(x)dx to approximate the
fraction of the total number of tosses that come from a coin whose probability of heads is between x
and x + dx. More precisely, we define σ̂(x) to be proportional to N(x)ρ(x), with the proportionality
constant set by the normalization condition

∫ 1
0 σ̂(x)dx = 1 (we have multiplied ρ(x) by N(x) to turn

the density of signals into the density of tosses). By substituting for N(x) and ρ(x) in accordance with
Equations (A4) and (A8), we arrive at

σ̂(x) =
A√

x(1 − x)
· 1
( x

λ + 1−x
1−λ

)3/2 , (A9)

where A is the normalization constant. Comparing this form with that of Equation (25), we see that
this alternative problem does not lead us to the real-amplitude Scrooge distribution—the exponent
appearing in the denominator is 3/2 instead of 2. Moreover, λ and 1 − λ have no obvious meaning in
this problem, whereas in the problem considered in Sections 4 and 5, the λjs can be interpreted directly
in terms of the imposed bounds Mj on the expectation values of the number of times that the various
outcomes occur.
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Abstract: A semiquantum key distribution (SQKD) protocol makes it possible for a quantum party
and a classical party to generate a secret shared key. However, many existing SQKD protocols are
not experimentally feasible in a secure way using current technology. An experimentally feasible
SQKD protocol, “classical Alice with a controllable mirror” (the “Mirror protocol”), has recently been
presented and proved completely robust, but it is more complicated than other SQKD protocols.
Here we prove a simpler variant of the Mirror protocol (the “simplified Mirror protocol”) to be
completely non-robust by presenting two possible attacks against it. Our results show that the
complexity of the Mirror protocol is at least partly necessary for achieving robustness.

Keywords: quantum key distribution; semiquantum key distribution; security; attack

1. Introduction

Quantum key distribution (QKD) protocols allow two parties, Alice and Bob, to share a secret
random key that is secure even against the most powerful adversaries. Semiquantum key distribution
(SQKD) protocols achieve the same goal even if one of the two parties (Alice or Bob) is limited to use
only classical operations: the classical party can use only the computational basis {|0⟩, |1⟩}, while the
quantum party can use any basis—for example, both the computational basis and the Hadamard
basis {|+⟩ ! |0⟩+|1⟩√

2
, |−⟩ ! |0⟩−|1⟩√

2
}. As explained in [1,2], the importance of SQKD protocols is both

conceptual and practical: they make it possible to investigate the amount of “quantumness” needed
for QKD, and they may, in some cases, be easier to implement than standard QKD protocols.

The first SQKD protocol was “QKD with classical Bob” [1]. Later, other SQKD protocols have
been suggested, including “QKD with classical Alice” [3,4] and many others (e.g., [2,5–9]). Most SQKD
protocols have been proven “robust”: namely [1], if the adversary Eve succeeds in getting some secret
information, she must cause some errors that may be noticed by Alice and Bob. A few SQKD protocols
also have a security analysis [10–13]. Proving robustness is a step towards proving security; proving the
security of SQKD protocols is difficult because those protocols are usually two-way: for example,
Alice sends a quantum state to Bob, and Bob performs a specific classical operation and sends the
resulting quantum state back to Alice.

However, many SQKD protocols, including [1,3], are vulnerable to practical attacks and cannot
be experimentally constructed in a secure way using current technology. An important classical
operation of those protocols is named SIFT. The definition of a SIFT operation performed by Alice
(assuming that Alice is the classical party) is as follows: Alice measures the incoming quantum state in
the computational basis {|0⟩, |1⟩} and then generates the state she measured and resends it towards
Bob. Security of those SQKD protocols relies on the assumption that during the SIFT operation,
Alice’s measurement devices can measure the precise states {|0⟩, |1⟩} and distinguish those precise
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states from any imperfect similar state, and Alice’s photon generation devices can generate the precise
states {|0⟩, |1⟩} and not any other (imperfect) state. In particular, the generated states {|0⟩, |1⟩} must
be indistinguishable from states that Alice reflects towards Bob. Using current photonic technology,
Alice’s devices are imperfect, which makes this assumption incorrect and makes possible attacks by
the eavesdropper Eve: for example, Eve may send a slightly modified state towards Alice (a “tagging
attack”) or may distinguish between the states sent by Alice. Full details about those practical attacks
are available in [14–16].

An experimentally feasible SQKD protocol named “classical Alice with a controllable mirror”
(the “Mirror protocol”) has recently been presented [16]. This protocol is safe against the “tagging”
attack presented by [14]. Moreover, the protocol was proved by [16] to be completely robust against
any attacker Eve, even if Eve is all-powerful and limited only by the laws of physics, and even if Eve
can send multi-photon pulses. The robustness proof is still correct even if the detectors of Alice and
Bob cannot count how many photons arrive in each mode: namely, when either Alice or Bob looks at a
detector, which detects a specific mode, they can only notice whether it “clicks” (detects one photon or
more in that mode) or not (finds the mode to be empty). This is the standard situation when using
current technology.

In this paper, we present a simpler variant of the Mirror protocol (the “simplified Mirror protocol”),
which is easier to implement. Our variant allows the classical party, Alice, to choose one of three
operations, while the Mirror protocol allows Alice to choose one of four operations. We present two
attacks against this variant, proving it to be non-robust. Our results show that the four classical
operations allowed by the Mirror protocol are probably necessary for robustness.

In Section 2 we present the Mirror protocol described by [16]. In Section 3 we present the simplified
Mirror protocol and its motivation. In Section 4 we prove the simplified Mirror protocol to be non-robust
by presenting two attacks against it: a full attack and a weaker attack. In Section 5 we discuss potential
implications of our results.

2. The Mirror Protocol

For describing the Mirror protocol (presented by [16]), we assume a photonic implementation
consisting of two modes: the mode of the qubit state |0⟩ and the mode of the qubit state |1⟩ (below we call
them “the |0⟩ mode” and “the |1⟩ mode”, respectively). For example, the |0⟩ mode and the |1⟩ mode can
represent two different polarizations or two different time bins. We use the Fock space notations: if there
is exactly one photon (and, thus, our Hilbert space is the qubit space), the Fock state |0, 1⟩ (equivalent
to |0⟩) represents one photon in the |0⟩ mode, and the Fock state |1, 0⟩ (equivalent to |1⟩) represents
one photon in the |1⟩ mode. We can extend the qubit space to a 3-dimensional Hilbert space by adding
the Fock “vacuum state” |0, 0⟩, which represents an absence of photons. Most generally, the Fock
state |m1, m0⟩ represents m1 indistinguishable photons in the |1⟩ mode and m0 indistinguishable
photons in the |0⟩ mode. Similarly (in the Hadamard basis), the Fock state |m−, m+⟩x represents
m− indistinguishable photons in the |−⟩ mode and m+ indistinguishable photons in the |+⟩ mode.
More details about the Fock space notations are given in [16]; it is vital to use those mathematical
notations for describing and analyzing all practical attacks on a QKD protocol (see [17] for details).

In the Mirror protocol, in each round, Bob sends to Alice the |+⟩B state—namely,
the |0,1⟩x,B ! |0,1⟩B+ |1,0⟩B√

2
state. Then, Alice prepares an ancillary state in the initial vacuum state

|0, 0⟩A and chooses at random one of the following four classical operations:

• I (CTRL) Reflect all the photons towards Bob, without measuring any photon. The mathematical
description is:

I |0, 0⟩A |m1, m0⟩B = |0, 0⟩A |m1, m0⟩B. (1)
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• S1 (SWAP-10) Reflect all photons in the |0⟩ mode towards Bob, and measure all photons in the
|1⟩ mode. The mathematical description is:

S1 |0, 0⟩A |m1, m0⟩B = |m1, 0⟩A |0, m0⟩B. (2)

• S0 (SWAP-01) Reflect all photons in the |1⟩ mode towards Bob, and measure all photons in the
|0⟩ mode. The mathematical description is:

S0 |0, 0⟩A |m1, m0⟩B = |0, m0⟩A |m1, 0⟩B. (3)

• S (SWAP-ALL) Measure all the photons, without reflecting any photon towards Bob. The
mathematical description is:

S |0, 0⟩A |m1, m0⟩B = |m1, m0⟩A |0, 0⟩B. (4)

(We note that in the above mathematical description, Alice measures her ancillary state |·⟩A in the
computational basis and sends back to Bob the |·⟩B state.)

The states sent from Alice to Bob (without any error, loss, or eavesdropping) are detailed in Table 1.

Table 1. The state sent from Alice to Bob in the Mirror protocol without errors or losses, depending on
Alice’s classical operation and on whether Alice detected a photon or not.

Alice’s Classical Operation Did Alice Detect a Photon? State Sent from Alice to Bob

CTRL no (happens with certainty) |0, 1⟩x,B = 1√
2
[ |0, 1⟩B + |1, 0⟩B]

SWAP-10 no (happens with probability 1
2 ) |0, 1⟩B

SWAP-10 yes (happens with probability 1
2 ) |0, 0⟩B

SWAP-01 no (happens with probability 1
2 ) |1, 0⟩B

SWAP-01 yes (happens with probability 1
2 ) |0, 0⟩B

SWAP-ALL yes (happens with certainty) |0, 0⟩B

Then, Bob measures the incoming state in a random basis (either the computational basis { |0⟩, |1⟩}
or the Hadamard basis { |+⟩, |−⟩}). After completing all rounds, Alice sends over the classical channel
her operation choices (CTRL, SWAP-x, or SWAP-ALL; she keeps x ∈ {01, 10} in secret), Bob sends over
the classical channel his basis choices, and both of them reveal some non-secret information on their
measurement results (as elaborated in [16]). Then, Alice and Bob reveal and compute the error rate on
test bits for which Alice used SWAP-10 or SWAP-01 and Bob measured in the computational basis,
and the error rate on test bits for which Alice used CTRL and Bob measured in the Hadamard basis.
They also check whether other errors exist (for example, they verify Bob detects no photons in case
Alice uses SWAP-ALL). Alice and Bob also discard mismatched rounds, such as rounds in which Alice
used SWAP-10 and Bob used the Hadamard basis. Alice and Bob share the secret bit 0 if Alice uses
SWAP-10 and detects no photon while Bob measures in the computational basis and detects a photon
in the |0⟩ mode; similarly, they share the secret bit 1 if Alice uses SWAP-01 and detects no photon while
Bob measures in the computational basis and detects a photon in the |1⟩ mode.

Finally, Alice and Bob verify that the error rates are below some thresholds, and they perform
error correction and privacy amplification in the standard way for QKD protocols. At the end of the
protocol, Alice and Bob hold an identical final key that is completely secure against any eavesdropper.

A full description of the protocol and a proof of its complete robustness are both available in [16].
The experimental implementation of the protocol can use two time bins (namely, two pulses),

one for the |0⟩ mode and one for the |1⟩ mode. In this case, Alice’s possible operations can be described
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as possible ways for operating a controllable mirror, so that Alice can choose whether to reflect or
measure the photon(s) in each time bin. The mirror can be experimentally implemented in various
ways; for example:

• It can be implemented as a mechanically moved mirror. Such mirror is trivial to implement, but it
is very slow.

• It can be implemented by using optical elements: an electronically-triggered Pockels cell,
which changes the polarization of the photon(s) in one of the pulses, and a polarizing beam
splitter, which can split the two different pulses (that now have different polarizations) into
two paths. This implementation is feasible and gives much higher bit rates than the mechanical
implementation.

More details about the experimental implementations are available in [16].

3. The “Simplified Mirror Protocol”: A Simpler and Non-Robust Variant of the Mirror Protocol

In this paper, we discuss a simpler variant of the Mirror protocol, which we name the “simplified
Mirror protocol”. The simplified Mirror protocol is identical to the Mirror protocol described in
Section 2, except that it does not include the SWAP-ALL operation. In other words, in the simplified
protocol, Alice chooses at random one of the three classical operations CTRL, SWAP-10, and SWAP-01.

The simplified protocol is easier to implement, because the SWAP-ALL operation poses some
experimental challenges to the electronic implementation discussed in Section 2: for implementing
SWAP-ALL, the Pockels cell should either remain working for a long time (changing polarization for
both time bins) or be operated twice (changing polarization for each time bin separately). In more
details, for the two pulses representing the |0⟩ mode and the |1⟩ mode: if we assume the duration of
each pulse is t and the time difference between the two pulses is T (where t ≪ T), the first solution
means keeping the Pockels cell operating during the time period [0, T + 2t], and the second solution
means operating the Pockels cell during the two time periods [0, t] and [T + t, T + 2t]. The first solution
may be problematic for some models of the Pockels cell, and the second solution may be problematic
because of the recovery time needed for the Pockels cell. Therefore, at least in some implementations,
the simplified Mirror protocol is much easier to implement than the standard Mirror protocol.

Moreover, analyzing the simplified protocol gives a better understanding of the properties required
for an SQKD protocol to be robust. In particular, this analysis explains why the structure and complexity
of the Mirror protocol are necessary for robustness.

For completeness, we provide below the full description of the simplified Mirror protocol. We note
that this description is almost the same as the description of the Mirror protocol in Section 2.

In the simplified Mirror protocol, in each round, Bob sends to Alice the |+⟩B state—namely,
the |0,1⟩x,B ! |0,1⟩B+ |1,0⟩B√

2
state. Then, Alice prepares an ancillary state in the initial vacuum state

|0, 0⟩A and chooses at random one of the following three classical operations:

• I (CTRL) Reflect all the photons towards Bob, without measuring any photon. The mathematical
description is:

I |0, 0⟩A |m1, m0⟩B = |0, 0⟩A |m1, m0⟩B. (5)

• S1 (SWAP-10) Reflect all photons in the |0⟩ mode towards Bob, and measure all photons in the
|1⟩ mode. The mathematical description is:

S1 |0, 0⟩A |m1, m0⟩B = |m1, 0⟩A |0, m0⟩B. (6)

• S0 (SWAP-01) Reflect all photons in the |1⟩ mode towards Bob, and measure all photons in the
|0⟩ mode. The mathematical description is:

S0 |0, 0⟩A |m1, m0⟩B = |0, m0⟩A |m1, 0⟩B. (7)
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(We note that in the above mathematical description, Alice measures her ancillary state |·⟩A in the
computational basis and sends back to Bob the |·⟩B state.)

The states sent from Alice to Bob (without any error, loss, or eavesdropping) are detailed in Table 2.

Table 2. The state sent from Alice to Bob in the simplified Mirror protocol without errors or losses,
depending on Alice’s classical operation and on whether Alice detected a photon or not.

Alice’s Classical Operation Did Alice Detect a Photon? State Sent from Alice to Bob

CTRL no (happens with certainty) |0, 1⟩x,B = 1√
2
[ |0, 1⟩B + |1, 0⟩B]

SWAP-10 no (happens with probability 1
2 ) |0, 1⟩B

SWAP-10 yes (happens with probability 1
2 ) |0, 0⟩B

SWAP-01 no (happens with probability 1
2 ) |1, 0⟩B

SWAP-01 yes (happens with probability 1
2 ) |0, 0⟩B

Then, Bob measures the incoming state in a random basis (either the computational basis { |0⟩, |1⟩}
or the Hadamard basis { |+⟩, |−⟩}). After completing all rounds, Alice sends over the classical channel
her operation choices (CTRL or SWAP-x; she keeps x ∈ {01, 10} in secret), Bob sends over the classical
channel his basis choices, and both of them reveal some non-secret information on their measurement
results (as elaborated in [16]). Then, Alice and Bob reveal and compute the error rate on test bits for
which Alice used SWAP-10 or SWAP-01 and Bob measured in the computational basis, and the error
rate on test bits for which Alice used CTRL and Bob measured in the Hadamard basis. They also check
whether other errors exist (for example, it must never happen that both Alice and Bob detect a photon).
Alice and Bob also discard mismatched rounds, such as rounds in which Alice used SWAP-10 and Bob
used the Hadamard basis. Alice and Bob share the secret bit 0 if Alice uses SWAP-10 and detects no
photon while Bob measures in the computational basis and detects a photon in the |0⟩ mode; similarly,
they share the secret bit 1 if Alice uses SWAP-01 and detects no photon while Bob measures in the
computational basis and detects a photon in the |1⟩ mode.

Finally, Alice and Bob verify that the error rates are below some thresholds, and they perform
error correction and privacy amplification in the standard way for QKD protocols. At the end of the
protocol, Alice and Bob hold an identical final key that is completely secure against any eavesdropper.

4. Attacks against the Simplified Mirror Protocol

We prove the simplified protocol to be non-robust by presenting two attacks: a “full attack”
described in Section 4.1, which gives Eve full information but causes full loss of the CTRL bits, and a
“weaker attack” described in Section 4.2, which gives Eve less information but causes fewer losses of
CTRL bits.

4.1. A Full Attack on the Simplified Protocol that Gives Eve Full Information

In this attack, Eve gets full information of all the information bits. Namely, she gets full information
on the SWAP-10 and SWAP-01 bits that were measured by Bob in the computational basis.

Eve applies her attack in two stages: the first stage is on the way from Bob to Alice, and the
second stage is on the way from Alice to Bob. In both stages she uses her own probe space (namely,
ancillary space) HE = H3 spanned by the orthonormal basis { |0⟩E, |1⟩E, |2⟩E}. We assume that Eve
fully controls the environment, the errors, and the losses (this is a standard assumption when analyzing
the security of QKD): namely, no losses and no errors exist between Bob and Eve or between Alice
and Eve.
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In the first stage of the attack (on the way from Bob to Alice), Eve intercepts the state |+⟩B (namely,
|0, 1⟩x,B) sent by Bob, generates instead the state

1√
3
[ |0, 1⟩B |1⟩E + |1, 0⟩B |1⟩E + |0, 0⟩B |0⟩E] =

√
2
3
|0, 1⟩x,B |1⟩E +

√
1
3
|0, 0⟩B |0⟩E, (8)

and sends to Alice the B part of the state. This state causes Alice to get no photons with probability 1
3 and

get the expected |+⟩B state with probability 2
3 . Alice then performs at random one of the three classical

operations CTRL, SWAP-10, or SWAP-01. The resulting possible states of Bob+Eve are described in
Table 3.

Table 3. The state of Bob+Eve after Alice’s classical operation for the attacks described in Sections4.1 and 4.2,
depending on Alice’s classical operation and on whether Alice detected a photon or not.

Alice’s Classical Operation Did Alice Detect a Photon? Bob+Eve State

CTRL no (happens with certainty) 1√
3
[ |0, 1⟩B |1⟩E + |1, 0⟩B |1⟩E + |0, 0⟩B |0⟩E]

SWAP-10 no (happens with probability 2
3 ) 1√

2
[ |0, 1⟩B |1⟩E + |0, 0⟩B |0⟩E]

SWAP-10 yes (happens with probability 1
3 ) |0, 0⟩B |1⟩E

SWAP-01 no (happens with probability 2
3 ) 1√

2
[ |1, 0⟩B |1⟩E + |0, 0⟩B |0⟩E]

SWAP-01 yes (happens with probability 1
3 ) |0, 0⟩B |1⟩E

In the second stage of the attack (on the way from Alice to Bob), Eve applies the unitary operator
V on the joint Bob+Eve state, where V is defined as follows:

V |0, 1⟩B |1⟩E = −
√

1
3
|1, 0⟩B |1⟩E +

√
2
3
|0, 0⟩B |0⟩E, (9)

V |1, 0⟩B |1⟩E = −
√

1
3
|0, 1⟩B |0⟩E +

√
2
3
|0, 0⟩B |1⟩E, (10)

V |0, 0⟩B |0⟩E =

√
1
3
|0, 1⟩B |0⟩E +

√
1
3
|1, 0⟩B |1⟩E +

√
1
3
|0, 0⟩B |+⟩E, (11)

V |0, 0⟩B |1⟩E = |0, 0⟩B |2⟩E. (12)

V is indeed a unitary operator, because we can prove the right-hand sides to be orthonormal:
all the right-hand sides are normalized vectors; the first two vectors are clearly orthogonal; the third
vector is orthogonal to the first two, because ⟨0|+⟩E = ⟨1|+⟩E = 1√

2
; and the fourth vector is orthogonal

to the three others. Thus, V defines (or, more precisely, can be extended to) a unitary operator on
HB ⊗HE.

Applying the unitary operator V on Table 3 gives the states listed in Table 4. Comparing it
with Table 2, we conclude that this attack never causes Alice and Bob to detect an error. Moreover,
Eve detects the whole secret key: Eve measures “0” in her probe if Alice and Bob agree on the bit 0,
and she measures “1” in her probe if Alice and Bob agree on the bit 1. However, Eve causes several
kinds of losses; in particular, all the CTRL bits are lost.

Therefore, this attack makes it possible for Eve to get full information without inducing any error.
However, Eve causes many losses, including full loss of the CTRL bits.
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Table 4. The state of Bob+Eve after completing Eve’s attack described in Section 4.1, depending on
Alice’s classical operation and on whether Alice detected a photon or not.

Alice’s Classical Operation Did Alice Detect a Photon? Bob+Eve State

CTRL no (happens with certainty) |0, 0⟩B |+⟩E

SWAP-10 no (happens with probability 2
3 )

1√
6
|0, 1⟩B |0⟩E + |0, 0⟩B

3 |0⟩E + |1⟩E√
12

SWAP-10 yes (happens with probability 1
3 ) |0, 0⟩B |2⟩E

SWAP-01 no (happens with probability 2
3 )

1√
6
|1, 0⟩B |1⟩E + |0, 0⟩B

|0⟩E + 3 |1⟩E√
12

SWAP-01 yes (happens with probability 1
3 ) |0, 0⟩B |2⟩E

4.2. A Weaker Attack on the Simplified Protocol Causing Fewer Losses of the CTRL Bits

The full attack described in Section 4.1 makes it impossible for Bob to ever detect a CTRL bit,
which may look suspicious. We now present a weaker attack that lets Bob detect some CTRL bits but
gives Eve less information.

The first stage of the attack (on the way from Bob to Alice) remains the same: that is, the state
Eve sends to Alice is still given by Equation (8), and the resulting Bob+Eve state after Alice’s classical
operation is still shown in Table 3. Eve’s probe space is, too, the same as before: HE = H3 !
Span{ |0⟩E, |1⟩E, |2⟩E}.

This attack is characterized by the parameter 0 ≤ ϵ ≤ 1. We will see that ϵ = 0 gives the full attack
described in Section 4.1, while ϵ = 1 gives Eve no information at all.

Another important parameter used by the attack is

κ !
√

1 − ϵ2

3 − 2ϵ2 . (13)

We notice that for small values of ϵ, the value of κ is close to
√

1
3 . Moreover, for all 0 ≤ ϵ ≤ 1,

it holds that 0 < ϵ2 + κ2 ≤ 1 and 2κ2 < 1.
In the second stage of the attack (on the way from Alice to Bob), Eve applies the unitary operator

V on the joint Bob+Eve state, where V is defined as follows:

V |0, 1⟩B |1⟩E = ϵ |0, 1⟩B |2⟩E − κ |1, 0⟩B |1⟩E +
√

1 − κ2 − ϵ2 |0, 0⟩B |0⟩E, (14)

V |1, 0⟩B |1⟩E = −κ |0, 1⟩B |0⟩E + ϵ |1, 0⟩B |2⟩E +
√

1 − κ2 − ϵ2 |0, 0⟩B |1⟩E, (15)

V |0, 0⟩B |0⟩E = κ |0, 1⟩B |0⟩E + κ |1, 0⟩B |1⟩E +
√

1 − 2κ2 |0, 0⟩B |+⟩E, (16)

V |0, 0⟩B |1⟩E = |0, 0⟩B |2⟩E. (17)

V is indeed a unitary operator, because we can prove the right-hand sides to be orthonormal:
all the right-hand sides are clearly normalized; the first two vectors are orthogonal; the fourth vector is
orthogonal to the three others; and the third vector is orthogonal to the first and to the second, because

1 − 2κ2 =
3 − 2ϵ2 − 2(1 − ϵ2)

3 − 2ϵ2 =
1

3 − 2ϵ2 , (18)

1 − κ2 − ϵ2 =
(3 − 2ϵ2)− (1 − ϵ2)− (3ϵ2 − 2ϵ4)

3 − 2ϵ2 =
2(1 − ϵ2)2

3 − 2ϵ2 , (19)

and thus
√

1−κ2−ϵ2
√

1−2κ2√
2

= κ2. Therefore, V extends to a unitary operator on HB ⊗HE.
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The final global state after Eve’s attack is described in Table 5 (calculated by applying the operator
V on Table 3), given the following definitions:

a !
√

1 − κ2 − ϵ2 +

√
1 − 2κ2
√

2
, (20)

b !
√

1 − 2κ2
√

2
. (21)

Table 5. The state of Bob+Eve after completing Eve’s attack described in Section 4.2, depending on
Alice’s classical operation and on whether Alice detected a photon or not. The parameters a and b are
defined in Equations (20) and (21).

Alice’s Classical Operation Did Alice Detect a Photon? Bob+Eve State

CTRL no (happens with certainty)

√
2ϵ2

3
|0, 1⟩x,B |2⟩E +

√
1 − 2ϵ2

3
|0, 0⟩B |+⟩E

SWAP-10 no (happens with probability 2
3 )

1√
2
[ |0, 1⟩B (ϵ |2⟩E + κ |0⟩E) + |0, 0⟩B (a |0⟩E + b |1⟩E)]

SWAP-10 yes (happens with probability 1
3 ) |0, 0⟩B |2⟩E

SWAP-01 no (happens with probability 2
3 )

1√
2
[ |1, 0⟩B (ϵ |2⟩E + κ |1⟩E) + |0, 0⟩B (b |0⟩E + a |1⟩E)]

SWAP-01 yes (happens with probability 1
3 ) |0, 0⟩B |2⟩E

We notice that for ϵ = 0, the attack is the same as in Section 4.1. If ϵ = 1, the loss rate of CTRL bits
is 1

3 , and Eve gets no information at all on the information bits (because κ = 0).
In general, if Alice and Bob share a “secret” bit b ∈ {0, 1}, Eve’s probe state is in the

(normalized) state
ϵ |2⟩E + κ |b⟩E√

ϵ2 + κ2
. (22)

When Eve measures her probe state in the computational basis { |0⟩E, |1⟩E, |2⟩E}, she gets the
information bit b with probability

p =
κ2

ϵ2 + κ2 =
1 − ϵ2

1 + 2ϵ2 − 2ϵ4 , (23)

and the loss rates of CTRL and SWAP-x bits (where x ∈ {01, 10}) are

RCTRL = 1 − 2ϵ2

3
, (24)

RSWAP-x = 1 − ϵ2 + κ2

2
, (25)

respectively.
Table 6 shows the probabilities p and the loss rates RCTRL, RSWAP-x for various values of ϵ.

For example, for ϵ = 0.5, Eve still gets the information bit with probability p ≈ 0.55, Bob’s loss rate for
the CTRL bits is RCTRL ≈ 0.83, and his loss rate for the SWAP-x bits is RSWAP-x ≈ 0.73.

Table 6. The probability p of Eve obtaining an information bit, and the loss rates RCTRL and RSWAP-x of
CTRL and SWAP-x bits (where x ∈ {01, 10}), respectively, for several values of the attack’s parameter ϵ.

ϵ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p 1 0.97 0.89 0.78 0.66 0.55 0.44 0.34 0.25 0.15 0
RCTRL 1 0.99 0.97 0.94 0.89 0.83 0.76 0.67 0.57 0.46 0.33

RSWAP-x 0.83 0.83 0.82 0.79 0.76 0.73 0.68 0.63 0.58 0.53 0.5
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For all values of ϵ, the attack causes no errors. However, in principle, it can be detected because
it causes different loss rates to different types of bits: the loss rate experienced by Bob in the CTRL
bits, RCTRL, is usually different from the loss rate in the SWAP-x bits, RSWAP-x (see Table 6 for details).
Therefore, in principle, the attack can be detected by a statistical test for most values of ϵ.

The loss rates become equal only for the value ϵ = ϵ0 !
√

3−
√

3
2 ≈ 0.796 (which gives κ2 = ϵ2

3 ).
It seems that this specific attack cannot be detected, even in principle: it causes no errors, and it causes
the same loss rate for all qubits. For this attack, Eve gets the information bit with probability p = 1

4 ,
and the loss rates are RCTRL = RSWAP-x = 1√

3
≈ 0.577. Therefore, this attack gives Eve a reasonable

amount of information, and it is not detectable by looking at errors or comparing loss rates. (We can
slightly modify the attack to make the loss rate the same in both directions of the quantum channel, too.)

We conclude that this weaker attack gives Eve partial information, causes no errors, and causes
several loss rates. We also conclude that since the loss rates caused by the attack are usually different for
different types of bits, the attack can be detected, in principle, for any value of ϵ except ϵ0. However, for
ϵ = ϵ0, the attack seems undetectable.

5. Discussion

We have discussed a simpler and natural variant of the Mirror protocol (the “simplified Mirror
protocol”) which is easier to implement. We have found the simplified Mirror protocol to be completely
non-robust; therefore, this protocol is actually an “over-simplified” Mirror protocol. We have presented
in Section 4.1 an attack giving Eve full information without causing any error; in addition, since this
attack also causes full loss of the CTRL bits, we have presented in Section 4.2 weaker attacks giving
Eve partial information, causing no errors, and causing fewer losses. In particular, we have presented

a specific attack (characterized by the parameter ϵ = ϵ0 !
√

3−
√

3
2 ≈ 0.796) that seems undetectable

and gives Eve one quarter ( 1
4 ) of all information bits.

Those attacks prove that the simplified Mirror protocol, which allows Alice to use only three
classical operations (CTRL, SWAP-10, and SWAP-01), is completely non-robust. On the other hand,
the Mirror protocol is proved completely robust (see Section 2 and [16]). As explained in Section 3,
the only difference between the simplified Mirror protocol and the Mirror protocol is that the Mirror
protocol allows a fourth classical operation, SWAP-ALL; therefore, allowing the SWAP-ALL operation
is necessary for robustness. More generally, the Mirror protocol probably cannot be made much simpler
while remaining robust: its complexity is crucial for robustness. Therefore, we have seen that if we
want to use an SQKD protocol that is experimentally feasible in a secure way, we may have to use
a relatively complicated protocol.

In this paper, we have not checked the experimental feasibility of Eve’s attacks, because Eve
is usually assumed to be all-powerful. Nonetheless, it can be interesting to check in the future the
experimental feasibility of those attacks and discover whether the simplified Mirror protocol is flawed
also in practice and not “only” in theory. Other interesting directions for future research include trying
to find experimentally feasible SQKD protocols that are simpler than the Mirror protocol, and trying to
find similar attacks against other QKD and SQKD protocols that have no complete robustness proof.
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Abbreviations
The following abbreviations are used in this manuscript:

QKD Quantum Key Distribution
SQKD Semiquantum Key Distribution
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Abstract: Quantum teleportation has significant meaning in quantum information. In particular,
entangled states can also be used for perfectly teleporting the quantum state with some probability.
This is more practical and efficient in practice. In this paper, we propose schemes to use non-symmetric
quantum channel combinations for probabilistic teleportation of an arbitrary two-qubit quantum
state from sender to receiver. The non-symmetric quantum channel is composed of a two-qubit
partially entangled state and a three-qubit partially entangled state, where partially entangled
Greenberger–Horne–Zeilinger (GHZ) state and W state are considered, respectively. All schemes are
presented in detail and the unitary operations required are given in concise formulas. Methods are
provided for reducing classical communication cost and combining operations to simplify the
manipulation. Moreover, our schemes are flexible and applicable in different situations.

Keywords: quantum teleportation; entanglement; quantum channel; quantum communication

1. Introduction

Quantum teleportation, firstly proposed by Bennett et al. [1], is a feasible technique for moving
quantum states via pre-established quantum channel amongst distant network nodes with the help of
classical information. It is at the heart of many quantum information protocols and also represents
a fundamental ingredient to the development of many quantum technologies, including quantum
network [2,3], quantum secure communication [4,5], measurement-based quantum computing [6,7],
and quantum repeater [8–10], etc. Due to its potential applications in the realm of quantum
communication [11], a growing amount of theoretical and experimental progress [12–16] has been
made in this domain.

As the transmission channel of teleportation, quantum entanglement [17] is fragile resource.
The requirement of a maximally entangled quantum channel connecting nodes is very difficult to
achieve or maintain in practice since the inevitable presence of noise reduces the entanglement of
the quantum state shared between them. In practical implementations of the teleportation protocol,
one can either adopt entanglement purification and distillation techniques to purify the states or use
the partially entangled state to teleport quantum state perfectly with some probability. Probabilistic
teleportation was introduced by Li et al. [18], following which several resources have used different
types of entanglement. These are obtainable in [19–24].

Agrawal et al. [19] utilized a partially entangled state as a shared resource to teleport an unknown
two-qubit state. Dai et al. [20,21] presented two protocols for probabilistically teleporting an arbitrary
two-qubit state via two partially entangled W states and by the combination of a partially entangled

Entropy 2018, 20, 238; doi:10.3390/e20040238 www.mdpi.com/journal/entropy83
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GHZ state and an entangled W state, respectively. Probabilistic teleportation of an arbitrary two-qubit
entangled state can also be obtained via a dimensional four-qubit partially entangled cluster state
by Xia et al. [22]. Liu et al. [23] proposed a teleportation protocol of an unknown two-qubit state
probabilistically with partial information. Recently, Choudhury et al. [24] proposed protocol for
probabilistic teleportation using POVM and projective measurement. Here, we focus on probabilistic
teleportation schemes for an arbitrary two-qubit quantum state.

The existing works mostly use a symmetric quantum channel, i.e., two entangled states of two
qubits or two entangled states of three qubits, to teleport two-qubit quantum state. However, the
entangled states shared among quantum nodes in network would not be guaranteed to be of the same
type. Different types of entanglements would be utilized as quantum channels. In this paper, we study
the probabilistic teleportation using non-symmetric quantum channel for transmitting arbitrary two-qubit
quantum state. The non-symmetric quantum channel consists of a two-qubit entangled state and a
three-qubit entangled state. Schemes using different quantum channel combinations are proposed that
could be seen as supplementary to the protocol family of teleporting two-qubit state. Methods are
provided for reducing the classical communication cost and combining the separate unitary operations
to simplify the whole process. Furthermore, in many existing protocols, the intermediate states and
the unitary operations applied are shown in the form of complex tables. One of the unique features in
this paper is that all unitary operations applied by the receiver and intermediate states in the process
are summarized in concise formulas. With these formulas, the operations and intermediate states can
be obtained through calculation rather than searching through complex tables.

The rest of this paper is organized as follows: Section 2 provides system model and quantum
channels we considered in this paper. Section 3 discusses the probabilistic teleportation schemes using
partially entangled GHZ state and two-qubit partially entangled state as quantum channel and the
method for reducing classical communication cost. Another scheme is presented in Section 4 using
another non-symmetric quantum channel combination (i.e., partially entangled W state and two-qubit
partially entangled state). A method is given to combine unitary operations into one under the same
basis as well. In Sections 5 and 6, we present a discussion and conclude the whole paper.

2. System Model

In this paper, we consider two nodes, conveniently called Alice and Bob, who share entangled
states as quantum channel. Through the channel, Alice wants to transmit arbitrary two-qubit state to
Bob as described below

|χ⟩ = a0|00⟩+ a1|01⟩+ a2|10⟩+ a3|11⟩, (1)

where ai(i = 0, 1, 2, 3) is the amplitude of respective basis state satisfying the normalized condition
∑3

i=0 |ai|2 = 1. The quantum channel shared between two nodes consists of a two-qubit partially
entangled state and three-qubit partially entangled state. GHZ state and W state are fundamental
entangled states of three qubits, and widely used in protocols for transmitting quantum states.
They represent diverse types of but can cover all three-qubit entangled states. Without losing generality,
both GHZ state and W state are studied as part of quantum channel combination but separately in
different schemes. The two-qubit partially entangled state and three-qubit partially entangled states
are described as

|ψ⟩ = c |00⟩+ d |11⟩ , where |c|2 + |d|2 = 1 and |c| ≥ |d| ,

|GHZ⟩ = m |000⟩+ n |111⟩ , where |m|2 + |n|2 = 1 and |m| ≥ |n| , (2)

|W⟩ = x |001⟩+ y |010⟩+ z |100⟩ , where |x|2 + |y|2 + |z|2 = 1 and |x| ≥ |y| ≥ |z| .

The system can be summarized into one general model as shown in Figure 1 where a two-qubit
partially entangled state and a three-qubit partially entangled state are shared between Alice and Bob
as a non-symmetric quantum channel. The classical communication channel is equipped.
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Figure 1. System model for teleporting arbitrary two-qubit state from Alice to Bob via non-symmetric
quantum channel. For the convenience of description, we assume particles 1 and 2 are in the possession
of Alice. Particle 3 from three-qubit partially entangled state is with Alice while Bob has particles 4 and
5. Particles 6 and 7 of two-qubit partially entangled state belong to Alice and Bob, respectively.

In the following paper, the three-qubit partially entangled W state is firstly considered as quantum
channel together with two-qubit partially entangled state. We refer to this scheme as scheme A and the
channel combination as non-symmetric quantum channel combination A. In addition, a special case
for teleporting two-qubit entangled state is discussed using the same quantum channel combination
as scheme A. Then, the three-qubit partially entangled GHZ state is used to replace former partially
entangled W state. Similarly, we refer to it as scheme B and the non-symmetric quantum channel
combination B. In the following, we present these schemes in detail and give methods for improvement.

3. Schemes Using Non-Symmetric Quantum Channel Combination A

In this section, the scheme to transmit an arbitrary two-qubit state is presented when using
defined non-symmetric quantum channel combination A. As a special case of scheme A, teleportation
of two-qubit entangled state is discussed accompanied with a method for reducing the classical
communication cost in that case.

3.1. Teleporting Arbitrary Two-Qubit Quantum State

The non-symmetric quantum channel utilized for probabilistic teleportation of arbitrary two-qubit
state is composed of a two-qubit partially entangled state and three-qubit partially entangled W state.
Taking the states described in Equation (2), the initial system state can be written as

∣∣Φsys
〉
= |χ⟩12 ⊗ |W⟩345 ⊗ |ψ⟩67 . (3)

To realize teleportation, the detailed process is elaborated as follows:
Step 1: Alice firstly performs two Bell-state measurements on particles (1, 3) and particles (2, 6),

respectively. The system state may collapse into one of the 16 possible states, which can be expressed
as

〈
βij

∣∣
26⟨βkl |13 Φsys

〉
in general, where

∣∣βij
〉

and |βkl⟩ represent corresponding Bell states in the form

∣∣βij
〉
= (|0, j⟩+ (−1)i |1, 1 − j⟩)/

√
2, (4)

where i, j = 0, 1. Bell-state measurement results are expressed as classical bit strings mpmq(
∣∣βij

〉
) ≡ ij,

where mpmq denote the measurement results of particle p and q, respectively. Then, Alice sends these
measurement results to Bob through classical communication channel immediately. According to the

85



Entropy 2018, 20, 238

measurement results m1m3m2m6, the 16 possible states can be divided into four groups as follows,
where mi indicates the negation of the measurement outcome mi.

A. When m1m3m2m6 is 0000, 0010, 1000 or 1010, i.e., m3 m6=1, the system state is expressed as

1
2
(a0xc|010⟩+ a0yc|100⟩+ (−1)m1 a2zc|000⟩+ (−1)m2 a1xd|011⟩
+ (−1)m2 a1yd|101⟩+ (−1)m1⊕m2 a3zd|001⟩)457.

(5)

B. When m1m3m2m6 is 0001, 0011, 1001 or 1011, i.e., m3 m6=1, the system state is expressed as

1
2
(a0xd|011⟩+ a0yd|101⟩+ (−1)m1 a1xc|010⟩+ (−1)m1 a1yc|100⟩
+ (−1)m2 a2zd|001⟩+ (−1)m1⊕m2 a3zc|000⟩)457.

(6)

C. When m1m3m2m6 is 0100, 0110, 1100 or 1110, i.e., m3 m6=1, the system state is expressed as

1
2
(a0zc|000⟩+ (−1)m2 a1zd|001⟩+ (−1)m1 a2xc|010⟩+ (−1)m1 a2yc|100⟩
+ (−1)m1⊕m2 a3xd|011⟩+ (−1)m1⊕m2 a3yd|101⟩)457.

(7)

D. When m1m3m2m6 is 0101, 0111, 1101 or 1111, i.e., m3 m6=1, the system state is expressed as

1
2
(a0zd|001⟩+ (−1)m1 a2xd|011⟩+ (−1)m1 a2yd|101⟩+ (−1)m2 a1zc|000⟩
+ (−1)m1⊕m2 a3xc|010⟩+ (−1)m1⊕m2 a3yc|100⟩)457.

(8)

Step 2: After receiving the classical information from Alice, Bob performs projective measurement
on particle 4. If the result is |0⟩4 (denoted by m4=0), the original state can not be reconstructed and the
teleportation fails. Otherwise, Bob continues to apply following operations to recover the teleported
quantum state.

Step 3: Then, for retrieving the correspondence between coefficients ai and basis states, Bob needs
to apply unitary operation U57 on particles (5, 7). The specific unitary operation required is determined
by the measurement result according to the formula

U57 = (Zm1 Xm3)5 ⊗ (Zm2 Xm6)7, (9)

where X =
[

0
1

1
0

]
and Z=

[
1
0

0
−1

]
are Pauli matrices. After unitary operation U57, the specific system

state is determined by m3m6 and changes into

∣∣∣Φ′
sys

〉
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0xc |00⟩+ a1xd |01⟩+ a2zc |10⟩+ a3zd |11⟩ when m3 m6 = 1,
a0xd |00⟩+ a1xc |01⟩+ a2zd |10⟩+ a3zc |11⟩ when m3 m6 = 1,
a0zc |00⟩+ a1zd |01⟩+ a2xc |10⟩+ a3xd |11⟩ when m3 m6 = 1,
a0zd |00⟩+ a1zc |01⟩+ a2xd |10⟩+ a3xc |11⟩ when m3 m6 = 1.

(10)

Step 4: Bob introduces an auxiliary particle A with its initial state |0⟩A and applies a
collective unitary operation on particles (5, 7, A). To reconstruct the original state under the basis
{
∣∣βij

〉
57 |0⟩A ,

∣∣βij
〉

57 |1⟩A} (where
∣∣βij

〉
57 stands for the computational basis of an four-dimensional

Hilbert space), the unitary operation should take the form

U57A =

(
C1 C2
C2 −C1

)
. (11)

The Ci(i = 1, 2) are 4 × 4 matrices in the form
{

C1 = diag(c1, c2, c3, c4),
C2 = diag(

√
1 − c12,

√
1 − c22,

√
1 − c32,

√
1 − c42),

(12)
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where ci (i=1, 2, 3, 4 and |ci|≤1) and their corresponding Ci all depend on the specific system state.
The specific form of ci is summarized into the following expressions:

C1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

diag( zd
xc , z

x , d
c , 1) when m3 m6 = 1,

diag( z
x , zd

xc , 1, d
c ) when m3 m6 = 1,

diag( d
c , 1, zd

xc , z
x ) when m3 m6 = 1,

diag(1, d
c , z

x , zd
xc ) when m3 m6 = 1.

(13)

Step 5: Finally, Bob performs projective measurement on particle A. The result |1⟩A (denoted by
mA =1) indicates the failure of this teleportation; on the contrary, if the result is mA =0, the two-qubit
state has been reconstructed on particles 5 and 7, yielding a successful teleportation.

The success probability of scheme A is 4|zd|2. When|x| = |y| = |z| = 1/
√

3 and |c| = |d| = 1/
√

2,
i.e., the quantum channel consists of two maximally entangled states, the success probability would
reach its maximum 2/3. The whole scheme is shown in Figure 2 and an example is given for illustrating
the whole process better.
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Figure 2. Probabilistic teleportation scheme utilizing partially entangled two-qubit state and W state as
quantum channel. Bell-state measurements, projective measurements and local unitary operations are
applied, together with the classical information, for original state recovery.

Example 1. Assume the Bell-state measurement results m1m3m2m6 = 0000. According to Equation (5), the
system state after Alice’s two Bell-state measurements should be

⟨β00|26⟨β00|13 Φsys
〉
=

1
2
(a0xc|010⟩+ a0yc|100⟩+ a2zc|000⟩+ a1xd|011⟩+ yd|101⟩+ a3zd|001⟩)457 .

Bob then measures particle 4. If the result is m4=1, the teleportation fails. Otherwise, he continues to apply
unitary operation U57 = X5 ⊗ I7 on particles (5, 7) according to Equation (9). After that, Bob introduces an
auxiliary particle A with its initial state |0⟩A and the system state changes into

∣∣∣Φ′′
sys

〉
=

1
2
(a0xc|000⟩+ a1xd|010⟩+ a2zc|100⟩+ a3zd|110⟩)57A .

Choosing C1=diag( zd
xc , z

x , d
c , 1), corresponding eight-dimensional unitary operation U57A is made up as below

according to Equations (11) and (12).
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U57A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zd
xc

0 0 0
√

1 −
(

zd
xc

)2
0 0 0

0
z
x

0 0 0
√

1 −
( z

x
)2 0 0

0 0
d
c

0 0 0
√

1 −
(

d
c

)2
0

0 0 0 1 0 0 0 0√
1 −

(
zd
xc

)2
0 0 0 − zd

xc
0 0 0

0
√

1 −
( z

x
)2 0 0 0 − z

x
0 0

0 0
√

1 −
(

d
c

)2
0 0 0 − d

c
0

0 0 0 0 0 0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After the operation, Bob obtains the system state

∣∣∣Φ f inal

〉
= U57A

∣∣∣Φ′′
sys

〉
=

zd
2

(a0|00⟩57 + a1|01⟩57 + a2|10⟩57 + a3|11⟩57) |0⟩A

+
(√

x2c2 − z2d2a0|00⟩57 + d
√

x2 − z2a1|01⟩57 + z
√

c2 − d2a2|10⟩57

)
|1⟩A.

Then, undertaking measurements on particle A by Bob, the result mA =0 indicates that the original state has
been recovered at Bob (on particles 5 and 7) successfully while mA =1 means failure of teleportation. Using a
two-qubit partially entangled state and a three-qubit partially entangled W state as quantum channel, we could
teleport arbitrary two-qubit state probabilistically.

3.2. Teleporting Two-Qubit Entangled State

In this subsection, we apply scheme A on teleportation of two-qubit entangled state. In addition,
we introduce a new method of processing classical information that will help to reduce the classical
communication cost needed in this case. Without losing generality, the two-qubit entangled state
to be teleported is assumed in the general form |γ⟩ = α |00⟩ + β |11⟩ , where |α|2 + |β|2 = 1 and
|α| ≥ |β| > 0. This form is widely used in related works and any entangled two-qubit state can be
brought to this form via local unitary operations. Alice still performs Bell-state measurements on
particles (1, 3) and particles (2, 6), respectively. The system state would collapse into one of the 16
possible states, which are classified according to measurement results as follows:

∣∣∣Φ′
sys

〉
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 (αxc|010⟩+αyc|100⟩+(−1)m1⊕m2 βzd|001⟩)457 when m3 m6 = 1,
1
2 (αxd|011⟩+αyd|101⟩+(−1)m1⊕m2 βzc|000⟩)457 when m3 m6 = 1,
1
2 (αzc|000⟩+(−1)m1⊕m2 βxd|011⟩+(−1)m1⊕m2 βyd|101⟩)457 when m3 m6 = 1,
1
2 (αzd|001⟩+(−1)m1⊕m2 βxc|010⟩+(−1)m1⊕m2 βyc|100⟩)457 when m3 m6 = 1.

(14)

The projective measurement on particle 4 is also performed by Bob after receiving the classical
information from Alice. When measurement result of particle 4 is m4 = 0, Bob continues to apply
unitary operation U57 on particles (5, 7) as

U57 = (Xm3)5 ⊗ (Zm1⊕m2 Xm6)7. (15)

An auxiliary particle A is introduced with its initial state |0⟩A, and then the collective unitary operation
U57A is constructed by Bob. The U57A takes the same form with Equations (11)–(13) because the unitary
operation is only related with the quantum channel characters. Measurement on particle A is still
required so that Bob can judge whether this teleportation succeeds or not. The total success probability
of teleportation is 4|zd|2.
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Comparing these two schemes, the main difference is the formulation of U57, which is closely
related with the Bell-state measurement results sent from Alice. The original four cbits information
m1m3m2m6 is sent to Bob directly through classical communication channel. However, after observing
Equation (15), we get the conclusion that whether the Z operation on particle 7 is required or not is
determined by the XOR result between m1 and m2. Thus, we use mx = m1 ⊕ m2 to denote the XOR
result and the Equation (15) can be rewritten as

U57 = (Xm3)5 ⊗ (Zmx Xm6)7. (16)

Through this combination, only the XOR result mx instead of the respective measurement results of
particles 1 and 2 needs to be sent to Bob together with m3m6. These 3 cbits information rather than
4 cbits are enough for Bob to determine U57 so that the classical communication cost is reduced by
25%, which is one of the advantages of this scheme.

Remark 1. Actually, if setting the parameter a1 = a2 =0 in Equation (1), we can also get the case discussed
above. Scheme A for teleporting arbitrary two-qubit state is a more general one where the scheme for teleporting
two-qubit entangled state can be seen as a special case. The method presented for reducing the classical
communication cost is only valid in this case. If the two-qubit entangled state is given in other forms,
the expression of U57 would change accordingly. However, for avoiding re-derivation, Alice could use the
result-mapping method proposed in [25] to obtain the operation U57 correctly.

4. Scheme Using Non-Symmetric Quantum Channel Combination B

In the schemes above, the maximal success probability of teleportation could only reach 2/3
even if the quantum channel is composed of corresponding maximally entangled states. Analyzing
the schemes, the measurement on particle 4 is the main source of the non-fully recoverable system
state. In this section, the three-qubit partially entangled GHZ state is utilized in quantum channel
combination B and the corresponding scheme using such quantum channel to complete arbitrary
two-qubit state teleportation is presented. The initial system state is expressed as

∣∣Φsys
〉
= |χ⟩12 ⊗ |GHZ⟩345 ⊗ |ψ⟩67 , (17)

where |GHZ⟩345 is partially entangled GHZ state with the form as Equation (2). Similar to aforementioned
schemes, Alice performs two Bell-state measurements on particles (1, 3) and particles (2, 6), respectively.
The system state collapses and can be divided into four groups as follows:

A. When m1m3m2m6 is 0000, 0010, 1000 or 1010, i.e., m3 m6=1, the system state is expressed as

1
2

(
a0mc|000⟩+ (−1)m2 a1md|001⟩+ (−1)m1 a2nc|110⟩+ (−1)m1⊕m2 a3nd|111⟩

)

457
. (18)

B. When m1m3m2m6 is 0001, 0011, 1001 or 1011, i.e., m3 m6=1, the system state is expressed as

1
2

(
a0md|001⟩+ (−1)m2 a1mc|000⟩+ (−1)m1 a2nd|111⟩+ (−1)m1⊕m2 a3nc|110⟩

)

457
. (19)

C. When m1m3m2m6 is 0100, 0110, 1100 or 1110, i.e., m3 m6=1, the system state is expressed as

1
2

(
a0nc|110⟩+ (−1)m2 a1nd|111⟩+ (−1)m1 a2mc|000⟩+ (−1)m1⊕m2 a3md|001⟩

)

457
. (20)

D. When m1m3m2m6 is 0101, 0111, 1101 or 1111, i.e., m3 m6=1, the system state is expressed as

1
2

(
a0nd|111⟩+ (−1)m2 a1nc|110⟩+ (−1)m1 a2md|001⟩+ (−1)m1⊕m2 a3mc|000⟩

)

457
. (21)
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The main difference of this scheme is that Bob needs to send particle 4 through additional
Hadamard gate (H= 1√

2

[
1
1

1
−1

]
) before measurement as shown in Figure 3. Afterwards, Bob performs

projective measurement on particle 4. The unitary operation U57 performed on particles (5, 7) to retrieve
the correspondence would be determined by the measurement result m4 together with m1m3m2m6
through the following formula:

U57 = (−1)m3m4(Zm1⊕m4 Xm3)5 ⊗ (Zm2 Xm6)7. (22)

The system state changes into

∣∣∣Φ′
sys

〉
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2
√

2
(a0mc |00⟩+ a1md |01⟩+ a2nc |10⟩+ a3nd |11⟩)57 when m3 m6 = 1,

1
2
√

2
(a0md |00⟩+ a1mc |01⟩+ a2nd |10⟩+ a3nc |11⟩)57 when m3 m6 = 1,

1
2
√

2
(a0nc |00⟩+ a1nd |01⟩+ a2mc |10⟩+ a3md |11⟩)57 when m3 m6 = 1,

1
2
√

2
(a0nd |00⟩+ a1nc |01⟩+ a2md |10⟩+ a3mc |11⟩)57 when m3 m6 = 1.

(23)
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Figure 3. Probabilistic teleportation scheme utilizing partially entangled two-qubit state and GHZ state
as quantum channel. Extra H operation is applied before operation U57 to avoid failure of teleportation.

Then, Bob introduces an auxiliary particle A and performs a collective unitary operation
U57A on particles (5, 7, A) to correct the distortion on system state and recover the original state.
The transformation matrix of U57A should be constructed in accordance with Equations (11) and (12).
The exact form of C1 is also determined by m3m6 and expressed as

C1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

diag( nd
mc , n

m , d
c , 1) when m3 m6 = 1,

diag( n
m , nd

mc , 1, d
c ) when m3 m6 = 1,

diag( d
c , 1, nd

mc , n
m ) when m3 m6 = 1,

diag(1, d
c , n

m , nd
mc ) when m3 m6 = 1.

(24)

After operation U57A, projective measurement is performed on particle A. Similarly, only the
result mA =0 indicates successful teleportation. The total success probability is 4|nd|2. If |m| = |n| =
|c| = |d| = 1/

√
2, i.e., the quantum channel is composed of two maximally entangled states, the

success probability would reach its maximum of 1. With the help of partially entangled GHZ state and
additional H operation, scheme B could increase the maximal success probability by avoiding failure
occurring after measurement on particle 4.
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In the above schemes, Bob applies two separate unitary operations under different bases. U57 is
constructed under computational basis while U57A is made under the basis of {

∣∣βij
〉

57 |0⟩A ,
∣∣βij

〉
57 |1⟩A}.

These two unitary operations can not be combined directly through tensor product or matrix
multiplication. For combining them into one operation under unified basis, we introduce the
transformation matrix T between these two bases. With this matrix, U57 and U57A could be combined
into one complete unitary operation under computational basis. The detailed method is shown in the
following part and the basis transformation matrix T is given as

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Based on the existing unitary operation U57A in Equation (22), the new unitary operation Û57A
under computational basis can be obtained through Û57A = T−1U57AT, where the matrix T is
equivalent to transition matrix actually. Hence, Bob could introduce the auxiliary particle |0⟩A after
obtaining the measurement result of particle 4 but before performing unitary operation. With the
newly constructed unitary operation matrix Û57A, the two unitary operations can be combined into
one operation U′ under computational basis easily in the form of

U′ = Û57A(U57 ⊗ IA), (26)

where IA is a two-dimensional identity matrix. We illustrate this method by taking m1m3m2m6m4 =
01110 as an example. According to Equation (21), after measurement on particle 4 and introducing
auxiliary particle |0⟩A, the system state should be

∣∣∣Φ′′
sys

〉
=

1
2
√

2
(−a3mc|000⟩+ a2md|010⟩ − a1nc|100⟩+ a0nd|110⟩)57A , (27)

which can be expressed with vector under computational basis as

∣∣∣Φ′′
sys

〉
=

1
2
√

2
[−a3mc, 0, a2md, 0,−a1nc, 0, a0nd, 0]T .

Then, perform the combined unitary operation U′

U′ = Û57A(U57 ⊗ IA) = T−1

(
C1 C2
C2 −C1

)
T (X5 ⊗ (ZX)7 ⊗ IA) , (28)

where C1 = diag(1, d
c , n

m , nd
mc ) accordingly so that the final system state is

∣∣∣Φ f inal

〉
=U′

∣∣∣Φ′′
sys

〉
=

1
2
√

2
[a0nd, 0, a1nd, a1n

√
c2 − d2, a2nd, a2d

√
m2 − n2, a3nd, a3

√
c2m2 − d2n2]T

=
dn

2
√

2
(a0|00⟩+ a1|01⟩+ a2|10⟩+ a3|11⟩)57 |0⟩A

+
1

2
√

2

(
a1n

√
c2 − d2|01⟩+ a2d

√
m2 − n2|10⟩+ a3

√
c2m2 − d2n2|11⟩

)

57
|1⟩A .

(29)
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Similarly, we need measurement on auxiliary particle A. The measurement result mA = 0 indicates
successful teleportation. On the contrary, mA =1 suggests failure.

Remark 2. Obviously, only one unitary operation is performed instead of the previous two separate operations,
which would simplify the quantum manipulation. Less operation may lead to reduction in the possibility of
making an error in practice. This method can also be applied in our previous presented schemes compatibly, and
the whole teleportation process may benefit from simplified operation. In addition, when the quantum channel is
composed of maximally entangled states, the success probability may reach its maximum. In that situation, the
system state after operation U57 had already been recovered to its original state successfully. There is no need to
introduce auxiliary particle and apply operation U57A any more.

5. Discussion

We present schemes utilizing two different non-symmetric quantum channel combinations to
teleport arbitrary two-qubit state probabilistically in this paper. One scheme consists of two-qubit
partially entangled state and three-qubit partially entangled W state, and the other one consists of
two-qubit partially entangled state and three-qubit partially entangled GHZ state. We still refer to
these two schemes as scheme A and scheme B in the following discussion and conclusion.

(1) The belonging of particle 4

In the paper, we assume that particle 4 from the three-qubit partially entangled state is held by
Bob. However, the belonging of the particle should be flexible. There are still two different situations in
addition to what we have considered. We will analyze them case by case to show that our schemes are
also applicable in the situations where Bob does not have particle 4. (a) When Alice has particle 4, Bob
only has particles 5 and 7. In this situation, Alice should perform the measurement on particle 4 after
the Bell-state measurements in scheme A or after H operation in scheme B, and then send Bob the result.
If Alice gets the result m4=1 in scheme A, she should stop the whole teleportation process and restart
another one immediately. Otherwise, if the result is m4=0, Alice should send measurement results to
Bob, and then Bob continues to apply the corresponding operation for recovering the original state.
(b) When particle 4 belongs to a third party Charles, the system changes to a controlled teleportation
model where the measurement on particle 4 should be performed by Charles. As a trusted third party,
Charles can control the whole teleportation because Bob cannot recover the original state and complete
the teleportation without Charles’ cooperation (measurement and its result). In a real application, the
reasonable allocation of particle 4 should be determined according to specific condition and purpose.
Our presented schemes can work well in all three of these three situations with few modifications.

(2) Another understanding of our schemes

In both schemes, Alice needs to perform two Bell-state measurements on particles firstly and
send measurement results to Bob through classical communication channels. Then, Bob performs the
measurement on particle 4. If a partially entangled GHZ state is utilized, an extra H operation should
be applied before Bob’s measurement. After that, an auxiliary particle is introduced for reconstructing
original state by applying specific unitary operation(s) according to their measurement results.

If analyzed from another point of view, the measurement on particle 4 of three-qubit partially
entangled W state in scheme A and operations (H operation and measurement) on particle 4 of
three-qubit partially entangled GHZ state can be seen as the process of preparing a two-qubit entangled
state for the teleportation protocol. The remainder of the teleportation can then be analyzed using
previously explored techniques [26]. We will refer to this as Scheme R for the discussion below.

This intuitive understanding of the protocol may help us to explain why maximum success
probability of scheme A using W state can not reach 1. This is primarily because a two-qubit partially
entangled state can only be obtained with some probability from the remainder of the two-qubit system
of the W state after measurement. The probability is exactly 2/3, which limits the maximum of success
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probability of the whole teleportation. The result of measurement on particle 4 indicates whether the
two-qubit entangled channel is prepared successfully. In contrast, we can obtain a two-qubit partially
entangled state with certainty from the operations on particle 4 of the partially entangled GHZ state so
that the maximum success probability of scheme B can reach 1.

Comparing scheme R with our schemes, the main difference is the order of performing measurement
on particle 4 while other manipulations are similar [26]. In scheme R, when Alice intends to teleport
the two-qubit state, she needs to notify Bob to perform measurement on particle 4 to initiate the whole
teleportation process. Then, Bob sends back information to Alice with notification that the channel is
ready so that Alice can perform the Bell measurement and follow-up steps using the prepared two
two-qubit entangled states as the channel. Obviously, there are two additional classical communication
processes compared with our schemes. Extra classical communication cost for protocol control and
more transmission delay will be introduced especially in the system model discussed in this paper.

However, if Alice holds particle 4 of the three-qubit partially entangled state, the additional
communication processes of scheme R are unnecessary. Alice does not need to ask Bob to perform
the measurement: instead she could do the preparation herself and be aware of whether the channel
is ready. In addition, Alice could terminate the follow-up steps and restart another teleportation if
she failed to get the two-qubit partially entangled state from the W state (when the result is 1), which
would increase the whole success probability.

Based on the above analysis, our schemes proposed in paper may avoid introducing extra cost for
the whole teleportation process. They are still meaningful and can be applied in specific scenes when
necessary. This provides one feasible choice of teleportation scheme for two-qubit state transmitting.

6. Conclusions

In future quantum networks, the quantum states to be teleported and the entangled states shared
among nodes are diverse. We studied probabilistic teleportation of two-qubit quantum states using
partially entangled states as a channel in this paper. Two schemes were presented using non-symmetric
quantum channels, which is different from the existing work. The quantum channel consists of a
two-qubit partially entangled state and a three-qubit partially entangled state. Both GHZ state and
W state were considered as representatives of three-qubit entangled states to give more complete
solutions. The composite quantum channel we discussed may exist in real applications. To some
extent, our schemes are supplementary to the protocol family of two-qubit state teleportation.

In addition, we illustrated the whole teleportation process in detail and the unitary operations
required were given in concise formulas rather than tables. The required operation can be worked out
through calculation instead of searching through complex tables, which is helpful in fast automatic
control and processing. A method for reducing the classical communication cost in the special case of
teleporting two-qubit entangled state was provided. By sending only 3 cbits compressed Bell-state
measurement outcome to the receiver instead of 4 cbits, as in other related works, the cost could be
reduced by 25%. Finally, the transformation matrix T was provided for converting unitary operation
under different bases used. With matrix T, the former two separate unitary operations under different
bases can be combined into one under unified computational basis. Less operation is associated
with simpler manipulation and reduced possibility of error in theory. Furthermore, our schemes are
applicable in other situations where there is some flexibility regarding where the particle belongs, as
we discussed.

Schemes using partially entangled states to realize probabilistic teleportation are crucial for the
practical application of quantum communication and networks. We hope our work may stimulate
more investigations into proposals for quantum communication and networks. In future work, we plan
to study the teleportation in the presence of unavoidable noises and test the efficiency of the protocol.
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