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Abstract. The Horton–Strahler number of a tree is a measure of its branching complexity.
It is also known in the literature as the register function. We show that for critical Galton–
Watson trees with finite variance, conditioned to be of size n, the Horton–Strahler number
grows as 1

2 log2 n in probability. We further define some generalizations of this number.
Among these are the rigid Horton–Strahler number and the k-ary register function, for
which we prove asymptotic results analogous to the standard case.

Keywords. Register function, Horton–Strahler number, Galton–Watson trees, branching
processes, probabilistic analysis.

1. Introduction

Rooted trees, i.e., connected acyclic graphs with one node distinguished as the root, are one of the
most important structures in graph theory and computer science. Many possible functions can be defined
on them, one of which is the Horton–Strahler number. It was originally conceived by geologists to classify
real-world river networks and has since then been applied in multiple fields; for instance, it is known as the
register function in computer science. The study of its asymptotics for various families of trees has seen
considerable attention.

The Horton–Strahler number. For rooted tree T , let |T | denote the size of the tree and T [u] denote the
subtree of T rooted at a node u. We recursively define the Horton–Strahler number H(T ) of T as follows:

i) if the root has no children, then H(T ) = 0,

ii) otherwise, letting S be the set of children of the root, the Horton–Strahler number of the tree takes on
the maximum of the Horton–Strahler numbers of the subtrees rooted at children of the root, plus one
if two or more children attain the same maximal Horton–Strahler number:

H(T ) = max{H(T [u]) : u ∈ S}+ 1[| arg maxu∈S H(T [u])|>1]. ()

Background. The Horton–Strahler number was introduced in 1845 by Robert E. Horton [16] and redefined
by Arthur N. Strahler [33] in the context of hydrogeomorphology. This field represents a river network as a
tree with a planar embedding, where the point furthest downstream corresponds to the root and junctions
between two streams correspond to nodes in the tree. In his original work [16], Horton described a geometric
decay of the number of branches of increasing Horton–Strahler order in a large river basin. Empirical
findings from classical geological studies showed that in fact, many other key physical characteristics of river
networks (e.g., basin area, stream width and length, flow velocity) can be modelled using the Horton–Strahler
number [30, 31].

In computer science, the Horton–Strahler number is known as the register function or register number [11],
modulo the value at the leaf. It is equal to H(T )+1 and corresponds to the minimum number of cpu registers
needed to evaluate an expression tree. The probability and theoretical computer science communities have
mostly devoted their attention to the register function of random equiprobable binary trees — Catalan trees.
Already in 1966, Shreve [32] made some conjectures about its value based on simulations in a random topology
model equivalent to a uniform distribution on planar binary trees. Flajolet et. al. [14], Kemp [18] and Meir
et. al. [27] independently found the register function of a Catalan tree with n leaves to be log4 n + O(1).
Later, Devroye and Kruszewski [8] offered a simple probabilistic proof of this result. As for other families of
trees, Flajolet and Prodinger showed similar asymptotics for Motzkin trees [13].
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Figure 1. A visualization of a tree
with Horton–Strahler number 4, where all
nodes in the tree are collapsed into edges,
other than the root and nodes forming an
embedded complete binary tree. In fact,
the Horton–Strahler number of a tree is
equal to the height of the largest embed-
ded complete binary tree.

Many quantities related to the Horton–Strahler number have been studied, mostly in the Catalan tree
setting. Moon and others investigated the behaviour of the bifurcation ratio, i.e., ratio of number of branches
with successive Horton–Strahler numbers [28, 36, 37]. The Horton–Strahler numbers have also been related
to the self-similar (fractal) structure of trees. They are connected to the Horton pruning operation, which
iteratively erases a tree; Burd et. al. [5] studied this pruning operation for critical binary Galton–Watson
trees. Other references on this topic can be found in the review by Kovchegov and Zaliapin [24].

In our work, we consider a generalization of the Horton–Strahler number to general rooted trees. Another
such definition for trees with any number of children was given by Auber et. al. [2]. Drmota and Prodinger [9]
showed that the distribution of this number for a uniformly chosen t-ary tree is also highly concentrated
around log4 n.

Galton–Watson processes. These processes were first studied in the context of disappearance of family
names in 1845 by Bienaymé [3] and in 1874 by Galton and Watson [15]. A Galton–Watson tree [1] with
offspring distribution ξ is a rooted ordered tree in which each node reproduces according to ξ, i.e., has i
children with probability pi = P{ξ = i}. Excluding the distribution where p1 ≡ 1, it is well known that these
trees are finite with probability one if and only if E{ξ} ≤ 1. Simultaneously, the first moment of the size of
trees with E{ξ} = 1 is infinite. We will consider these critical trees with mean µ := E{ξ} = 1 and variance
σ2 := V{ξ} ∈ (0,∞).

Let T denote a ξ-Galton–Watson tree, which from now on we will call unconditional Galton–Watson tree.
We distinguish this type of tree from from the trees we study in this paper, that are conditioned to have
size |T | = n. We will denote such a conditional tree as Tn. Conditional Galton–Watson trees [19] are an
especially interesting structure to study, as certain offspring distributions have been shown to correspond to
families of “simply-generated trees” [26], such as k-ary trees, Motzkin trees and planted plane trees. Picking
a tree uniformly at random from such a family is thus equivalent to generating a corresponding conditional
Galton–Watson tree.

Theorem 1. Given a critical conditional Galton–Watson tree with offspring distribution having variance
0 < σ2 <∞, the Horton–Strahler number of its root satisfies

H(Tn)

log2 n
→ 1

2

in probability as n→∞.

This expression synthesizes all previously known first order results; however, higher order concentration
information is not presented here. A major portion of this paper consists in proving this theorem. Section 2
begins with results regarding the unconditional Galton–Watson tree, then the lower and upper bounds are
respectively shown in sections 3 and 4.

Furthermore, we present other definitions of possible Horton–Strahler numbers (see section 5), and offer
partial or full results about these numbers. For instance, included in these definitions is a k-ary register
function of a tree for k ≥ 2, which corresponds to a computational model in which each register in a
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computer takes k inputs to produce an output in one step. Specifically, we define it to be equal to the height
of the largest embedded complete k-ary tree. For k ≥ 3, we show that the k-ary register function of a critical
conditional Galton–Watson tree with offspring distribution satisfying some conditions on its higher moments
grows as

log2 log2 n

log2 k/2

in probability as n→∞.

2. Unconditional Galton–Watson Trees

We begin by determining the distribution of the Horton–Strahler number of a Galton–Watson tree with no
size conditioning. These results, particularly Lemma 3, will be crucial to later proofs of the upper and lower
bounds in Sections 3 and 4. Indeed, unconditional Galton–Watson trees are a part of the construction of
Kesten’s limit tree [21], which we will introduce and heavily use in the next section.

Our first lemma formalizes the intuition that nodes with one child are irrelevant to the Horton–Strahler
number, as these nodes simply pass on the number of their only child. We will show that, in fact, altering
the offspring distribution by removing the probability of having one child still preserves the original Horton–
Strahler number.

Lemma 2. Let ξ be an offspring distribution with mean µ = 1 and variance 0 < σ2 <∞. Let ζ be an altered
distribution defined by P{ζ = 1} = 0 and P{ζ = i} = pi/(1 − p1) for i 6= 1. Notice we still have Eζ = 1
and 0 < Vζ < ∞. Then, letting T and T ′ be unconditional Galton–Watson trees with respective offspring
distributions ξ and ζ, we have

H(T ′)
L
= H(T ), ()

where
L
= denotes equality in distribution.

Proof. Let t be a discrete rooted tree and t′ be the corresponding tree where the vertices with outdegree 1
are forgotten. We denote by S(t′) the set of discrete rooted trees that become t′ under this procedure. Notice
that

P{T = t} = p
|{u∈t: d(u)=1}|
1 (1− p1)|t

′|P{T ′ = t′},

where d(u) denotes the outdegree of u. By the definition of H, we have H(t) = H(t′). Then, letting N0

denote the non-negative integers, for any x ∈ N0,

P{H(T ) = x} =
∑

t:H(t)=x

P{T = t}

=
∑

t′:H(t′)=x

∑
t∈S(t′)

P{T = t}

=
∑

t′:H(t′)=x

∑
nv∈N0:v∈t′

( ∏
v∈t′

pnv
1

)
(1− p1)|t

′|P{T ′ = t′}

=
∑

t′:H(t′)=x

P{T ′ = t′}
∏
v∈t′

(
(1− p1)

∑
nv∈N0

pnv
1

)
= P{H(T ′) = x}. �

Armed with this lemma, we will be able to simplify proofs by trivially removing single-child nodes from
any offspring distribution we are given without changing the distribution of the Horton–Strahler number.

We now come to the main theorem regarding the Horton–Strahler number of unconditional Galton–
Watson trees: this number has an exponentially decreasing probability. This has already been shown for
Catalan trees; for instance, see Devroye and Kruszewski [8]. We note that a random Catalan tree can be
generated as a Galton–Watson tree with offspring distribution p0 = 1/4, p1 = 1/2, p2 = 1/4.
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A Simple Proof for Catalan Trees. We can prove by induction that for a Catalan tree T , for x ∈ N0,

P{H(T ) = x} = 2−(x+1).

Proof. First, we have from Lemma 2 that the Horton–Strahler number of a Catalan tree is distributed
identically to that of a full binary tree generated via the distribution p0 = 1/2, p1 = 0, p2 = 1/2. The base
case is trivial:

P{H(T ) = 0} = p0 = 1/2.

Then, supposing that P{H(T ) = x− 1} = 2−x, we have

p := P{H(T ) = x} = p2

(
(2−x)2 + 2p

x−1∑
i=0

2−(i+1)
)

=
1

2

(
(2−x)2 + 2p(1− 2−x)

)
,

which can be simplified to p = 1
2 (2−x), completing the proof. �

Curiously, trees generated from all other critical offspring distributions give rise to very similar formulas
for their Horton–Strahler numbers.

Lemma 3. Let T be an unconditional Galton–Watson tree with offspring distribution ξ with µ = 1 and
0 < σ2 <∞. Then, with x ∈ N,

P{H(T ) = x} = Θ(2−x+o(x)) ()

as x→∞.

The proof of this lemma relies on a recursive formula for P{H(T ) = x} and some technical details. Since
they provide little intuition, we relegate it to Appendix A.

We can also show that the Horton–Strahler number of any critical unconditional Galton–Watson tree
(including those with infinite variance) has an exponentially decreasing upper bound.

Lemma 4. For all critical unconditional Galton–Watson trees with any σ2 ∈ (0,∞], we have that qi is
monotonically decreasing as i→∞. Also, for i ≥ 2,

qi ≤
p0

(1− p1)2i/2
.

Proof. Passing from ξ to ζ as in Lemma 2, we have from () that qi ≤ q2i−1/2q
+
i , and so

q2i ≤ qiq+i ≤ q
2
i−1/2.

Thus, qi is monotone and qi ≤ q0/2i/2 = p0/2
i/2. �

3. Lower Bound via Kesten’s Limit Tree

In order to prove the lower bound, we will be using the notion of Kesten’s limit tree [21]. This limit tree
T∞ is an infinite tree consisting of a central spine and unconditional trees hanging off the spine. To define
how this tree and its spine is generated, we define a new size-biased random variable ζ as P{ζ = i} = ipi,
where pi correspond to our original offspring distribution ξ. This is a valid probability distribution since we
are considering distributions ξ with mean E{ξ} =

∑∞
i=1 ipi = 1. The spine of Kesten’s tree thus consists of

one node on each level that reproduces according to ζ; note that ζ ≥ 1, making this tree infinite. One of the
children of each spine node, picked uniformly at random, is assigned to be the spine node of the next level,
and all others are roots of an unconditional Galton–Watson tree with offspring distribution ξ. There is a
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local convergence of conditional Galton–Watson trees to this infinite tree. Denote for any tree T the finite
tree τ(T, h), which is T cut off after level h. We have that for all fixed heights h > 0 and all trees t,

lim
n→∞

P{τ(Tn, h) = τ(t, h)} = P{τ(T∞, h) = τ(t, h)}. ()

In the case where the variance of ξ is finite, this convergence does not in fact require the truncation height h
to be a constant — it can also depend on the size n of the tree. It has been shown by Kersting [20, Thereom
5] (see also Stufler [34, Theorem 5.2] for a related result) that this holds for sequences of heights hn satisfying

hn = o(
√
n).

Intuitive “proof”. The view of the conditional Galton–Watson tree converging to a Kesten tree gives us
the intuition for the Horton–Strahler number of the root being 1

2 log2 n. It is well known [12] that conditional
Galton–Watson trees have expected height O(

√
n). Then, for approximation, consider a Kesten tree with

its spine cut off at height
√
n/σ, denoted T∞√

n/σ
. This tree has a spine of length

√
n/σ and each spine node

indexed i = 1, . . . ,
√
n/σ has ζi − 1 independent unconditional Galton–Watson trees hanging from it. We let

the j-th unconditional tree hanging from spine node i be Tij , j = 1, . . . , ζi− 1. The Horton–Strahler number
of the root then satisfies

max
ij

H(Tij) ≤ H
(
τ(T∞√n/σ)

)
≤ max

ij
H(Tij) + 1.

We therefore have

P
{
H
(
T∞√n/σ

)
≥ x

}
≤ P

{
max
ij

H(Tij) + 1 ≥ x
}

≤ E
{√n/σ∑

i=1

ζi−1∑
j=1

1[H(Tij)≥x−1]

}
.

Using Wald’s inequality [35] with E{ζi} = σ2 + 1, and noting that Tij are all i.i.d. and distributed as T ,

P
{
H
(
T∞√n/σ

)
≥ x

}
≤
√
n

σ
σ2P{H(T ) ≥ x− 1}

= σ
√
n · 2−x+2+o(x), ()

which tends to zero if x = (1/2 + ε) log2 n for some ε > 0.
For the lower bound, the following is slightly incorrect, as it assumes that each spine node has at least

one hanging tree. We present it here to illustrate the main idea; see the proof of Theorem 1 for the rigorous
statement.

P
{
H
(
T∞√n/σ

)
≤ x

}
≤ P

{
max
ij

H(Tij) ≤ x
}

≤ P
{√n/σ⋂

i=0

[H(Ti1 ≤ x]
}

≤ (1−P{H(T ) > x})
√
n/σ

since the unconditional trees Tij are i.i.d. distributed as T . Then, applying Lemma 3 yields

P
{
H
(
T∞√n/σ

)
≤ x

}
≤ (1− 2−x+o(x))

√
n/σ

≤ exp(−
√
n/σ2−x+o(x)), ()

which tends to zero if x = (1/2− ε) log2 n for ε > 0.

We thus have that the Horton–Strahler number of Kesten’s limit tree truncated at level
√
n/σ tends to

1
2 log2 n. Intuitively, since conditional Galton–Watson trees converge to this limit tree as n → ∞, in the
sense of (), the Horton–Strahler number of our conditional trees should be the same as n → ∞. Indeed,
the lower bound for conditional Galton–Watson trees can be proven using the same method as what we have
just used in this intuitive proof.
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Proof of the lower bound in Theorem 1. We seek to prove that

P{H(T ) ≤ x | |T | = n} → 0 ()

if x = (1/2− ε) log2 n for any ε > 0.
Recall some notation: T denotes an unconditional Galton–Watson tree, and T∞ denotes Kesten’s limit

tree. For some integer `, we can cut off T∞ by taking all the nodes on the spine including the node at
distance ` from the root, but no further. To this, we can add all unconditional trees hanging from these `+ 1
spine nodes. This forms a finite tree that we denote T∞` ; a diagram is shown in Figure 2.

ρ

`
Figure 2. A visualization of T∞` :
Kesten’s limit tree T∞ rooted at
a node ρ, with its spine truncated
after the spine node on level `.
Each triangle represents a hang-
ing unconditional Galton–Watson
tree.

Let h(T ) denote the height of a tree T , and let Tn denote the tree T conditioned to have size |T | = n.
For some x ≥ 1, define the three probabilities

I := P

{
h
(
T∞√n/ logn

)
>

√
n

log n

}
,

II := P

{
τ

(
Tn,

√
n

log n

)
6= τ

(
T∞,

√
n

log n

)}
,

III := P

{
h
(
T∞√n/ logn

)
≤
√

n

log n
, τ

(
Tn,

√
n

log n

)
= τ

(
T∞,

√
n

log n

)
, H(Tn) ≤ x

}
.

()

We have
P{H(Tn) ≤ x} ≤ I + II + III. ()

Let’s start with the two terms that do not depend on x. As discussed earlier in this section, Kersting [20]
showed that P{τ(Tn, hn) 6= τ(T∞, hn)} = o(1) if hn = o(

√
n). Thus, since

√
n/ log n = o(

√
n), we have

II = o(1). ()

Now for the first term, let ` =
√
n/ log n. We recall our notation of ζi as the number of children of the i-th

node on the spine, and further define Tij to be the j-th Galton–Watson tree hanging from this i-th spine
node. These unconditional trees are i.i.d. and distributed as T . We thus have

I ≤ E

{∑̀
i=0

ζi−1∑
j=1

1[
h(Tij)≥

√
n/ logn−`

]},
and by Wald’s identity [35], as E{ζ} = σ2 + 1,

I ≤
( √

n

log n
+ 1

)
σ2P

{
h(T ) ≥

√
n

log n
−
√
n

log n

}
.

Finally, using Kolmogorov’s estimate (see [22] or [25, Theorem 12.7]), this grows as

I = O

( √
n

log n
σ2 2

σ2
√
n/ log n

)
= O

(
2√

log n

)
, ()
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which approaches zero as n→∞.
For the third term, note that the first and second events included in the probability imply that the

truncated Kesten limit tree T∞` at ` =
√
n/ log n is completely included in our conditional Galton–Watson

tree Tn. This inclusion implies that H(T∞` ) ≤ H(Tn), which yields

III ≤ P {H(T∞` ) ≤ x} .

Note that now this is exactly the form of what we had in the intuitive proof! We can thus follow exactly in
the steps outlined in the derivation of (). Let Tij again denote the j-th unconditional Galton–Watson tree

hanging from the i-th spine node. Let N =
∑`
i=0(ζi − 1) be the number of hanging trees, which has mean

E{N} = (` + 1)σ2. Note that the hanging trees are i.i.d. distributed as T , the number N is a sum of ` + 1
i.i.d. random variables. Therefore, using the law of large numbers, we can bound

P

{
N < (`+ 1)

σ2

2

}
≤ P

{∣∣N − (`+ 1)σ2
∣∣ > (`+ 1)

σ2

2

}
= o(1). ()

We then have

III ≤ P
{

max
ij

H(Tij) ≤ x,N ≥ (`+ 1)
σ2

2

}
+ P

{
max
ij

H(Tij) ≤ x,N < (`+ 1)
σ2

2

}
()

≤ (1−P{H(T ) > x})`σ
2/2 + o(1)

≤ exp

(
−σ

2

2

√
n

log n
2−x+o(x)

)
+ o(1), ()

which tends to zero as n→∞ for x = (1/2− ε) log2 n; ε ∈ (0, 1/2). �

Thus, modulo some details regarding the convergence of the conditional Galton–Watson tree to Kesten’s
limit tree, the intuitive proof idea miraculously works to show the lower bound of our result. However, the
upper bound cannot be shown following this proof sketch; the contributions of terms underneath any given
cutoff cannot be ignored. We will instead offer a proof based on the construction of rotationally invariant
events.

4. Upper Bound via a Rotationally Invariant Event

For the upper bound, we note that in order for a tree to have a Horton–Strahler number equal to k, we must
be able to embed a complete binary tree of height k in the original tree (see Figure 1).

We therefore immediately have a deterministic upper bound of

Hn ≤ log2

(n+ 1

2

)
for any tree of size n. We seek to do better than this.

Random walk view of a Galton–Watson tree. Numbering the nodes in a Galton–Watson tree T in
preorder traversal, each node has a tree degree ξi independently distributed as ξ. This sequence of random
variables defines a tree of size

|T | = min{t > 0 : 1 + (ξ1 − 1) + · · ·+ (ξt − 1) = 0}

= min
{
t > 0 :

t∑
i=1

ξi = t− 1
}
.

()

Thus, for a tree of size |T | = n, the event

A =
{ n∑
i=1

ξi = n− 1
}

()

must be true, and furthermore, the random walk must stay positive until the last time step where it reaches
−1, i.e., for all t < n,

∑t
i=1(ξi − 1) ≥ 0.
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Rotationally invariant events. Any event B on a tree T of size |T | = n is determined by the degree
sequence ξ1, . . . , ξn of the tree. We say that a general event B on random variables ξ1, . . . , ξn satisfies
rotation invariance if it remains true when applied to ξi, . . . , ξn, ξ1, . . . , ξi−1 for any rotation i ∈ {1, . . . , n}.
We have a powerful tool to deal with such events on a conditional Galton–Watson tree T . Letting A be the
event defined in () and using Dwass’ cycle lemma [10], it can easily be shown (e.g. in [4]) that

P{B | |T | = n} = P{B | A}. ()

We have an exact asymptotic limit for P{A} due to Kolchin [23]. For ξ1, . . . , ξn distributed i.i.d. as ξ, letting
the period of ξ1 be

h = gcd{i ≥ 1 : pi > 0},

we have

P{A} ∼ h

σ
√

2πn
. ()

Now, note that any sequence of random variables ξ1, . . . , ξn on N0 defines a forest in which the last tree is
possibly unfinished. The construction is obtained as follows: at index k (and initializing with k = 1), we
pick the first index ` ∈ {k, . . . , n} for which the degree sequence ξk, . . . , ξ` defines a tree, i.e., satisfies ()
for an appropriate tree size. If there is no such index `, then the tree starting at k is unfinished. Otherwise,
the same procedure is repeated to determine the next tree with k ← `+ 1, until ` = n.

Given a forest F , we let T [F ] denote the first finished tree in F . If the first tree is unfinished, let T [F ]
be the empty set.

3, 0, 2, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 3, 0, 2, 0, 0, 2, 0, 0

0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 3, 0, 2, 0, 0, 2, 0, 0, 3, 0, 2

Figure 3. Example of the forest corresponding to a sequence (ξ1, . . . , ξ27), as well as the
forest F4 corresponding to the sequence rotated to begin at the i = 4th entry. Remark how in
both cases, the last tree is unfinished.

In order to make use of () and () in our current setting, we must define a rotationally invariant event
that is related to the Horton–Strahler number. Given a sequence of ξ1, . . . , ξn each i.i.d. distributed as ξ, for
each i ∈ {1, . . . , n}, we let Fi be the forest defined by the rotated sequence ξi, . . . , ξn, ξ1, . . . , ξi−1 and let ηi
be the Horton–Strahler number of its first tree T [Fi], where ηi = 0 if T [Fi] = ∅, and otherwise

ηi = H(T [Fi]).

Then, we define
H∗n = max

1≤i≤n
ηi,

a rotationally invariant quantity. On the event that the random variables ξ1, . . . , ξn correspond to a tree Tn
of size n, we have H(Tn) = η1 and thus

H(Tn) ≤ H∗n. ()

The upper bound we seek to show will follow from the following theorem linking the Horton–Strahler
number of a conditional Galton–Watson tree to the η1 we just defined.
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Lemma 5. Given a critical conditional Galton–Watson tree with offspring distribution ξ and 0 < σ2 < ∞,
for some constant c,

P{H(T ) ≥ x | |T | = n} ≤ c
√
nP{η1 ≥ x− 2} ()

for any integer x ≥ 3 where, as previously defined, η1 is the Horton–Strahler number of the first tree in a
sequence of n random variables i.i.d. distributed as ξ.

Proof. Let ξ1, . . . , ξn be i.i.d. distributed as ξ. Then, recalling () and using () since H∗n is a rotationally
invariant event, we have

P{H(T ) ≥ x | |T | = n} ≤ P{H∗n ≥ x | A}

=
P{H∗n ≥ x,A}

P{A}
.

()

If ηi ≥ x, then there must exist some j with ηj ≥ x− 2 such that the size of the corresponding tree T [Fj ] is
at most n/4. This is since there must be at least four disjoint subtrees with Horton–Strahler number greater
or equal to x− 2, and the smallest of these subtrees must have size |T [Fj ]| ≤ n/4. We thus define

η
(n/4)
i =

{
ηi if |T [Fi]| ≤ n/4,
0 otherwise

. ()

for all i ∈ {1, . . . , n}. Thus, the numerator of () satisfies

P{H∗n ≥ x,A} ≤ P
{

max
i
η
(n/4)
i ≥ x− 2, A

}
≤ 4P

{
max

1≤i≤n/4
η
(n/4)
i ≥ x− 2, A

}
. ()

Next, we define the cumulative sums Sk for k ∈ {0, . . . , n} as S0 = 0, and for k ≥ 1,

Sk = ξ1 + · · ·+ ξk. ()

For 1 ≤ k < ` ≤ n, we also let F [k, `] correspond to the forest defined by ξk, . . . , ξ` which has a possibly
unfinished last tree. Then, for any i ∈ {1, . . . , n/4}, we define η∗i as follows:

i) if the first tree in F [i, n/2− 1] is finished, let η∗i = ηi;

ii) otherwise, if the first tree in F [i, n/2− 1] is unfinished, let η∗i be the maximal Horton–Strahler number
for any subtree occurring in the forest F [i, n/2− 1], and let η∗i = 0 if there are no finished subtrees.

Note that we again consider the Horton–Strahler number of any unfinished tree in this forest to be zero. As
such, the subtree for which the maximum in (ii) occurs has size less than n/2, and so for all 1 ≤ i ≤ n/4,

η
(n/4)
i ≤ η∗i ≤ ηi.

Then, defining the events

Ai =

{
max
1≤j<i

η∗j < x− 2, η∗i ≥ x− 2

}
and

Di =

{
max
1≤j<i

η∗j < x− 2, η∗i ≥ x− 2, A

}
= Ai ∩A,

and applying the union bound, the inequality () becomes

P{H∗n ≥ x,A} ≤ 4P

{
max

1≤i≤n/4
η∗i ≥ x− 2, A

}
≤ 4

n/4∑
i=1

P {Di} .

9



We must now analyze the event Di:

P{Di} = P
{
Ai,

n∑
j=1

ξj = n− 1
}

=

∞∑
k=−∞

P
{
Ai, Sn/2−1 = k,

n∑
j=n/2

ξj = n− k − 1
}

=

∞∑
k=−∞

P
{
Ai, Sn/2−1 = k

}
·P
{ n∑
j=n/2

ξj = n− k − 1
}

≤
∞∑

k=−∞

P
{
Ai, Sn/2−1 = k

}
· sup
k

P
{ n∑
j=n/2

ξj = k
}
,

where the third equality holds by independence of the ξi’s. In order to bound this, we make use of Rogozin’s
inequality (see [29, Page 56] or [7, Theorem 2]), which we recall states that if X1, . . . , Xn are i.i.d. random
variables and

p = sup
x

P{Xi = x},

then
sup
x

P{X1 + · · ·+Xn = x} ≤ α√
n(1− p)

()

for some universal constant α. In our case, we consider offspring distributions ξ satisfying 0 < σ2 < ∞,
which guarantees p0 > 0. We therefore have p < 1, and arrive at

P{Di} ≤
c′√
n
P{Ai} ()

for some constant c′. Further defining the event

Bi =

{
max
1≤j<i

η∗j < x− 2

}
,

we can write the event Ai as Ai = Bi ∩ {η∗i ≥ x − 2}. For this event Ai to occur, if i > 1, we must have
Si−1 − (i− 1) < min0≤`<i−1(S` − `). Indeed, for x ≥ 3 and a fixed 1 < i ≤ n/4, to have η∗i ≥ x− 2 ≥ 1, the
forest F [i, n/2 − 1] must contain a finished subtree t. Then, suppose for contradiction that there exists an
unfinished tree in ξ1, . . . , ξi−1 starting at index j ∈ {1, . . . , i− 1}. Expanding to consider ξ1, . . . , ξn/2−1, the
finished t that must exist will also be a subtree of this unfinished tree, causing us to have η∗j ≥ η∗i . Therefore
for the event Ai to occur, every subtree in F [1, i−1] must be finished, leading to our condition. The situation
will look as illustrated in Figure 4.

For i = 1, we directly have
P{A1} ≤ P{η1 ≥ x− 2}.

10



i− 1

S′j

j

· · ·

bn/2c − 1

k

Figure 4. Illustration of the random walk S′j := Sj − j on a possible occurrence of the event
Ai. The blue part represents the finished subtree that must exist if η∗i ≥ 1. Observe that all
the subtrees corresponding to ηj for j ≤ i− 1 are finished before i.

For i > 1, letting S′j = Sj − j for any j ∈ N0,

P{Ai} =

∞∑
k=−∞

P
{
Bi, S

′
i−1 = k < min

1≤`<i−1
S′`, η

∗
i ≥ x− 2

}
=

∞∑
k=−∞

P
{
Bi, S

′
i−1 = k < min

1≤`<i−1
S′`

}
·P {η∗i ≥ x− 2}

≤
−1∑

k=−∞

P{S′i−1 = k < min
1≤`<i−1

S′`} ·P {ηi ≥ x− 2}

=

−1∑
k=−∞

|k|
i− 1

P{S′i−1 = k} ·P {η1 ≥ x− 2}

=
E
{
|S′i−1|1[S′i−1≤−1]

}
i− 1

P {η1 ≥ x− 2} ,

where the last line follows from Dwass’ formula[10]. Then, by Cauchy-Schwartz,

P{Ai} ≤ E

{ |S′i−1|
i− 1

}
P {η1 ≥ x− 2}

≤

√
E{(S′i−1)2}

i− 1
P {η1 ≥ x− 2}

=
σ√
i− 1

P {η1 ≥ x− 2} .

Thus, considering the two cases i = 1 and i > 1,

Di ≤

{
c′√
n
P {η1 ≥ x− 2} i = 1,

c′√
n

σ√
i−1P {η1 ≥ x− 2} i > 1.

()

Therefore, returning to the numerator of (), we have

P{max
i
ηi ≥ x,A} ≤ 4P{η1 ≥ x− 2} · c

′
√
n

(
1 +

n/4∑
i=2

σ√
i− 1

)
≤ c′′P{η1 ≥ x− 2}
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for some constant c′′. Finally, we have from () that there exists another constant c such that

P{H(T ) ≥ x | |T | = n} ≤ c′′P{η1 ≥ x− 2}
P{A}

≤ c
√
nP{η1 ≥ x− 2},

completing the proof. �

Everything we require to complete the proof of Theorem 1 follows from this lemma.

Proof of the upper bound in Theorem 1. Recall that we would like to show that for a critical Galton–Watson
tree T with 0 < σ2 <∞ conditioned to have size |T | = n, as n→∞,

P{H(T ) ≥ x | |T | = n} → 0 ()

if x = (1/2 + ε) log2 n for any ε > 0.
We have that

P{η1 ≥ x− 2} ≤ P{H(T (ξ1, ξ2, · · · )) ≥ x− 2},
where H(T (ξ1, ξ2, · · · )) is the Horton–Strahler number of the first tree in the infinite sequence ξ1, ξ2, . . . , i.e.,
the Horton–Strahler number of an unconditional Galton–Watson tree.

Recall that we had from Lemma 3 that

P{H(T ) ≥ x− 2} ≤ 2−x+o(x)

as x → ∞ for an unconditional Galton–Watson tree T . Thus, by Lemma 5, there exists a constant c such
that

P{H(T ) ≥ x | |T | = n} ≤ c
√
n2−x+o(x),

which tends to zero if x = (1/2 + ε) log2 n, for any ε > 0. �

5. Generalizations of the Horton–Strahler Number

Our definition () is not the only possible one. In this definition, the number increases at each river branching
where two rivers attain the same maximal flow. We can define various generalizations of this number for
non-binary trees, ranging from less to more strict. We will discuss three additional natural definitions. All of
them will be recursively defined from the values of all subtrees, and leaf nodes u with subtree size |T [u]| = 1
will always have the value 0.

i) The French Horton–Strahler number, where French refers to its source, Auber et. al. [2]. If the root
of the tree T has k children with subtrees taking values F1 ≥ F2 ≥ · · · ≥ Fk ≥ 0 (sorted in decreasing
order), then the tree has French Horton–Strahler number

F (T ) := max
1≤i≤k

(Fi + (i− 1)). ()

ii) The Canadian Horton–Strahler number. If the root of the tree T has k children with subtrees taking
values C1 ≥ C2 ≥ · · · ≥ Ck ≥ 0 (sorted in decreasing order), and we have r children with the maximal
value C1 = · · · = Cr > Cr+1 ≥ · · · , then the root has Canadian Horton–Strahler number

C(T ) := C1 + (r − 1) = max
1≤i≤k

Ci + (r − 1). ()

iii) The (standard) Horton–Strahler number studied earlier in this paper was given in (). Following similar
notation as given in this list, for k children with subtrees taking values H1 ≥ H2 ≥ · · · ≥ Hk ≥ 0, then
the Horton–Strahler number of the root is

H(T ) :=

{
H1 = max1≤i≤kHi if k = 1,

H1 + 1[H1=H2] if k > 1.

12



iv) The rigid Horton–Strahler number. Again, with the same notation of k children with subtrees taking
values R1 ≥ R2 ≥ · · · ≥ Rk ≥ 0, we have

R(T ) :=

{
R1 = max1≤i≤k Ri if k = 1,

R1 + 1[R1=···=Rk] if k > 1.
()

Note that all these definitions coincide for binary trees.

4

3

22 221

1 2 2

22

(i) French Horton–Strahler number

3

3

22 221

1 2 2

22

(ii) Canadian Horton–Strahler number

3

2

11 111

1 1 1

12

(iii) standard Horton–Strahler number

2

2

11 111

1 1 1

12

(iv) rigid Horton–Strahler number

Figure 5. An illustration of the different Horton–Strahler numbers
(i)–(iv) for a given tree. In all cases, the leaves have value 0.

We also have the following ordering:

Lemma 6. For any tree T , the different Horton–Strahler numbers are ordered according to

F (T ) ≥ C(T ) ≥ H(T ) ≥ R(T ). ()

The proof proceeds by induction on the height of the tree, and is given in Appendix B.
From this lemma, we immediately get that (1/2) log2 n is a universal lower bound for both the French and

the Canadian Horton–Strahler numbers F (Tn) and C(Tn) of any critical conditional Galton–Watson tree Tn
with 0 < σ2 <∞. Indeed, the French Horton–Strahler number F (Tn) for a uniformly random k-ary tree Tn
of size n was shown to satisfy

F (Tn) ∼ 1

2
log2 n ()

in probability by Drmota and Prodinger [9]. They in fact show that F (Tn) is quite concentrated about
(1/2) log2 n, regardless of the value of k ≥ 2. We recall that a uniformly random k-ary tree of size n is a
conditional Galton–Watson tree with offspring ξ ∼ Binomial(k, 1/k). Therefore, from what we have shown
in this paper, its (standard) Horton–Strahler number also scales as (1/2) log2 n. One may then be tempted
to believe that () holds for the French Horton–Strahler number of conditional Galton–Watson trees Tn
generated from any offspring distribution ξ with finite variance σ2, but that is false. The definition of F (Tn)
is quite sensitive to the degree distribution: it is easy to see that if Mn is the maximal degree of any node in
Tn, then

F (Tn) ≥Mn − 1.

13



Maximal degrees of conditional Galton–Watson trees are well understood; see for example Janson’s com-
plete treatment [17]. If ξ has a polynomial tail, then the maximal degree Mn grows at a polynomial rate
as well. For exponential tails, Mn grows as a constant multiple of log n. Thus, for general critical offspring
distributions, a (1/2) log2 n upper bound for the French Horton–Strahler number does not hold. However, it
seems plausible that for distributions with bounded degree or exhibiting a faster-than-exponential decrease
in the tail, () would remain true.

The Canadian Horton–Strahler number C(Tn) is much less sensitive than F (Tn). Just like the French
number, it satisfies the lower bound

P{C(Tn) ≤ (1/2− ε) log2 n} = o(1)

for all ε > 0; but C(Tn) can still be much larger than (1/2) log2 n.

Finally, from Lemma 6, the rigid Horton–Strahler number has (1/2) log2 n+o(1) as a strict upper bound.
We can further study it using the tools developed in this paper. We will find that it tends as either log2 log2 n
or log2 n, modulo constant multiplicative factors. Our results are presented in section 6.

Another possible generalization of the Horton–Strahler can be given from the structural view of the
number. We will recall the structural definition of the standard Horton–Strahler number (i.e., the register
function) and define the k-ary register function for any tree T .

i) The register function (i.e., the standard Horton–Strahler number) H(T ) is the height of the largest
complete binary tree that can be embedded in T .

ii) Similarly, we define the k-ary register function K(T ) for any given k ≥ 2 to be the height of the largest
complete k-ary tree that can be embedded in T . The definition can also be written recursively. First,
set the value of a leaf node u with |T [u]| = 1 to be 0. Then, if the root of the tree T has ` ≥ k children
with values K1 ≥ K2 ≥ . . .K` (sorted in decreasing order), the tree has k-ary register function

K(T ) := K1 + 1[K1=···Kk]

= max{K1,Kk + 1}.
()

If the tree has ` < k children, then K(T ) = K1.

Note that as stated in the introduction, the register function corresponds to H(T )+1 in the literature (which
amounts to letting the leaves have value 1). We omit this difference in our discussion for clarity of notation.

The definitions of the regular register function and the k-ary register function coincide for k = 2. We
also have that K(T ) ≤ H(T ) for any k. However, K(T ) does not fit cleanly into the chain of inequalities in
Lemma 6; its relationship to the rigid Horton–Strahler number depends on the specific offspring distribution.

The asymptotic behaviour of the k-ary register function for a conditional Galton–Watson tree can be
determined quite simply using the tools developed in this paper. The result will be presented in section 7.
We prove a lemma regarding the unconditional tree, and then the theorem follows by the same proof as for
the rigid Horton–Strahler number.

6. The Rigid Horton–Strahler Number

We begin with analogs of Lemma 2 and Lemma 3 regarding unconditional Galton–Watson trees for the rigid
Horton–Strahler number. Note that we only need to deal with trees satisfying P{ξ > 2} > 0, since all the
definitions of the Horton–Strahler number coincide for binary trees.

Lemma 7. Let ξ be an offspring distribution with µ = 1 and 0 < σ2 <∞. Consider the altered distribution
ζ defined in Lemma 2 with the probability of one child set to zero. Then, letting T and T ′ be unconditional
Galton–Watson trees with respective offspring distributions ξ and ζ, we have

R(T ′)
L
= R(T ). ()

14



This lemma can be proved in exactly the same way as Lemma 2 with a replacement of H() by R(). It is
used to show the following analog of Lemma 3 for the rigid Horton–Strahler number.

Lemma 8. Consider an unconditional critical Galton–Watson tree T with 0 < σ2 <∞. Define a parameter

d := min{i > 1 : pi > 0}. ()

If d = 2, then

P{R(T ) = x} =

(
1 +

√
σ2

2p2

)−x+o(x)
. ()

Otherwise, if d > 2, then there exist constants αi > 0 such that

(1 + α3)−α4(d/2)
x

≤ P{R(T ) = x} ≤ (1 + α1)−α2(d/2)
x

()

for x ≥ α5.

The proof of this theorem proceeds similarly to that of Lemma 3, and is included in Appendix C. Note that
for binary critical trees T , we have p0 = p2, implying p1 = 1− 2p2, and σ2 = p1 + 4p2 − 1 = 2p2. Therefore,√
σ2/2p2 = 1 and, as expected, the rigid Horton–Strahler number is equal to the regular Horton–Strahler

number:
P{R(T ) = x} = 2−x+o(x).

We can now derive asymptotics for the rigid Horton–Strahler number just as we did in sections 3 and 4.
As shown in the preceding theorem, the parameter d matters a lot, determining whether the growth scales
as log2 n or log2 log2 n. The results are formalized below.

Theorem 9. Consider a critical Galton–Watson tree T conditioned to be of size |T | = n, and define d as in
the previous theorem. If d > 2, we have

R(Tn)

log2 log2 n
→ 1

log2 d/2
()

in probability as n→∞. On the other hand, if d = 2, letting γ = 1 +
√
σ2/2p2,

R(Tn)

log2 n
→ 1

2 log2 γ
()

in probability as n→∞.

Proof. Let us begin with the d > 2 case. The upper bound can be proven very simply. We have

P{R(T ) ≥ x | |T | = n} =
P{R(T ) ≥ x, |T | = n}

P{|T | = n}

≤ P{R(T ) ≥ x}
P{|T | = n}

= Θ(n3/2)P{R(T ) ≥ x},

where we have P{|T | = n} ∼ n−3/2 from Dwass’ formula and (), along the subsequence of n for which this
probability is positive. As T is an unconditional Galton–Watson tree, we can then bound the right hand side
using Lemma 8: there exist constants αi > 0 such that

P{R(T ) ≥ x | |T | = n} ≤ Θ(n3/2)α3(1 + α1)−α2(d/2)
x

.

This tends to zero for x = (1 + ε) log2 log2 n
log2 d/2

.
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The lower bound can be proven following the outline of the “intuitive proof” from section 3, using the
same method as the one used to prove the lower bound () of Theorem 1. We have the same decomposition
as in ():

P{R(T ) ≤ x | |T | = n} = I + II + III, ()

where I, II and III are exactly as defined in (), except with H’s switched for R’s in the definition of the
third term. We showed in () and () that both I and II are o(1). To upper bound III, we can once
again consider the truncated Kesten limit tree T∞` at ` =

√
n/ log n depicted in Figure 2, with unconditional

hanging trees Tij i.i.d. distributed as T . Recall from () that the number of hanging trees N satisfies

P

{
N < (`+ 1)

σ2

2

}
= o(1).

We can thus bound

III ≤ P{R(T∞` ) ≤ x}

≤ P
{

max
ij

R(Tij) ≤ x,N ≥ (`+ 1)
σ2

2

}
+ P

{
max
ij

R(Tij) ≤ x,N < (`+ 1)
σ2

2

}
≤ (1−P{R(T ) > x})(`+1)σ2/2 + o(1)

≤ exp

(
−σ

2

2

√
n

log n
P{R(T ) = x}

)
+ o(1)

≤ exp

(
−σ

2

2

√
n

log n

(
1

1 + α

)β(d/2)x)
+ o(1)

for some α, β > 0. As we wished to show, this tends to zero for x = (1− ε) log2 log2 n
log2 d/2

for any ε > 0.

For the d = 2 case, we note that the form of P{R(T ) = x} in () is identical to that of P{H(T ) = x},
where the base of the exponent changes from 2 to γ. The proofs of the upper and lower bound for the regular
Horton–Strahler number thus translate to this case exactly. We have

P{R(T ) ≤ x | |T | = n} ≤ exp

(
−
√
n

log n
γ−x+o(x)

)
,

which tends to zero for x =
(

1
2 log γ − ε

)
log2 n for any ε > 0, completing the lower bound. For the upper

bound, there exists c such that

P{R(T ) ≥ x | |T | = n} ≤ c
√
nγ−x+o(x),

which tends to zero for x =
(

1
2 log γ + ε

)
log2 n for any ε > 0. �

7. The k-ary Register Function

The k-ary register function K(T ) was defined in () as the height of the largest complete k-ary tree that can
be embedded in T . We can show that the k-ary register function of a critical Galton–Watson tree converges
to (log2 k/2)−1 log2 log2 n in probability. Recall that the asymptotic behaviour of the rigid Horton–Strahler
for the unconditional tree—Lemma 8—was quite tedious to prove. In contrast, we present a relatively simple
proof of the analogous result for the k-ary register function, albeit with an extra restriction on the moments
of the offspring distribution.

Lemma 10. Suppose k ≥ 3. Let ξ be such that E{ξ} = 1, V{ξ} > 0, E{ξk+1} <∞ and P{ξ ≥ k} > 0. Let
T be an unconditional Galton–Watson tree. Then there exists an x∗ ∈ N, α, α′ > 0 and β, β′ ∈ (0, 1) such
that

α′ · β′(k/2)
x

≤ P{K(T ) = x} ≤ α · β(k/2)x ()

for all integer x ≥ x∗.
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Before proving this theorem, note that this is exactly the same as the tail bounds of the rigid Horton–
Strahler number when d > 2; see Lemma 8, with k taking the place of d. Therefore, with minor modifications,
Theorem 9 gives us the asymptotic behaviour of K(T ) for a conditional Galton–Watson tree:

Theorem 11. Let k ≥ 3 and let ξ be as specified in the previous lemma. Then, letting Tn denote a conditional
Galton–Watson tree of size n,

K(Tn)

log2 log2 n
→ 1

log2 k/2
()

in probability.

We now proceed to the proof of the result about unconditional conditional Galton–Watson trees.

Proof of Lemma 10. Let us begin by defining qx = P{K(T ) = x}, as well as {pi}, q+x and q−x analogously to
how they were defined in previous sections. We can first solve

q0 = p0 + p1q0 + p2q
2
0 + · · · pk−1qk−10

for a finite value of q0.
Then, for x > 0, by multiple uses of the inclusion-exclusion formula, considering an upper bound on the

probability of having at least one child of value x, a lower bound on the probability of having k children of
value x or more and an upper bound on having at least k children of value x− 1 (and swapping upper and
lower for the second bound), we have

qx ≤ E

{(
ξ

1

)
qx −

(
ξ

2

)
q2x +

(
ξ

3

)
q3x

}
−
(
E

{(
ξ

k

)
(q+x )k − (k + 1)

(
ξ

k + 1

)
(q+x )k+1

})
+ E

{(
ξ

k

)
qkx−1

}
and

qx ≥ E

{(
ξ

1

)
qx −

(
ξ

2

)
q2x

}
−E

{(
ξ

k

)
(q+x )k

}
+

(
E

{(
ξ

k

)
qkx−1

}
−E

{
(k + 1)

(
ξ

k + 1

)
qk+1
x−1

})
.

Noting that E
{(
ξ
1

)}
= 1, E

{(
ξ
2

)}
= σ2/2 and for any ` ≤ k, E

{(
ξ
`

)}
:= µ` <∞, we have for k ≥ 3,

σ2

2
q2x − µ3q

3
x + µk(q+x )k − µk+1(k + 1)(q+x )k+1 ≤ µkqkx−1.

It is easy to see that q+x → 0 as x → ∞. Therefore, for any ε > 0, we can find x∗ such that for all x ≥ x∗,
qx ≤ ε and q+x ≤ ε We then have(

σ2

2
− µ3ε

)
q2x + (µk − µk+1(k + 1)ε) (q+x )k+1 ≤ µkqkx−1

for x ≥ x∗. Picking an ε > 0 and corresponding x∗ such that µk+1(k + 1)ε ≤ µk and µ3ε ≤ σ2/6, then for
every x ≥ x∗,

q2x ≤
3µk
σ2

qkx−1,

i.e.,

qx ≤
√

3µk
σ2

q
k/2
x−1. ()

Similarly, we have for the lower bound

σ2

2
q2x ≥ −µk(q+x )k + µkq

k
x−1 − (k + 1)µk+1q

k+1
x−1.
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From the upper bound (), we have that for any ε > 0, it is possible to find x∗∗ such that for all x ≥ x∗∗,
qx ≤ ε and q+x ≤ (1 + ε)qx. Choosing ε > 0 such that µk(1 + ε)kεk−2 ≤ σ2/2 and (k+ 1)µk+1ε ≤ µk

2 , we have

σ2q2x ≥
σ2

2
q2x + µk(1 + ε)kεk−2q2x

≥ σ2

2
q2x + µk(1 + ε)kqkx

≥ σ2

2
q2x + µk(q+x )k

≥ µk
2
qkx−1.

Therefore

qx ≥
√

µk
2σ2

q
k/2
x−1 ()

for all x ≥ x∗∗. The theorem statement is obtained by taking x ≥ max{x∗, x∗∗} and combining the two
estimates () and (). �

A related result. Cai and Devroye showed that the height Hn of the maximal complete k-ary tree occurring
as a terminal element in a critical Galton–Watson tree Tn satisfies

Hn

log2 log2 n
→ 1

log2 k

in probability (see Lemma 4.2, [6]). These elements are called fringe subtrees. They also showed the same
behaviour for the height H ′n of the maximal complete k-ary non-fringe tree which is allowed to occur as a
non-terminal element in Tn (see Lemma 5.7, [6]).

In this paper, we allow the complete k-ary tree to be embedded in Tn rather than an element of it. We
show that asymptotically, the height of the root is still a constant factor of log2 log2 n. The constant is now
larger than in the case analyzed by Cai and Devroye: (log2 k/2)−1 rather than (log2 k)−1.

Conclusion and Future Work

In this work, we considered the setting of critical conditional Galton–Watson trees. We showed that their
Horton–Strahler number scales as Θ(log2 n) in probability. This result was proven using the convergence of a
conditional Galton–Watson tree to Kesten’s limit tree, as well as the construction of a rotationally invariant
event using the random walk view of a tree.

We then defined several other generalizations of the Horton–Strahler number to non-binary trees, including
the rigid Horton–Strahler number and the k-ary register function. For the rigid Horton–Strahler case, we
identify a key parameter d denoting the first integer i ≥ 2 for which the offspring distribution has nonzero
probability of having i children. We then used the same methods introduced earlier in the paper to prove that
the k-ary register function and the rigid Horton–Strahler number both scale as Θ(log2 log2 n), respectively
when k ≥ 3 and d ≥ 3.

Our main result from sections 3 and 4 generalizes all previously known first order results for the regular
Horton–Strahler number. However, higher order concentration information is not presented here. It seems
plausible that the variance of H(Tn) is O(1); such a result would be very desirable.

On advice of one of the referees, we are offering the following question: could these results and methods
be used to prove a limit for the Horton–Strahler number of a subcritical conditional Galton–Watson tree?
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[30] I. Rodŕıguez-Iturbe, E. J. Ijjász-Vásquez, R. Bras, and D. G. Tarboton. Power law distributions of
discharge mass and energy in river basins. Water Resources Research, 28(4):1089–1093, 1992.
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A. Proofs for Unconditional Galton–Watson Trees

Proof of Lemma 3. For i ∈ N0, we define the probability that the Horton–Strahler number of the root is i
to be qi := P{H(T ) = i}, as well as the partial sums

q+i =

∞∑
k=i

qk and q−i =

i∑
k=0

qk.

We also define the generating function of the offspring distribution ξ to be f(s) =
∑∞
i=0 pis

i on 0 ≤ s ≤ 1,
where we recall that pi = P{ξ = i}.

By Theorem 2, we can without loss of generality assume that p1 = 0. We begin by finding a recursion
for qi in terms of the previously defined partial sums. First, for i = 0, since p1 = 0, we have q0 = p0 since
any non-zero number of children will yield a Horton–Strahler number greater or equal to one. Then, for the
root to have Horton–Strahler number i > 0, it must have ` ≥ 2 children. Then, either the Horton–Strahler
number does not change from the maximal number of the root’s children, or it increases by one, with r ≥ 2
children having Horton–Strahler number i− 1. We can therefore write

qi =

∞∑
`=2

p`

(
`qi(q

−
i−1)`−1 +

∑̀
r=2

(
`

r

)
qri−1(q−i−2)`−r

)
. ()

Rearranging gives us

qi

(
1−

∞∑
`=2

p``(q
−
i−1)`−1

)
=

∞∑
`=2

p`

(∑̀
r=0

(
`

r

)
qri−1(q−i−2)`−r − `q1i−1(q−i−2)`−1 − (q−i−2)`

)
and we can use the binomial theorem and the definition of the generating function f(s) of ξ to obtain

qi(1− f ′(q−i−1)) =

∞∑
`=2

p`
(
(qi−1 + q−i−2)` − `qi−1(q−i−2)`−1 − (q−i−2)`

)
=

∞∑
`=2

p`(q
−
i−1)` − qi−1

∞∑
`=2

`p`(q
−
i−2)`−1 −

∞∑
`=2

p`(q
−
i−2)`

=
(
f(q−i−1)− p0

)
− qi−1f ′(q−i−2)−

(
f(q−i−2)− p0

)
=
(
f(q−i−1)− f(q−i−2)

)
− qi−1f ′(q−i−2).

We thus have

qi =
f(q−i−1)− f(q−i−2)− qi−1f ′(q−i−2)

1− f ′(q−i−1)
. ()

Now, consider the Taylor expansion of f(s) near s = 1. Then,

f(s) = 1 + α1(s− 1) + α2
(s− 1)2

2!
+ · · · ,

where αi is the i-th descending moment of ξ

αi = E{ξ(ξ − 1) · · · (ξ − i+ 1)}.

In particular, we have α1 = 1 and α2 = σ2.
Also, by Taylor’s series with remainder, for some ε ∈ [0, 1],

f(q−i−1) = f(q−i−2) + qi−1f
′(q−i−2) +

q2i−1
2
f ′′(q−i−2 + εqi−1),
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and () becomes

qi =
(q2i−1/2)f ′′(q−i−2 + εqi−1)

1− f ′(qi−1)
.

We further have, for some ε′ ∈ [0, 1],

f ′(q−i−1) = f ′(1) + (q−i−1 − 1)f ′′(q−i−1 + ε′q+i )

= 1 + (q−i−1 − 1)f ′′(q−i−1 + ε′q+i ).

Thus,

qi =
q2i−1

2(1− q−i−1)
·
f ′′(q−i−2 + εqi−1)

f ′′(q−i−1 + ε′q+i )
.

Since f ′′(s) is an increasing function, we have the inequalities

q2i−1
2q+i

·
f ′′(q−i−2)

f ′′(1)
≤ qi ≤

q2i−1
2q+i

·
f ′′(q−i−1)

f ′′(q−i−1)
=
q2i−1
2q+i

, ()

where the ratio f ′′(q−i−2)/f ′′(1) is near 1 since f ′′(1) = σ2 ∈ (0,∞) and q−i−2 → 1 as i→∞. Thus, for every
ε > 0, there is some n0(ε), such that for all i ≥ n0(ε),

(1− ε)
q2i−1
2q+i

≤ qi.

We thus have for all i ≥ n0(ε),

(1− ε)
q2i−1
2q+i

≤ qi ≤
q2i−1
2q+i

. ()

In the following, we will set ε > 0 and consider i ≥ n0(ε). First, note that from (), q2i ≤ qiq
+
i ≤ q2i−1/2, so

qi ≤ qi−1/
√

2.

Our result will follow from the fact that if we have qi ≤ qi−1 · γ for some γ < 1, then

1

2
− h(ε) ≤ qi

qi−1
≤ 1

2
+ g(ε) ()

for positive functions h and g with limε→0 h(ε) = limε→0 g(ε) = 0. This will give us that, for i ≥ n0(ε),

qn0(ε)

(
1

2
− h(ε)

)i−n0(ε)

≤ qi ≤ qn0(ε)

(
1

2
+ g(ε)

)i−n0(ε)

,

which completes the proof, as ε > 0 was chosen arbitrarily.

Let’s now show (). From qi ≤ qi−1γ, we have that

q+i ≤ qi(1 + γ + γ2 + · · · ) =
qi

1− γ
.

Then, we have

qi ≥ (1− ε)
q2i−1
2q+i

≥ (1− ε)(1− γ)
q2i−1
2qi

,

giving us

qi ≥ qi−1

√
(1− ε)(1− γ)

2
. ()
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For the upper bound, we have that

q+i ≥ qi

(
1 +

√
(1− ε)(1− γ)

2
+ · · ·

)
=

qi

1−
√

(1−ε)(1−γ)
2

,

and thus

qi ≤
q2i−1
2q+i

≤
q2i−1
2qi

(
1−

√
(1− ε)(1− γ)

2

)
.

Similarly to the lower bound, this gives us

qi ≤ qi−1

√
1−

√
(1− ε)(1− γ)/2

2
.

0 0.5 1
0

0.5

1

1/
√

2

1/
√

2

√
2−
√

2/2

γ

Figure 6. Plot of γ 7→
√

1−
√

(1−γ)/2
2

(in
blue), along with the iterative contraction
starting at γ = 1/

√
2.

Now consider the map γ 7→
√

1−
√

(1−γ)/2
2 . Note that it maps [0, 1] to the subinterval [

√
2−
√

2/2, 1/
√

2] on
which the maximum of the first derivative is smaller than 1, so applying Banach’s fixed point theorem yields
a fixed point at γ = 1/2, as shown in Figure 6. More precisely, let γ be the solution of

γ =

√
1−

√
(1− ε)(1− γ)/2

2
.

Then γ = 1/2 + g(ε) for some g(ε) > 0, g(ε) → 0 as ε → 0. Therefore, recalling the lower bound (), we
have for all i ≥ n0(ε), √

(1− ε)(1− γ)

2
=

1

2

√
(1− ε)(1− 2g(ε)) ≤ qi

qi−1
≤ 1

2
+ g(ε),

and we have shown (). �

B. Proofs for Alternate Horton–Strahler Numbers

Proof of Lemma 6. We proceed by induction on the height of the tree to show (). Consider a tree T with k
children, and consider all the required orderings of the French, Canadian, standard and rigid Horton–Strahler
numbers (Fi, Ci, Hi and Ri for i = 1, . . . , k) of these children. Note that for a leaf node with subtree size
|T | = 1, the base case holds: F (T ) = C(T ) = H(T ) = R(T ) = 0.

i) To show F (T ) ≥ C(T ), suppose that for each 1 ≤ i ≤ k children, Ci ≤ Fi. Suppose C1 = · · · = Cr for
some r ∈ {1, . . . , k}. Then, C = Cr + (r − 1) ≤ Fr + (r − 1) ≤ F , and we are done.
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ii) To show C(T ) ≥ H(T ), suppose that for each 1 ≤ i ≤ k children, Hi ≤ Ci. Then, in the case where
C(T ) > C1, we are done, as H(T ) ≤ H1 + 1 ≤ C1 + 1 ≤ C(T ). Otherwise, C(T ) = C1 and r = 1, so
we have the strict ordering C1 > C2 ≥ · · · . This leads to the two cases:

• if H1 < C1, then we are again done since H(T ) ≤ H1 + 1.

• otherwise, H1 = C1 > C2 ≥ H2, so H(T ) = H1 ≤ C1 = C(T ), as required.

iii) To show H(T ) ≥ R(T ), suppose that for each 1 ≤ i ≤ k children, Ri ≤ Hi. We can proceed the same
way as in (ii). If H(T ) > H1, then we are done, as R(T ) ≤ R1 + 1 ≤ H1 + 1 = H(T ). Otherwise,
H(T ) = H1 and we have H1 > H2 ≥ · · · ; there are two cases:

i) if R1 < H1, then we are done, as R(T ) ≤ R1 + 1.

ii) otherwise, R1 = H1 > H2 ≥ R2, and thus R(T ) = R1 = H1 = H(T ).

All of these were shown at the root. Thus, the inequality holds by induction. �

C. Proofs for the Rigid Horton–Strahler Number

Proof of Lemma 8. Let qk = P{R(T ) = k}. We once again assume by Lemma 7 that p1 = 0. Note that σ2

will be involved in the proof and the results, and when the offspring distribution is changed from ξ to ζ as
in Lemma 7, the standard deviation changes by a factor of (1 − p1)−1. However, we will find that the final
form of the result is such that this change in distribution does not matter.

Using the same notation as in the proof of Lemma 3 for q+k , q−k and f(qk), we can write a similar induction:

q0 = P{R(T ) = 0} = p0

and

qk =

∞∑
`=d

p`

(
q`k−1 +

`−1∑
r=1

(
`

r

)
qrk(q−k−1)`−r

)
= (f(qk−1)− p0) +

∞∑
`=d

p`
(
(qk + q−k−1)` − q`k − (q−k−1)`

)
= f(qk−1)− f(qk) + f(q−k )− f(q−k−1). ()

By the Taylor series with remainder, for some θ, θ′, θ′′ ∈ [0, 1], we have approximations of the terms in ():

f(qk) = p0 +
1

d!
qdkf

(d)(θ′qk),

f(qk−1) = p0 +
1

d!
qdk−1f

(d)(θ′′qk−1)

f(q−k )− f(q−k−1) = qkf
′(q−k−1) +

q2k
2!
f ′′(q−k−1 + θqk).

()

Recall that qk → 0 as k → ∞ and f (i)(0) = i!pi for all i ≥ 0. Then, since f and all its derivatives are
continuous, increasing and convex on [0, 1], for any ε > 0, there is some n0(ε) such that for all k ≥ n0(ε), for
all r ≥ 1 such that pr > 0,

pr ≤
1

r!
f (r)(qk) ≤ pr(1 + ε).

Furthermore, since f ′(1) = 1 and f ′′(1) = σ2, we also have

1− ε ≤ f ′(qk−1) ≤ 1

σ2(1− ε) ≤ f ′′(q−k ) ≤ σ2.
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These two facts can be used to simplify respectively the first two and the third equations in (). Then,
plugging the terms back into our original form () gives an upper bound for all k ≥ n0(ε) of

qk ≤
(qdk−1 − qdk)pd + εqdk−1pd + q2kσ

2/2

1− f ′(q−k−1)
. ()

Furthermore,
f ′(q−k−1) = f ′(1)− (1− q−k−1)f ′′(1− δq+k )

for some δ ∈ [0, 1], yielding
1− q+k σ

2 ≤ f ′(q−k−1) ≤ 1− q+k σ
2(1− ε).

We thus have

qk ≤
(qdk−1 − qdk)pd

q+k σ
2(1− ε)

+
εqdk−1pd

q+k σ
2(1− ε)

+
q2k

2q+k (1− ε)

≤
(qdk−1 − qdk)pd

qkσ2(1− ε)
+

εqdk−1pd

qkσ2(1− ε)
+

qk
2(1− ε)

,

()

which yields
q2kσ

2

2
≤ qdk−1pd

1 + ε

1− 2ε

and

qk ≤

√
2pd
σ2

(
1 + ε

1− 2ε

)
q
d/2
k−1. ()

We must now distinguish between the two cases d = 2 and d ≥ 3 as stated in the theorem. We begin
with the case d ≥ 3. In this case since

∑
i ipi = 1, pd ≤ 1/d and σ2 ≥ 1, thus,

2pd
σ2
≤ 2

d
.

Nothing that ε was arbitrary, we can pick ε ≤ 2/25 such that for all d ≥ 3, k ≥ n0(2/25),

qk ≤
√

6

7
q
d/2
k−1, ()

and thus the upper bound follows for d ≥ 3.
For the lower bound in the d ≥ 3 case, we can obtain from () similarly to the upper bound case that

qk ≥
(qdk−1 − qdk)pd − εqdk−1pd + q2kσ

2(1− ε)/2
1− f ′(q−k−1)

≥
(1− ε)qdk−1pd − qdk−1pd + q2kσ

2(1− ε)/2
q+k σ

2
.

()

Using (), we can bound qdkpd by

qdkpd ≤
(

6

7

)3/2

qdk−1pd

and q+k by

q+k ≤ qk
( ∞∑
n=0

√
6/7

n
)

=
1

1−
√

6/7
qk < 14qk.

These bounds give

qk ≥
(
1− ε− (6/7)3/2

)
qdk−1pd + q2kσ

2(1− ε)/2
14σ2qk
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i.e.,

q2k

(
14− 1− ε

2

)
σ2 ≥ qdk−1pd

(
1− ε− (6/7)3/2

)
and

q2k ≥
(

2pd
σ2

1− ε− (6/7)3/2

27 + ε

)
qdk−1.

We can then choose ε > 0 such that

q2k ≥
2pd
σ2

1

162
qdk−1,

and thus, for all k ≥ n0(ε),

qk ≥
1

9

√
pd
σ2
q
d/2
k−1. ()

The lower bound follows from this.

Finally, consider the case d = 2. From (), setting α = 2p2/σ
2,

qk ≤
(q2k−1 − q2k)α

2q+k (1− ε)
+

εq2k−1α

2q+k (1− ε)
+

q2k
2q+k (1− ε)

,

and thus
2qkq

+
k (1− ε) ≤ q2k(1− α) + q2k−1α(1 + ε). ()

Similarly, for the lower bound, we have from () that

qk ≥
(q2k−1 − q2k)p2 − εq2k−1p2 + q2kσ

2(1− ε)/2
q+k σ

2

and thus
2qkq

+
k ≥ q

2
k(1− α− ε) + q2k−1α(1− ε). ()

We will establish bounds β0 = 0 ≤ β2 ≤ β4 ≤ · · · ≤ γ ≤ · · · ≤ β5 ≤ β3 ≤ β1 where γ =
√
α

1+
√
α

is the unique

solution in [0, 1] of β = f(β), where

f(β) :=

√
α(1− β)

1− αβ + α+ β
. ()

Furthermore, for all j ≥ 0,
βj+1 = f(βj),

and βj → γ as j → ∞. See Figure 7 for a plot of the map f(β). The proof consists of showing iteratively

0 1
0

1

γ =
√
α/(1 +

√
α)

β1 =
√
α/(1 + α)

β2

β3
β4

Figure 7. Plot of β 7→ f(β) (in
blue), along with the iterative contrac-
tion starting at β1 =

√
α/(1 + α).
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that
lim sup
k→∞

qk+1

qk
≤ βj for all odd j,

and
lim inf
k→∞

qk+1

qk
≥ βj for all even j.

Observe that if lim supk→∞ qk+1/qk ≤ βj , then

2qkq
+
k ≤ 2q2k

1 + o(1)

1− βj

and by (),

q2k

(
2 + o(1)

1− βj
− (1− α− ε)

)
≥ q2k−1α(1− ε).

Thus,
q2k
q2k−1

≥ α(1− ε)
2+o(1)
1−βj

− (1− α− ε)
.

Taking lim inf on both sides and letting ε→ 0, we observe that

lim inf
k→∞

(
qk
qk−1

)2

≥ α
2

1−βj
− (1− α)

= f2(βj).

Similarly, if lim infk→∞ qk+1/qk ≥ βj , then using () yields lim supk→∞ qk+1/qk ≤ f(βj). Therefore,
limk→∞ qk+1/qk → γ = 1

1+1/
√
α

.

Thus, similarly to () in the proof of Lemma 3, we have that

1

1 +
√
σ2/2p2

− h(ε) ≤ qk
qk−1

≤ 1

1 +
√
σ2/2p2

+ g(ε) ()

for positive functions h and g with limε→0 h(ε) = limε→0 g(ε) = 0. This proves the statement.

Note that it was safe to assume that p1 = 0: when changing the distribution from ξ to ζ, both σ2 and p2
pick up a factor of (1− p1)−1, resulting in no net change in the ratio. �
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