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Abstract. This note defines a notion of multiplicity for nodes in a rooted tree and presents

an asymptotic calculation of the maximummultiplicity over all leaves in a Bienaymé–Galton–

Watson tree with critical offspring distribution ξ, conditioned on the tree being of size n.

In particular, we show that if Sn is the maximum multiplicity in a conditioned Bienaymé–

Galton–Watson tree, then Sn = Ω(log n) asymptotically in probability and under the further

assumption that E{2ξ} < ∞, we have Sn = O(log n) asymptotically in probability as well.

Explicit formulas are given for the constants in both bounds. We conclude by discussing

links with an alternate definition of multiplicity that arises in the root-estimation problem.
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1. Introduction

Equivalence between two distinct mathematical objects is a far-reaching concept in mathematics. When

two structures are similar, one may define a relation under which they are regarded as one and the same. The

term “multiplicity” is often used to indicate the extent to which an object is, in some sense, not structurally

unique (or how often it is repeated in a suitably-defined multiset). Towards a concept of the multiplicity of

a node in a tree, consider the small example depicted in Fig. 1.

u

v

x y

w

z

Fig. 1. A rooted tree with six nodes. The pair x and y are similar, but x and z are not.

Definitions and notation. Consider a tree T rooted at a node u. For a node v in the tree, we let Tv

denote the subtree rooted at v. Let v and w be nodes in the tree and let v = v1, v2, . . . , vn = u and

w = w1, w2, . . . , wm = u be the paths from v and w, respectively, to the root. We say that v and w are

identical and write v ≡ w if the paths have the same length and Tvj
and Twj

are isomorphic as rooted ordered

trees for 1 ≤ j ≤ n. For example, in Fig. 1, the nodes x and y are identical in this sense, but different from

node z.

It is clear that ≡ defines an equivalence relation on the set of nodes in the tree, so we may now define

the multiplicity σ(v) of a node v to be the size of the equivalence class [v] under the relation. The leaf

multiplicity (or simply multiplicity, when no confusion can arise) S(T ) of a rooted tree T is the maximum

value of σ(v), taken over all nodes v of T . The name “leaf multiplicity” is motivated by the fact that the

function σ increases monotonically away from the root, so that S(T ) remains the same when the maximum

is only computed over the set of leaves of T .

Note that ≡ is not the only structural equivalence relation one can define on the set of nodes in a tree,

and thus σ is only one of many possible notions of leaf multiplicity. Towards the end of this paper, we will

explore an alternate definition µ of multiplicity which extends well to free trees as well as rooted trees, and

discuss the relationship between the two functions σ and µ.
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The Bienaymé–Galton–Watson model. For a random variable ξ taking values in the nonnegative in-

tegers, a Bienaymé–Galton–Watson tree [2] is a rooted ordered tree in which every node has i children with

probability pi = P{ξ = i}. We say that ξ is the offspring distribution of the tree. Trees arising from

this process are often called Galton–Watson trees, but we include the name of I.-J. Bienaymé [3], since his

work predates (and is more mathematically precise than) the analysis of F. Galton and H. W. Watson [7];

see [9] for an extended account of the history of branching processes. We shall deal with critical Bienaymé–

Galton–Watson trees; that is, trees whose offspring distributions satisfy E{ξ} = 1 and V{ξ} ∈ (0,∞). This

restriction on the variance ensures that pi 6= 1, so that the tree is finite almost surely. The Bienaymé–

Galton–Watson trees that we shall study are conditioned Bienaymé–Galton–Watson trees Tn. Such trees are

conditioned on |T | = n, where |T | is the number of nodes in the tree.

Rényi entropy. It will be convenient to simplify our notation with some information-theoretic definitions.

Letting pi = P{ξ = i}, for α > 1 we define the Rényi entropy of order α [17] (see also [8]) to be the value

Hα(ξ) =
1

α− 1
log2

1
∑

i≥0 pi
α
. ()

As α → 1, this approaches the binary (Shannon) entropy [18]

H(ξ) =
∑

i≥0

pi log2
1

pi
.

Since ξ will be fixed throughout the paper, for brevity we will let Hα = Hα(ξ) and H = H(ξ).

Fix an offspring distribution ξ with mean 1 and nonzero finite variance; let Tn be a conditioned Bien-

aymé–Galton–Watson tree of size n with this offspring distribution. The leaf multiplicity S(Tn) of this tree

is a random variable, and will be denoted Sn. The main result of this paper gives bounds on Sn that are

obeyed asymptotically in probability.

Theorem 1. Let ξ be an offspring distribution with E{ξ} = 1 and V{ξ} ∈ (0,∞). If Sn is the multiplicity

of a conditioned Bienaymé–Galton–Watson tree of size n with offspring distribution ξ, then letting

γ = max
k≥2

p0
kpk

k/(k−1), ()

we have for all ǫ > 0,

P

{

Sn ≥ (1− ǫ)
log2 n

log2(1/γ)

}

→ 1

as n → ∞, and under the further assumption that E{2ξ} < ∞, we have the upper bound

P

{

Sn ≤ (1 + ǫ)
2 log2 n

H2

}

→ 1

as n → ∞, where H2 is the Rényi entropy of order 2 of the random variable ξ.

This theorem will be proved as two separate lemmas in the next section.

2. Asymptotics of the leaf multiplicity

In this section we derive asymptotic upper and lower bounds on Sn. Before we begin, we observe that if

pmax = maxi≥0 pi and 1 < α < β < ∞, we have the inequalities

e−H ≤
(

∑

i≥0

pi
α
)1/(α−1)

≤
(

∑

i≥0

pi
β
)1/(β−1)

≤ pmax ≤
(

∑

i≥0

pi
β
)1/β

≤
(

∑

i≥0

pi
α
)1/α

≤ 1, ()
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and defining H∞ = log2(1/pmax), we have the equivalent chain of inequalities

H ≥ Hα ≥ Hβ ≥ H∞ ≥ β − 1

β
Hβ ≥ α− 1

α
Hα ≥ 0. ()

In particular, because we have assumed that V{ξ} 6= 0, we have the strict inequality

(

∑

i≥0

pi
k
)1/k

<
(

∑

i≥0

pi
2
)1/2

()

for all k > 2.

We will prove the upper bound and lower bound for Sn as two separate lemmas.

Lemma 2. Let ξ be an offspring distribution with mean 1 and nonzero finite variance σ2. Suppose further

that E{2ξ} is finite. If Sn is the multiplicity of a conditioned Bienaymé–Galton–Watson tree of size n with

offspring distribution ξ, then

P{Sn > (1 + ǫ)2 log2 n/H2} → 0 ()

for all ǫ > 0, where H2 is the Rényi entropy of order 2 of the random variable ξ.

Proof. For 1 ≤ i ≤ n, let ξi denote the degree of the ith node in preorder in the tree Tn. For all 1 ≤ t < n,

the partial sum
∑t

i=1 ξi > t − 1 and
∑n

i=1 ξi = n − 1. We will concentrate on the least common ancestor

of the nodes in the largest equivalence class of Tn. This node, call it w, has the property that the nodes

in the equivalence class belong to k ≥ 2 different subtrees rooted at the children of w. The node w has

(random) degree D, which we will deal with by summing over all possible degrees d. Let Awk denote the

collection of all subsets of size k of the children of w (naturally, this collection is empty if w has fewer than

k children). For x > 0, a node w, integers 2 ≤ k ≤ d, and a set A ∈ Awk, we let E(x,w, k,A) be the event

that all the nodes in A are identical and their subtree sizes are at least x/k. Now for integers s ≥ x/k, we

let E′(x, k, d, s, A) be the event that a randomly chosen node w of the tree Tn has degree d and the leftmost

k children of w are identical, with subtrees of size s. We have, by the union bound,

P{Sn ≥ x} ≤ P

{

⋃

w∈Tn

⋃

k≥2

⋃

A∈Awk

E(x,w, k,A)

}

≤ n
∑

k≥2

∑

d≥k

(

d

k

)

∑

s≥x/k

P
{

E′(x, k, d, s, A)
}

. ()

Supposing that w is the jth node in preorder, E′(x, k, d, s, A) is the event that ξj = d, (ξj+1, . . . , ξj+s) forms

a tree, and (ξj+rs+1,...,j+rs+s) = (ξj+1, . . . , ξj+s) for all 1 ≤ r < k. Let us say that an integer j is “good”

if these conditions hold when addition on the indices is done modulo n. Clearly, there are more good j

than j satisfying the above conditions. Let G be the event that an index j chosen uniformly at random

from {1, . . . , n} is “good”; let B be the event that (ξ2, . . . , ξs) forms a tree and (ξrs+2, . . . , ξ(r+1)s+1) =

(ξj+1, . . . , ξj+s) for all 1 ≤ r < k. By a rotational argument due to Dwass [5],

P
{

G | (ξ1, . . . , ξn) forms a tree
}

= P
{

G
∣

∣

∣

n
∑

i=1

ξi = n− 1
}

=
P
{

ξ1 = d, B,
∑n

i=1 ξi = n− 1
}

P
{
∑n

i=1 ξi = n− 1
}

=
P
{

ξ1 = d, B,
∑n

i=⌊1+ks⌋+1 ξi = (n− 1)− d− k(s− 1)
}

P
{
∑n

i=1 ξi = n− 1
} ,

so letting

R =
P
{
∑n−(1−ks)

i=1 ξi =
(

n− (1− ks)− 1
)

+ (k + 1− d)
}

P{
∑n

i=1 ξi = n− 1} ,
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we have

P
{

G | (ξ1, . . . , ξn) forms a tree
}

= pd P{B}R. ()

Letting λ = gcd{i : i ≥ 1, pi > 0}, a lemma of Kolchin [13] states that uniformly in y,

P

{ n
∑

i=1

ξi = n− y

}

=

{

λ/
(√

2πnσ2
)

exp
(

− y2/2nσ2
)

+ o(1)/
√
n, if n mod λ = 0;

0, if n mod λ 6= 0.
()

As the o(1) term does not depend on y, we find that

R =

√

n− 1

n− (1− ks)− 1 + (k + 1− d)
exp

(

− (1− ks+ d− k)2

2
(

n− (1− ks+ d− k)
)σ2

)

+ o(1),

where the o(1) term depends only on n. Assuming that ks+ d ≤ n/2, we have R ≤
√
2 + o(1). Hence

P
{

G | (ξ1, . . . , ξn) forms a tree
}

≤
(
√
2 + o(1)

)

pd P{B} ()

whenever ks+ d ≤ n/2. We now compute a bound on P{B}. We have

P{B | ξ2, . . . , ξ1+s} = (pξ2 · · · pξ1+s
)k−1

and therefore, by independence of the ξi,

P{B} = E
{

(pξ2 · · · pξ1+s
)k−1 1[(ξ2,...,ξ1+s) forms a tree]

}

≤
1+s
∏

i=2

E
{

(pξi)
k−1
}

=
(

∑

i≥0

pi
k
)s

.
()

We can now combine all of these bounds. Substituting everything into (), we have

P{Sn ≥ x} ≤ n
∑

k≥2

∑

d≥k

(

d

k

)

∑

s≥x/k

(
√
2 + o(1)

)

pd

(

∑

i≥0

pi
k
)s

≤
(
√
2 + o(1)

)

n
∑

k≥2

∑

d≥k

pd

(

d

k

)

(

∑

i≥0

pi
k
)x/k 1

1−∑i≥0 pi
k
.

Since the inequality () was strict, there exists 0 < θ < 1 such that

P{Sn ≥ x} ≤
√
2 + o(1)

1−∑i≥0 pi
2

(

n
∑

d≥2

pd

(

d

2

)

(

∑

i≥0

pi
2
)x/2

+ n
∑

k≥3

∑

d≥k

pd

(

d

k

)

(

∑

i≥0

pi
2
)x/2

θx
)

≤
√
2 + o(1)

1−∑i≥0 p1
2
n(σ2 + 1)

(

∑

i≥0

pi
2
)x/2

+ n
(

∑

i≥0

pi
2
)x/2

θx
∑

k≥3

∑

d≤k

pd

(

d

k

)

.

()

Since
∑

d≥2

pd

d
∑

k=3

(

d

k

)

≤
∑

d≥3

pd2
d ≤ E{2ξ},

we have

P{Sn ≥ x} ≤ n

√
2(σ2 + 1)

1−
∑

i≥0 pi
2

(

∑

i≥0

pi
2
)x/2

(

1 + o(1)
)

, ()

provided that E{2ξ} < ∞. Setting

x = (1 + ǫ)
2 log2 n

log2
(

1/
∑

i≥0 pi
2
) = (1 + ǫ)

2 log2 n

H2
,

we find that P{Sn ≥ x} → 0 as n → ∞.

The next lemma presents a lower bound for Sn.
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L

k

Fig. 2. The construction in the proof of Lemma 3. In this example, both k and L are equal to 3.

Lemma 3. Let ξ be an offspring distribution with mean 1 and nonzero finite variance σ2. If Sn is the

multiplicity of a conditioned Bienaymé–Galton–Watson tree of size n with offspring distribution ξ, then

P

{

Sn < (1− ǫ)
log2 n

log2(1/γ)

}

→ 0 ()

for all 0 < ǫ < 1, where γ = maxk≥2 p0
kpk

k/(k−1).

Proof. Consider a complete k-ary tree of height L. This tree has kL leaves and 1 + k + · · · + kL−1 =

(kL − 1)/(k − 1) internal nodes, all of degree k. The probability that an unconditioned Bienaymé–Galton–

Watson tree takes this shape is

p0
kL

pk
(kL−1)/(k−1);

call this probability q. For any real number x, the statement Sn < x implies that no node in the tree can

have the given k-ary tree as a subtree for any kL ≥ x, as the multiplicity of the k-ary tree is kL. Fix k ≥ 2

for now, let L be the first integer for which k ≥ x, and let y = kL. Observe that y ≤ kx. Denote the size of

the k-ary tree by z = y + (y − 1)/(k − 1).

We now consider the indices 1, 1 + z, 1 + 2z, 1 + 3z, . . . in {1, . . . , n − z}. Let Yi be the event (and Yi
c

its complement) that (ξi, . . . , ξi+z−1) defines precisely the k-ary tree, where i is in the set of indices defined

above, which has size ⌊(n− z)/z⌋. Note that

P{Sn < x} ≤ P{Sn < y} = P

{ n−z
⋂

i=1

Yi
c
∣

∣

∣
(ξ1, . . . , ξn) defines a tree

}

.

By Dwass’ cycle lemma [5], the probability that (ξ1, . . . , ξn) defines a tree is Θ(n3/2), so

P{Sn < x} ≤ Θ(n3/2)P

{ n−z
⋂

i=1

Yi
c

}

= Θ(n3/2)P{Yi
c}⌊(n−z)/z⌋

= Θ(n3/2)(1− q)⌊(n−z)/z⌋

≤ Θ(n3/2) exp

(

−
⌊

n− z

z

⌋

p0
ypk

(y−1)/(k−1)

)

≤ Θ(n3/2) exp

(

−
⌊

n− z

z

⌋

p0
kxpk

(kx−1)/(k−1)

)

≤ Θ(n3/2) exp

(

−Ω(1)

⌊

n− z

z

⌋

(

p0
kpk

(k−1)/(k−1)
)x
)

≤ Θ(n3/2) exp

(

−Ω(1)

⌊

n− z

z

⌋

γx

)

.

()

Substituting (1− ǫ) log2 n/ log2(1/γ) for x, and noting that z = Θ(log n), we observe that this bound tends

to 0.
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3. The maximal leaf-degree

Let Tn be a random critical Bienaymé–Galton–Watson tree of size n. We let ξu be the degree of the node

u and let λu be the number of children of u that are leaves in Tn, i.e., the leaf-degree of u. We denote by

Ln the random variable maxu∈Tn
λu; it is clear that the multiplicity Sn satisfies Mn ≥ Ln. The next lemma

shows that when the tail of the offspring distribution ξ decays at a rate slower than exponential, the ratio

Ln/ log n → ∞ in probability. So while our condition in the upper bound that E{2ξ} be finite might have

seemed somewhat artificial at first glance, we essentially cannot do without it.

Lemma 4. Let E{ξ} = 1, V{ξ} = σ2 ∈ (0,∞), and suppose that E{ρξ} = ∞ for every 1 < ρ < ∞. Let Ln

be the maximal leaf-degree in Tn, the Bienaymé–Galton–Watson tree induced by ξ, of size n. Then

Ln

log n
→ ∞

in probability along a subsequence, as n → ∞.

The proof of this lemma uses Kesten’s limit tree [12] for the offspring distribution ξ, whose construction

we briefly recall here (see also [14]). Kesten’s infinite tree, denoted T∞, is obtained by iterating the following

step. Let the root of T∞ be marked. A marked node has ζ children, where P{ζ = i} = ipi and pi = P{ξ = i}.
Observe that ζ ≥ 1 and E{ζ} = E{ξ2} = σ2+1. Of these ζ children, a random child is marked and all others

are unmarked. The unmarked nodes are roots of independent (unconditioned) Bienaymé–Galton–Watson

trees. The procedure is then repeated for the sole marked node.

Proof. We argue by coupling Tn with T∞. Let (Tn, k) and (T∞, k) denote the truncations of Tn and T∞,

respectively, to the nodes at distance ≤ k from the root. Then, denoting the total variation distance by TV,

it is known that

TV
(

(Tn, kn), (T∞, kn)
)

= o(1)

if the sequence (kn) is o(
√
n) (see, e.g., [11] and [19]). We couple (Tn, kn) and (T∞, kn) such that

P
{

(Tn, kn) 6= (T∞, kn)
}

= TV
(

(Tn, kn), (T∞, kn)
)

→ 0.

To show that Ln/ log n → ∞ in probability, it suffices to show this for L′
n, the maximal leaf-degree among

all marked nodes of (T∞, kn) at distance < kn from the root. Let ζ0, ζ1, . . . , ζkn−1 be the degrees of the

marked nodes in (T∞, kn), indexed by their distance from the root, let λi be the leaf-degree corresponding

to ζi. Now, fix a constant c and let Ai be the event that λi ≤ c log n; we have

P{L′
n ≤ c log n} ≤ P

{ kn−1
⋂

i=0

Ai

}

= P{A0}kn−1

≤ exp
(

−(kn − 1)P{λ0 > c log n}
)

.

()

Setting kn = ⌈n1/3⌉+ 1, we have

P{L′
n ≤ c log n} ≤ exp

(

− n1/3 P{λ0 > c log n}
)

. ()

Note that λ0 ∼ binomial(ζ0 − 1, p0), so that P{λ0 ≤ p0ζ0/2 | ζ0} ≤ 1/2 for ζ0 large enough, by the law of

large numbers. Therefore, for n large enough, we have

P{λ0 > c log n} ≥ P
{

λ0 ≥ p0ζ0
2

> c log n
}

≥ 1

2
P

{

ζ0 >
2c

p0
log n

}

. ()
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To conclude the proof, we must show that n1/3 P{ζ0 > 2c log n/p0} → ∞ along a subsequence of n. Note

that if E{ρξ} = ∞, then
∫∞

0
P{ρξ > x} dx = ∞, and thus

∞
∑

ℓ=1

2ℓ P

{

ξ >
ℓ

log2 ρ

}

≥
∞
∑

ℓ=1

2ℓ P{ρξ > 2ℓ} ≥
∞
∑

ℓ=1

∫ 2ℓ+1

2ℓ
P{ρξ > x} dx = ∞,

and consequently, P{ξ > ℓ/ log2 ρ} ≥ ℓ−22−ℓ for infinitely many ℓ ∈ N. As

P

{

ζ >
ℓ

log2 ρ

}

≥ ℓ

log2 ρ
P

{

ξ >
ℓ

log2 ρ

}

,

we see that

P

{

ζ >
ℓ

log2 ρ

}

≥ 1

log2 ρ · ℓ2ℓ
()

for infinitely many ℓ. Setting ℓ = (2c/p0) log n log2 ρ, we have,

n1/3 P

{

ζ >
2c

p0
log n

}

≥ n1/3 · 1

22c logn log2 ρ/p0
· 1

log2 ρ · 2c log n log2 ρ/p0
()

for infinitely many n provided that
2c

p0
log 2 log2 ρ ≤ 1

6
,

which is possible by making ρ > 1 small enough. Thus, for every c > 0,

lim sup
n→∞

P{L′
n > c log n} = 1,

which is what we wanted to show.

Note that if for every ρ < 1, pn > ρn for all n large enough, then Ln/ log n → ∞ in probability (instead

of just along a subsequence).

4. Examples

There exists an important link between certain offspring distributions of conditioned Bienaymé–Galton–

Watson trees and families of “simply-generated trees” [15]. In this section we examine several important

families of trees in the Bienaymé–Galton–Watson context, and give explicit asymptotic upper and lower

bounds for the multiplicity. In each case, the two important parameters will be

γ = max
k≥2

p0
kpk

k/(k−1) and H2 = log2
1

∑

i≥0 pi
2
.

We must also verify that E{2ξ} is finite, if the upper bound is to hold. In particular, this latter condition

always holds if ξ is bounded. A summary of this section is displayed in Table 1.

Full binary trees. These are trees in which every node must have exactly zero or two children, and arise

from the distribution p0 = p2 = 1/2. We compute γ = 1/16 and H2 = 1, so that

(1− ǫ)
log2 n

4
≤ Sn ≤ (1 + ǫ)2 log2 n ()

asymptotically in probability. Because the multiplicity in a full binary tree must be a power of 2, in essence

this means that there exists a sequence of integers (an) such that

P
{

Sn ∈ {2an , 2an+1, 2an+2, 2an+3}
}

→ 1.
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Table 1. LEAF MULTIPLICITIES OF CERTAIN FAMILIES OF TREES

Family γ H2 Lower bound Upper bound

Full binary

(uniform{0, 2})

1

16
1

log2 n

4
2 log2 n

Flajolet t-ary

(p0 = 1− 1/t; pt = 1/t)
e−1+ot→∞(1)−log t log2

1

1− 2/t− t/t2
log2 n

log2 e+ log2 t+ ot→∞(1)
∼t→∞ t logn

Cayley

(Poisson(1))

1

4e4
log2

(

e2

I0(2)

)

log2 n

2 + 4 log2 e

2 log2 n

log2(e
2/(I0(2))

Catalan

(binomial(2, 1/2))

1

256
log2(8/3) log256 n

2 log2 n

log2(8/3)

Binomial

(binomial(d, 1/d))

1

4

(

1−
1

d

)4d−2

log2

(

e2

I0(2)

)

+ od→∞(1)
log2 n

2− log2((1− 1/d)4d−2)

2 log2 n

log2(e
2/(I0(2)) + od→∞(1)

Motzkin

(uniform{0, 1, 2})

1

81
log2 3 log81 n 2 log3 n

Planted plane

(geometric(1/2))

1

256
— log256 n —

In other words, in general one cannot improve the ratio between the upper and lower bounds in Theorem 1

to a factor of less than 8 + ǫ.

Flajolet t-ary trees. Full binary trees are a special case of a Flajolet t-ary tree for t = 2 (see [6], p. 68). In

general, these are trees whose non-leaf nodes each have t children, and they arise from the finite distribution

p0 = (t− 1)/t, pt = 1/t. We have

γ = p0
tpt

t/(t−1)

=

(

1− 1

t

)t(
1

t

)t/(t−1)

= exp
(

− 1 + ot(1)− log t
)

,

()

so log2(1/γ) = log2 e+ log2 t+ o(1) as t → ∞. On the other hand,

H2 = log2
1

p02 + pt2
= log2

1

1− 2/t+ 2/t2
, ()

so H2 ∼ 2 log2 e/t as t → ∞. This means that as t gets large, the ratio between the upper and lower bound

grows as t log t.

Cayley trees. These trees arise from a Poisson(1) distribution, where pi = 1/(e · i!) for i ≥ 0. We verify

first that

E{2ξ} =

∞
∑

i=0

2i

ei!
= e < ∞,

and then work out that γ = 1/(4e4). Letting

I0(z) =

∞
∑

i=0

(i2/4)k

i! · Γ(z + 1)
=

1

π

∫ π

0

ez cos θ dθ

be the modified Bessel function of the first kind (see [1], p. 376), we find that

∞
∑

i=0

pi
2 =

1

e2

∞
∑

i=0

1

(i!)2
=

1

e2
I0(2), ()
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meaning that H2 = 2 log2 e − log2
(

I0(2)
)

. Putting everything together, the lower and upper bounds in

probability for Sn are, respectively,

log2 n

2 + 4 log2 e
≈ log2 n

7.771
and

2 log2 n

2 log2 e− log2
(

(1/π)
∫ π

0
e2 cos θ dθ

) ≈ log2 n

0.8483
. ()

Catalan trees. When we set p0 = p2 = 1/4 and p1 = 1/2, we obtain a family of trees often called Catalan

trees, since the number of such trees on n nodes is
(

2n
n

)

/(n + 1). There is a one-to-one correspondence

between Catalan trees on n nodes and full binary trees on 2n+ 1 nodes, since one obtains a full binary tree

from a Catalan tree by adding artificial external nodes to every empty slot, and this procedure is reversed

by removing all leaves from a full binary tree. It is easy to see that the leaf multiplicity of a full binary

tree is exactly double the multiplicity of its corresponding Catalan tree. By plugging in d = 2 above, the

lower bound given by Lemma 3 is log2 n/8, which makes sense since the correspondence with full binary

trees tells us that the lower bound on the Catalan trees should be similar to log2(2n + 1)/8. We calculate

H2 = log2(8/3) and the upper bound is 2 log2 n/ log2(8/3), so the ratio between the upper and lower bounds

is 16/ log2(8/3).

Binomial trees. Catalan trees are a special case of a binomial tree. For integer parameter d ≥ 2, nodes in

these trees have d “slots” that may or may not contain a child; so there are
(

d
i

)

ways for a node to have i

children, for 0 ≤ i ≤ d. These trees correspond to a binomial(d, 1/d) distribution. We compute

γ = (p0p2)
2 =

(

(

d− 1

d

)d

· d(d− 1)

2
· (d− 1)d−2

dd

)2

=
1

4

(

1− 1

d

)4d−2

. ()

Note that taking the limit d → ∞, the binomial(d, 1/d) distributions approach a Poisson(1) distribution.

Thus we see from our earlier discussion on the Cayley trees that H2 = log2
(

e2/(I0(2)
)

+ od→∞(1). This

gives the respective lower and upper bounds

log2 n

2− (4d− 2) log2(1− 1/d)
and

2 log2 n

log2
(

e2/(I0(2)
)

+ od→∞(1)
. ()

The lower bound tends to log2 n/(2 + 4 log2 e) as d → ∞, matching the lower bound we obtained for Cayley

trees above.

Motzkin trees. Also known as unary-binary trees, these are trees in which each non-leaf node can have

either one or two children. They correspond to the distribution with p0 = p1 = p2 = 1/3. We easily compute

γ = 1/81 and H2 = log2 3, which yields an asymptotic lower bound of log2 n/(log2 81) = log81 n and an

asymptotic upper bound of 2 log2 n/ log2 3 = 2 log3 n. The ratio between the upper and lower bounds is 8.

Planted plane trees. These are trees with ordered children, so that each can be embedded in the plane

in a unique way. They correspond to a geometric(1/2) distribution, with pi = 1/2i+1 for all i. We find

that γ = 1/256, so we have the asymptotic lower bound Sn ≥ log2 n/8. Unfortunately, we have E{2ξ} =
∑

i≥0 1/2 = ∞, so Lemma 2 cannot be applied to give an upper bound here. We note that the maximal

degree ∆n of Tn satisfies ∆n/ log2 n → 1 in probability (see, e.g., [4], Lemma 6). However, this does not

imply that Sn = O(log n) in probability.

5. Automorphic multiplicity

The multiplicity of a tree does not have a natural extension to unrooted trees, because whether or not two

nodes are identical depends crucially on their position in relation to a distinguished root node u. In this

9



section we briefly investigate an alternate notion of multiplicity that does extend nicely to free trees. It arises

in the problem of root estimation in Galton–Watson trees described [4]. We briefly recall some definitions.

Let T be a rooted tree. By disregarding the parent-child directions of the edges, we obtain a free tree TF.

Conversely, if we start with a free tree TF and any node u, we can define a rooting of TF at u to be the rooted

tree Tu obtained by fixing u as the root. This does not give rise to a unique tree in general, because children

of a given node may hang on the wall in an arbitrary left-to-right order, but our new notion of multiplicity

will treat all of these possible ordered trees the same.

Let Aut(TF) be the group of all graph automorphisms of TF, that is, bijections f from the set of vertices

TF to itself such that for vertices u and v, f(u) is adjacent to f(v) whenever u is adjacent to v. We can

then define an automorphism of Tu to be a graph automorphism of TF such that the root u stays fixed. By

a slight abuse of notation, we denote the set of these rooted-tree automorphisms by Aut(Tu); formally this

is the stabilizer subgroup

Stab(u) = {g ∈ Aut(TF) : g · u = u}

of Aut(TF). We will say that two nodes v and w in Tu are congruent and write v ∼u w if v and w belong

to the same orbit under the action of Aut(Tu). This means that there exists an element f of Aut(Tu) such

that f(v) = w. It is clear that this gives us an equivalence relation on the set of all nodes of Tu, and the

automorphic multiplicity of a node v, denoted µ(u, v), is the size of the equivalence class of v under this

relation. Since any node can be mapped to itself under an automorphism, µ(u, v) ≥ 1 for all v.

In fact, one can define the relation ∼u, and consequently the function µ, purely in terms of the relation

≡. We have v ∼u w if and only if there exists a permutation for every node in Tu such that applying each

permutation to the left-to-right ordering of its respective node’s children results in a tree in which v ≡ w.

The analogue of S in this setting is the automorphic (leaf) multiplicity M(T ) of a rooted tree T . If o is the

root of the tree T , then M(T ) is the maximum value of µ(o, v) over all nodes v in the tree T .

T1 T2

Fig. 3. Different leaf multiplicities but the same automorphic leaf multiplicity.

Fig. 3 illustrates the distinction between the automorphic and non-automorphic multiplicity. We have

S(T1) = M(T1) = 4, since the two non-leaf children of the root have identical (and therefore congruent)

subtrees. In T2, on the other hand, these subtrees are congruent but not identical, so that M(T2) = 4 but

the non-automorphic multiplicity of T2 is only 2.

This definition is still somewhat at odds with the notion of multiplicity that arises in the root estimation

problem from [4]. In that setting, one considers all graph automorphisms of the free tree, not just ones that

fix the root. We will call the size of the orbit of a node under this larger action the free multiplicity µF and

if two nodes u and v are congruent under an arbitrary graph automorphism, then we write u ∼F v and say

that the two nodes are free-congruent. We also let MF(T ) denote the free (leaf) multiplicity, the maximum

value of µF over all nodes in the free tree TF.

Fig. 4 shows the relation between the automorphic multiplicity of a rooted tree and the free multiplicity

its free-tree counterpart. Note that M(T ) ≤ MF(T ) for any rooted tree T , since we have µ(u) ≤ µF(u) for

every node u. We shall spend the rest of this section showing that this inequality can more or less be reversed.

First, we need three lemmas, and in their statements and proofs, we shall understand “multiplicity” to mean

“free multiplicity”. In the following proof, we also write [G : H] to denote the index of a subgroup H in a

larger group G; that is, the cardinality of the coset space G/H.

10



Fig. 4. A rooted tree T with M(T ) = 6 and MF(T ) = 9.

Lemma 5. If u and v are adjacent nodes in a finite free tree T , then either µF(u) is an integer multiple of

µF(v) or the other way around.

Proof. We may reduce to the case where one of u or v is a leaf. This is because if neither is a leaf, then it is

not in the orbit of any leaf by graph automorphism, so we can remove all the leaves from the tree T without

changing either of µF(u) or µF(v). This is done finitely many times since T is finite and always contains at

least one leaf.

Now without loss of generality, suppose u is the leaf and v is its unique neighbour. By the orbit-stabilizer

theorem,
∣

∣Aut(T )
∣

∣ = µF(u)
∣

∣Stab(u)
∣

∣ = µF(v)
∣

∣Stab(v)
∣

∣, ()

where stabilizers are taken with respect to the group Aut(T ). Every automorphism fixing u must permute

its neighbours, but since u only has one neighbour, we have Stab(u) ⊆ Stab(v). Thus

µF(u) =
µF(v)

∣

∣Stab(v)
∣

∣

∣

∣Stab(u)
∣

∣

=
µF(v)

[

Stab(v) : Stab(u)
]
∣

∣Stab(u)
∣

∣

∣

∣Stab(u)
∣

∣

= µF(v)
[

Stab(v) : Stab(u)
]

,

()

proving the lemma.

The next lemma formalizes the intuitive notation that in a free tree, the multiplicities are in some sense

smaller towards the centre of the tree.

Lemma 6. Let u −− v −− w be neighbouring nodes in a free tree T with v being the central node. Then v

cannot have strict maximal free multiplicity among the three nodes; that is, µF(v) ≤ µF(u) or µF(v) ≤ µF(w).

Proof. Suppose for contradiction that µF(v) > µF(u) and µF(v) > µF(w). Then, for each of the pairs of

neighbours u −− v and v −− w, the multiplicity of one of the nodes must be an integer multiple of the

multiplicity of the other, by the previous lemma. So there must be integers r, s > 1 such that

µF(v) = rµF(w) and µF(v) = sµF(u). ()

The situation is illustrated in Fig. 5. Since µF(v) = sµF(u), u must have s− 1 children in the orbit of v and

thus have subtree rooted at each of these children be isomorphic to B. Similarly, since µF(v) = rµF(w), w

must have r − 1 child subtrees isomorphic to A.

We note that in order to satisfy the r, s > 1 requirements, we must have

|A| ≥ (s− 1)|B|+ 2 and |B| ≥ (r − 1)|A|+ 2, ()

where the additional +2 terms come respectively from nodes u and v (for |A|) or v and w (for |B|). This

implies that

|A| ≥ (s− 1)(r − 1)|A|+ 2s,

11
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:
:

:
:
:

Fig. 5. Three adjacent nodes and their subtrees.

which is impossible if |A| ≥ 1 and r, s > 1. The contradiction tells us that v cannot have strict maximal

multiplicity among the three nodes.

We have established that if we embed a free tree into the (x, y)-plane and then lift the nodes up by

setting each node’s z-coordinate to its multiplicity, then the result is a convex, spidery bowl or valley. This

is illustrated in Fig. 6.

Fig. 6. Darker shades of grey indicate higher multiplicities in this free tree.

On a path between any two endpoints, the multiplicities decrease monotonically towards the centre of

the tree before increasing monotonically towards the endpoint. There is a central connected core of nodes

of minimal multiplicity and we are able to show that this minimal multiplicity cannot be greater than 2.

Lemma 7. If F = (V,E) is a finite free tree, then the node of minimal multiplicity in F has multiplicity 1

or 2.

Proof. The proof is by contraposition. Let u ∈ V (F ) be a node of minimal multiplicity and suppose

µF(u) > 2. Let Cu be the orbit of u. There is a subtree F ′ whose endpoints are the members of Cu; since

m > 2 and the graph is connected, there is necessarily at least one node v ∈ F ′ \Cu. By Lemma 6, we have

µF(v) ≤ µF(u) but by minimality of µF(u), we know that µF(v) = µF(u). So we can repeat the argument

with Cv to find that the tree is infinite (at each step we are removing µF(u) nodes from the free tree, but

the process never terminates).

Note that this argument does not work when µF(u) = 2 because F ′ may simply consist of two nodes

connected by one edge.

Theorem 8. Let T be a rooted tree with n nodes; let M(T ) and MF(T ) be the automorphic multiplicity

and free multiplicity of T , respectively. We have the inequality

MF(T ) ≤ 2M(T ),

and this bound is the best possible.

Proof. Suppose first that n ≥ 3. Let v be a leaf of maximal automorphic multiplicity in TF, and let [v]

denote the set of nodes that are free-congruent to v (so
∣

∣[v]
∣

∣ = MF(T )). By Lemma 7, a node s of minimal

12



automorphic multiplicity either has µF(s) = 1 or µF(s) = 2, and since we assumed that n ≥ 3, we can require

that s not be a leaf.

If µF(s) = 1, then M(Ts) = MF(T ), since any automorphism of TF already fixes s. The nodes in [v]

all lie in some subtrees of s, and without loss of generality, we may assume that they do not all lie in the

same subtree, since if s′ is the only child of s whose subtree contains nodes of [v], we can reroot the tree

Ts at s′ instead without changing the maximum automorphic multiplicity. There are d ≥ 2 children of the

root whose subtrees contain elements of [v]; each one contains an equal proportion of these nodes, so d

divides MF(T ). If we reroot the tree at any node outside these subtrees, then the automorphic multiplicity

of the tree does not change. If, on the other hand, we choose a node in one of these subtrees, then there

are still (d− 1)MF(T )/d leaves that can still be shuffled amongst themselves, so the maximum automorphic

multiplicity is (d− 1)MF(T )/d ≥ MF(T )/2.

If µF(s) = 2, there is a node s′ that is free-congruent to s, and there is mirror symmetry in the graph.

This means that there is a way to split the graph along an edge such that the two sides have the exact same

shape, one contains s, and the other contains s′. The side containing s has MF(T )/2 members of [v]; call

this half [v]s and the other half [v]s′ . When the tree is rooted at s, we find that M(Ts) = MF(T )/2, since

any two members of [v]s can be exchanged and any two members of [v]s′ can be exchanged (but exchanges

cannot happen between the two subtrees). And rerooting the tree at an arbitrary node, it is clear that the

automorphic multiplicity of the tree will not decrease.

When n = 1 the statement is trivial, and taking n = 2 shows that the bound is the best possible,

because if T is the tree with a root and a single (leaf) child, then MF(T ) = 2 and M(T ) = 1.

This theorem tells us that the asymptotics of the free multiplicity are the same as the asymptotics of

the automorphic multiplicity, up to a fudge factor of 2.

Because congruence of two nodes is immediately implied by their being identical under ≡, we have

S(T ) ≤ M(T ) for all rooted trees T . Thus if Mn = M(Tn) and Fn = MF(Tn), where Tn is a conditioned

Galton–Watson tree of size n, then if γ is as defined in Lemma 3, the inequality

Fn ≥ Mn ≥ (1− ǫ)
log2 n

log2(1/γ)
()

holds with probability tending to 1.

Acknowledgements

We thank the anonymous referee for numerous insightful comments that substantially improved the the

readability and rigour of the paper. We also thank Jonah Saks for helping us find a clean proof of Lemma 5.

References

[1] Milton Abramowitz and Irene Ann Stegun, Handbook of Mathematical Functions with Formu-

las, Graphs, and Mathematical Tables (Washington: U.S. Government Printing Office, 1972).

[2] Krishna Athreya and Peter Ney, Branching Processes (Berlin: Springer Verlag, 1972).
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