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In this paper we study the problem of estimating a function from n noiseless observations of function values at ran-
domly chosen points. These points are independent copies of a random variable whose density is bounded away from
zero on the unit cube and vanishes outside. The function to be estimated is assumed to be (p,C)-smooth, i.e., (roughly
speaking) it is p times continuously differentiable. Our main results are that the supremum norm error of a suitably
defined spline estimate is bounded in probability by {ln(n)/n}p/d for arbitrary p and d and that this rate of convergence
is optimal in minimax sense.
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1. Introduction

1.1. Multivariate scattered data approximation

Approximation problems in which the input data is a set of deterministic distinct points are so-called scattered
data approximation problems which have been extensively studied in the literature. In a typical setting we are given a
set of deterministic points (x1, y1), . . . , (xn, yn) ∈ [0, 1]d × R and try to find a function m from a given function space,
e.g., a Sobolev space, that fits the data closely. In scattered data approximation the points are not assumed to occupy
a regular grid but rather are scattered around the space making the reconstruction problem difficult. The most popular
approaches include the moving least squares approximation [6, 11, 16, 18, 32, 33], schemes based on radial basis
functions or constant functions on spheres [10, 17, 24–26], multiquadric interpolants [21] and the smoothing spline
approach. The latter one can be posed as the regularized least squares problem where one minimizes the criterion

n∑
i=1

{m(xi) − yi}
2 + λ ||m||2H
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over a class of functions H. The classes of functions include Beppo-Levi Space [10] and Reproducing Kernel Hilbert
Space [7]. In the moving least squares approach we seek function m∗ which is a solution of the minimization problem

min
m∈P

[ n∑
i=1

{m(xi) − yi}
2w(x, xi)

]
, (1)

where P is a finite-dimensional subspace (usually spanned by polynomials) of a space of continuous functions on a
compact set Ω. Weight functions w are typically local, radial functions. It can be shown under mild conditions that
the solution of problem (1) exists and is unique [32]. For the rate of approximation define the separation distance qX

and the mesh norm hX,Ω as follows:

qX =
1
2

min
1≤ j<k≤n

||x j − xk || and hX,Ω = sup
x∈Ω

min
j∈{1,...,n}

‖x − x j‖,

where ‖x‖ denotes the Euclidean norm of x ∈ Rd. Assume that a global constant c1 exists such that the data separation
condition

qX ≤ hX,Ω ≤ c1 qX (2)

holds on the data set. Then under the condition that Ω is compact and satisfies the so-called cone condition we get
for f ∈ Cp(Ω) the approximation bound ‖m − m∗‖∞,Ω ≤ c2 hp

X,Ω; see, e.g., [32, 33]. Hence if x1, . . . , xn are scattered
approximately evenly in [0, 1]d, we get

‖m − m∗‖∞,[0,1]d ≤ c3 n−p/d. (3)

The approximation error bounds for the radial basis function interpolations may be found in [33] and [20].

1.2. The problem studied in this paper
In practice it is not clear, especially in high dimensions, at which locations a function should be sampled. A simple

but effective way is to generate sampling points randomly from the uniform distribution on a ball or cube. The rest of
the paper will be devoted to estimation of an unknown function m observed at such random scattered data. Our main
question is how the error bound in (3) changes in this case. Obviously the result in (3) is not applicable in this case
since condition (2) does not hold. Nevertheless it is natural to conjecture that a bound similar to (3) should hold for
suitably defined estimates, even if the data points are randomly and not deterministically distributed. However, it is
not clear how the definition of the estimates should be changed in order to be able to show such a result.

To formulate our problem precisely, let X, X1, . . . , Xn be independent and identically distributed random variables
with values in [0, 1]d and let m : [0, 1]d → R be a (measurable) function. Given the data Dn = {(X1,m(X1)), . . .,
(Xn,m(Xn))}, we are interested in constructing an estimate mn = mn(·,Dn) : Rd → R such that the supremum norm
error

‖mn − m‖∞,[0,1]d = sup
x∈[0,1]d

|mn(x) − m(x)|

is small.

1.3. Main results
It is well-known that we need smoothness assumptions on m in order to derive nontrivial results on the rate of

convergence of the global error of a function estimate (see, e.g., [9], Theorem 3.1). In the sequel we assume that m
is (p,C)-smooth for some p = k + s for some k ∈ N0, s ∈ (0, 1] and C > 0, i.e., (roughly speaking, see below for
the exact definition) it is p-times continuously differentiable. Furthermore we will assume throughout this paper that
there exists a constant c4 > 0 such that

Pr {X ∈ S r(x)} > c4 rd

does hold for all x ∈ [0, 1]d and all 0 < r ≤ 1, where S r(x) denotes the (closed) ball of radius r around x. (This
condition is in particular satisfied if X has a density with respect to the Lebesgue-Borel measure which is bounded
away from zero on [0, 1]d.) We will show that in this case we can construct a spline estimate mn = mn(·,Dn) such that

‖mn − m‖∞,[0,1]d = OP
[{

ln(n)/n
}p/d]

, (4)

where we write Zn = OP(Yn) if the nonnegative random variables Zn and Yn satisfy limc→∞ lim supn→∞ Pr(Zn > c Yn) =

0. Furthermore we show that the above rate of convergence is optimal in some minimax sense.
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1.4. Discussion of related results
The estimation problem considered in this paper is a regression estimation problem without noise in the dependent

variable. The case with noise in the dependent variable has been studied much more extensively in the literature. The
common strategies comprise kernel regression estimates (see, e.g., [4, 5, 22, 23, 28, 29, 31], partitioning regression
estimates (see, e.g., [1, 8]), nearest neighbor regression estimates (see, e.g., [2, 3]), least squares estimates (see, e.g.,
[12, 19]) and smoothing spline estimates (see, e.g., [14, 30]).

Minimax rate of convergence results for the global errors of such estimates have been derived in [29]. In particular
it was shown there, that in case of the L2 error and a (p,C)-smooth regression function the optimal rate of convergence
is n−2p/(2p+d).

In the setting of fixed design regression estimation it was analyzed in [13] how the above rate of convergence
changes if there is no noise in the dependent variable. The main results there are that for suitably defined spline
estimates the supremum norm error converges to zero with the rate n−p/d (which corresponds to the bound (3)) and
that this rate of convergence is optimal in some minimax sense.

For the problem studied in this article it was shown in [15] that that the expected L1-error of a nearest-neighbor
estimate achieves the rate of convergence n−p/d in case p ≤ 1. For d = 1 there was also an estimate constructed which
achieves this rate of convergence for arbitrary p.

In contrast, our results consider the supremum norm error and are applicable for general p and d. Here it is natural
to conjecture that results similar to (3) lead to rates (4) or similar, however it is not clear how one can construct an
estimate for random scattered data achieving the rate given by (4).

1.5. Notation
The sets of natural numbers, natural numbers including 0, and real numbers are denoted by N, N0 and R, respec-

tively. The Euclidean norm of x ∈ Rd is denoted by ‖x‖. For f : Rd → R the expression ‖ f ‖∞ = supx∈Rd | f (x)| is
its supremum norm, and the supremum norm of f on a set A ⊆ Rd is denoted by ‖ f ‖∞,A = supx∈A | f (x)|. S r(x) is
the (closed) ball of radius r around x. A function f : Rd → R is called (p,C)-smooth, where C > 0 and p = k + s
with k ∈ N0 and s ∈ (0, 1] hold, if for every α = (α1, . . . , αd) ∈ Nd

0 with α1 + · · · + αd = k the partial derivative
∂k f /(∂xα1

1 · · · ∂xαd
d ) exists and satisfies∣∣∣∣∣∣ ∂k f

∂xα1
1 · · · ∂xαd

d

(x) −
∂k f

∂xα1
1 · · · ∂xαd

d

(z)

∣∣∣∣∣∣ ≤ C ‖x − z‖s

for all x, z ∈ Rd. For z ∈ R we denote the smallest integer greater than or equal to z by by dze, and bzc denotes the
largest integer less than or equal to z.

If not otherwise stated, any ci with i ∈ N here and in the following symbolizes a real nonnegative constant.

1.6. Outline
In Section 2 we define our estimates, the main results are presented in Section 3, several simulations are presented

in Section 4, and Section 5 contains the proofs. An elementary bound on a probability needed in one of our proofs is
given in the appendix.

2. Definition of the estimates

2.1. The main idea
In the sequel we want to estimate a function from noiseless observations of function values at randomly scattered

points. Here we want to fit a function from a given class of functions to our data. For this we could use, e.g., the
principle of the (penalized) least squares, however this would not take advantage of the fact that our observations are
noiseless and hence highly reliable. Otherwise we could try to interpolate our function values, however this will cause
problems since our points will be irregularly spaced and consequently some areas of our sample space will require
many more degrees of freedom of our interpolant than other areas.

The key idea introduced in this paper is to find an estimate such that the maximal distance between its values and
the observed function values is smaller than some threshold. More precisely, we will choose δn > 0 and a suitable
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function space Fn, and will choose an estimate mn such that mn ∈ Fn and |mn(Xi)−m(Xi)| ≤ δn for all i ∈ {1, . . . , n}. In
case that Fn is a finite-dimensional linear vector space of functions, linear programming can be used to compute such
an estimate.

2.2. The spline estimate

In this subsection we assume that m : Rd → R is (p,C)-smooth for C > 0 and p = k + s with k ∈ N0 and s ∈ (0, 1].
In order to define the spline estimate, a B-spline basis of functions with compact support, which spans the space of
polynomial splines (i.e., of piecewise polynomials satisfying a global smoothness condition) on [0, 1]d, is introduced.

Definition 1. Choose K ∈ N, M ∈ N0 and set u j = j/K for indices j ∈ {−M, . . . ,K + M}. The (univariate) B-splines
B j,` : R→ R of degree ` are recursively defined by

(i)

B j,0(x) =

1 if x ∈ [u j, u j+1),
0 if x < [u j, u j+1)

for j ∈ {−M, . . . ,K + M − 1} and
(ii)

B j,`+1(x) =
x − u j

u j+`+1 − u j
B j,`(x) +

u j+`+2 − x
u j+`+2 − u j+1

B j+1,`(x)

for j ∈ {−M, . . . ,K + M − l − 2} and ` ∈ {0, . . . ,M − 1}.

The sequence (u j) j∈{−M,...,K+M} is called knot sequence and M is called degree of the B-splines.

In order to be able to define spaces of multivariate funtions, the univariate B-splines are combined to form multivariate
tensor product B-splines.

Definition 2. Choose K ∈ N and M ∈ N0. For j = ( j1, . . . , jd) with j ∈ {−M, . . . ,K + M}d, the tensor product B-spline
Bj,M : Rd → R is defined by

Bj,M (x) = B j1,M
(
x(1)) · · · B jd ,M

(
x(d)).

For M ∈ N and K = Kn = dc5 (n/ ln n)1/de with a certain c5 > 0, let {Bj,M : j ∈ {−M, . . . ,Kn − 1}d} be the
corresponding tensor product B-splines. We define our estimate, for all x ∈ [0, 1]d, by

mn(x) =
∑

j∈{−M,...,Kn−1}d
ĉj Bj,M (x) (5)

with coefficients ĉj ∈ R such that mn approximates the observed data. If the spline degree M ∈ N fulfills the condition
M ≥ k, then it follows from Theorem 1 in Kohler [13] that it is possible to choose these coefficients such that
|mn(x) − m(x)| ≤ c6 K−p

n holds for a constant c6 > 0 depending only on d,M, p and C. So if we set δn = c7 K−p
n for a

suitably chosen c7 > 0, we will find coefficients ĉj such that the following n inequalities are satisfied:

∀i∈{1,...,n} |mn(Xi) − m(Xi)| ≤ δn. (6)

Since c7 K−p
n (especially p) is usually not known for the function m, we choose δn adaptively in the following way to

compute our estimate by (6):

δn = min{2` : ` ∈ {−n, . . . , n} and system (6) is solvable using 2` as right-hand side}.

If the above set is empty, we define mn = 0.
For n sufficiently large and m (p,C)-smooth, the set δn is chosen from (and the corresponding solution space of

system (6)) must be non-empty because of the above-mentioned result in Kohler [13] and the fact that 2n becomes
larger than c7 K−p

n for increasing n. Linear programming can be used to compute the coefficients ĉj ∈ R in practice.
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3. Main results

We start with deriving an upper bound on the rate of convergence of our estimate (5).

Theorem 1. Let X, X1, . . . , Xn be independent and identically distributed random variables with values in Rd. Assume
that there exists a constant c8 > 0 such that

Pr {X ∈ S r(x)} > c8 rd

holds for all x ∈ [0, 1]d and all r ∈ (0, 1]. Let m : Rd → R be (p,C)-smooth for C > 0 and p = k + s with k ∈ N0 and
s ∈ (0, 1]. Choose M ∈ N with M ≥ k and choose Kn and δn as in Section 2.2. Let mn be defined by (5) and (6). Then
for c9 > 0 sufficiently small we have

‖mn − m‖∞,[0,1]d = OP[{ln(n)/n}p/d].

Remark 1. The proof of Theorem 1 implies that the bound on the probability in Theorem 1 holds uniformly over
the class of (p,C)-smooth functions (for a fixed distribution of X satisfying the assumptions in Theorem 1, e.g., for
uniform distribution on the unit cube). More precisely, we can conclude from the proof of Theorem 1 that our estimate
satisfies for some c11 > 0

lim sup
n→∞

sup
m∈F (p,C)

Pr[‖mn − m‖∞,[0,1]d ≥ c11{ln(n)/n}p/d] = 0,

where F (p,C) denotes the set of all (p,C)-smooth functions m : Rd → R .

Remark 2. The conditions of Theorem 1 require the probability of any ball whose center lies within the unit cube to
be bounded from below in a certain way. On the one hand, this assumption could be even further weakened because
(as a referee pointed out) it must be satisfied only for every radius greater than a small constant times {ln(n)/n}p/d. On
the other hand, it is an interesting question, which distributions of X actually satisfy the requirements of Theorem 1.
A more specific (and easily understandable) type of random variables complying with this condition are those, which
have a density bounded away from zero on the unit cube as stated in the Abstract of this article.

Next we show that the rate of convergence in Theorem 1 as formulated in Remark 1 is optimal whenever estimating
(p,C)-smooth functions from noiseless observations at random points.

Theorem 2. Let p = k + s for some k ∈ N0 and s ∈ (0, 1] and let C > 0. Let F (p,C) denote the set of all (p,C)-smooth
functions m : Rd → R and let X1, . . . , Xn be independent and uniformly distributed on [0, 1]d. Then there is a constant
c12 > 0 such that

lim inf
n→∞

inf
mn

sup
m∈F (p,C)

Pr[‖mn − m‖∞,[0,1]d ≥ c12 {ln(n)/n}p/d] > 0

holds, where the infimum is computed with respect to all estimates mn depending on (X1,m (X1)) , . . . , (Xn,m (Xn)).

Remark 3. Although the rate of convergence deduced in Theorem 1 is optimal according to Theorem 2, it suffers
from the so-called curse of dimensionality. This means that the rate becomes worse (for fixed smoothness) if the
dimension d is increased.

4. Application to simulated data

In this section we apply the estimate developed in the previous sections to simulated data and compare the results
with conventional estimates using the statistics package R. Whereas Theorem 1 and Theorem 2 revealed the optimal
asymptotic behavior of our new estimate, it is not clear how the estimate behaves in case of small sample sizes. This
will be examined in the following.

For this purpose, we consider three competitive approaches. The first one is interpolation with radial basis func-
tions presented in [17], where authors use Wendland’s compactly supported radial basis function φ(r) = (1−r)6

+ (35r2+

18r +3). The second approach to which we compare our estimate is the moving least squares estimate with the second
order polynomial basis and a quartic weight function as described in [11], where we scale the radius of influence they
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Table 1: Median (IQR) of the errors of the estimates for m1,m2,m3,m4,m5,m6

function m1 n = 50 n = 100 n = 200
spline estimate 8.3e-10 (8.5e-10) 1.5e-10 (1.7e-10) 2.5e-11 (1.0e-11)
RBF interpolant 5.4e-1 (3.2e-1) 3.0e-1 (7.3e-2) 1.5e-1 (1.5e-1)
MLS estimate 5.6e-2 (3.5e-2) 4.0e-2 (1.5e-2) 3.1e-2 (5.0e-3)
thin plate spline 3.5e-1 (1.6e-1) 2.0e-1 (5.7e-2) 1.3e-1 (9.4e-2)
function m2 n = 50 n = 100 n = 200
spline estimate 1.8e-1 (3.4e-1) 1.1e-1 (1.1e-1) 5.0e-2 (7.0e-2)
RBF interpolant 1.2e0 (7.4e-1) 5.7e-1 (4.0e-1) 1.8e-1 (1.5e-1)
MLS estimate 2.2e-1 (1.4e-1) 9.4e-2 (4.2e-2) 9.0e-2 (2.0e-2)
thin plate spline 2.2e-1 (9.8e-2) 1.4e-1 (7.3e-2) 7.5e-2 (1.9e-2)
function m3 n = 50 n = 100 n = 200
spline estimate 1.7e-1 (1.8e-1) 4.4e-2 (6.4e-2) 2.2e-2 (2.1e-2)
RBF interpolant 3.8e-1 (2.8e-1) 1.6e-1 (2.2e-1) 8.4e-2 (6.2e-2)
MLS estimate 8.9e-2 (3.0e-2) 5.3e-2 (1.5e-2) 4.7e-2 (1.2e-2)
thin plate spline 1.4e-1 (8.8e-2) 8.4e-2 (3.2e-2) 5.8e-2 (2.3e-2)
function m4 n = 50 n = 100 n = 200
spline estimate 1.4e-1 (1.7e-1) 8.2e-3 (8.2e-3) 4.3e-3 (3.9e-3)
RBF interpolant 5.5e-2 (6.6e-2) 1.8e-2 (3.3e-2) 5.2e-3 (3.9e-3)
MLS estimate 8.3e-2 (2.7e-2) 3.2e-2 (7.1e-3) 2.7e-2 (6.5e-3)
thin plate spline 1.0e-1 (7.4e-2) 5.5e-2 (5.5e-2) 2.2e-2 (7.5e-3)
function m5 n = 50 n = 100 n = 200
spline estimate 2.8e-1 (3.0e-1) 2.0e-1 (1.8e-1) 5.4e-2 (7.6e-2)
RBF interpolant 3.2e-1 (1.3e-1) 1.6e-1 (1.1e-1) 6.1e-2 (2.9e-2)
MLS estimate 7.0e-1 (3.7e-1) 3.0e-1 (6.2e-2) 2.4e-1 (1.1e-1)
thin plate spline 7.8e-1 (3.3e-1) 4.5e-1 (2.6e-1) 1.9e-1 (8.8e-2)
function m6 n = 50 n = 100 n = 200
spline estimate 3.1e-1 (2.2e-1) 2.6e-1 (1.3e-1) 1.8e-1 (1.1e-1)
RBF interpolant 2.4e-1 (1.2e-1) 1.4e-1 (9.1e-2) 5.6e-2 (1.7e-2)
MLS estimate 1.3e-1 (4.8e-2) 8.8e-2 (7.0e-3) 8.5e-2 (7.2e-3)
thin plate spline 1.0e-1 (2.7e-2) 7.2e-2 (2.8e-2) 4.0e-2 (1.6e-2)

used with respect to the size of our estimation area and the sample size. Instead of their modification we use the
Moore-Penrose generalized inverse of the matrix if it is singular because this leads to better results and works even for
very ill-conditioned matrices. The third approach is thin plate spline estimate whose smoothing parameter is chosen
by the generalized cross-validation as implemented by the routine Tps() of the library fields in R.

The parameters M and K of our spline estimate defined in (6) are chosen adaptively by cross-validation allowing
values from 1 to Mmax and Kmax, respectively. Mmax and Kmax can take values up to 5 and 25, respectively, depending
on the examples, although the set of possible choices was reduced for some settings if several test runs showed that
the whole range of choices is not needed. The parameter δn is chosen as the smallest possible value in {2i/n : i =

−50, . . . , 30} such that a solution of the linear program exists.
Table 1 shows the results arising from our experiments. Random variable X is uniformly distributed on [0, 1]2 and
we try six different test functions mi : [0, 1]2 → R, i ∈ {1, . . . , 6}, with different degrees of (p,C)-smoothness as
illustrated in Figure 1 and defined as follows:

m1(x1, x2) = 3x2
1 x2 − x3

2,

m2(x1, x2) = 2 exp{−5 (x1 − 0.7)2} − exp{−5 (x1 − 0.4)2} − 3x2 + 5,
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m3(x1, x2) = 1/(x1 + x3
2 + 0.5)

m4(x1, x2) = exp[−3{(x1 − 0.75)2 + (x2 − 0.75)2}],
m5(x1, x2) = sin(2 π x1) cos(π x2),
m6(x1, x2) = min(1 − x2, 2 x1 − 0.5).

The estimates under consideration are computed for different numbers (n = 50, 100, 200) of independent realizations
of X and their corresponding function values. Since the results of the simulations depend on the randomly chosen data
points, we compute the estimates repeatedly (N = 50 times) for regenerated realizations of X and examine the median
(plus interquartile range IQR) of the supremum errors with respect to an equidistant grid of width 0.02 on [0, 1]2.

Examination of the results shows that, on the one hand, our general spline estimate clearly outperforms the com-
parative estimates in the polynomial case of m1 (even for small sample sizes), which could have been expected because
our estimate consists of piecewise polynomials. In addition to that, it has the smallest median error for increasing sam-
ple sizes in the moderately smooth cases of m2 to m5 (with only a comparatively small advantage in the volatile case
of m5). On the other hand, it is relatively bad for all of the considered sample sizes in the edged case of m6, which is
not even differentiable, but it improves steadily for increasing sample size. All of these results support the following
conclusion regarding the small sample size behavior of our new estimate: It outperforms other approaches in case of
smooth functions, but it faces problems in case of non-smooth functions.

5. Proofs

5.1. Proof of Theorem 1
For the proof of Theorem 1 we need the following lemmata.

Lemma 1. Let Π be the ring of all polynomials p : Rd → R in d variables and let P be a finite–dimensional
subspace of Π with dimension dimP. For Lebesgue almost any (x(1)

1 , . . . , x(d)
1 , . . . , x(1)

dimP, . . . , x
(d)
dimP) ∈ Rd dimP and

any y1, . . . , ydimP ∈ R, there is a unique p ∈ P which fulfills p(x(1)
i , . . . , x(d)

i ) = yi for all i ∈ {1, . . . , dimP}.

Proof. The assertion of the lemma follows immediately from Proposition 4 in [27]. �

Lemma 2. Assume that the distribution of the iid random variables X, X1, . . . , Xn satisfies Pr {X ∈ S ε(x)} ≥ c13 ε
d for

all x ∈ [0, 1]d and ε ∈ (0, 1], where c13 > 0 is a constant and S ε(x) is the closed ball around x with radius ε. Let
Kn = dc9 {n/ln(n)}1/de. Let B1, . . . , BKd

n
be Kd

n balls with radius c14 1/Kn, whose centers lie in [0, 1]d. For any r > 0,
there is a sufficiently small c9 ≡ c9(r, c13, c14) > 0, such that

lim
n→∞

Pr
{
∀ j∈{1,...,Kd

n } ∃i∈{1,...,bn/rc} : Xi ∈ B j
}

= 1.

Proof. We consider the complementary event of the above expression. By the union bound, the independence of
X1, . . . , Xbn/rc and the assumption on the distribution of X we get for sufficiently large n

Pr
{
∃ j∈{1,...,Kd

n } : X1, . . . , Xbn/rc < B j

}
≤

∑
j∈{1,...,Kd

n }

{1 − Pr(X ∈ B j)}bn/rc

≤ Kd
n max

j∈{1,...,Kd
n }
{1 − Pr(X ∈ B j)}bn/rc

≤ Kd
n (1 − c13cd

14/K
d
n )bn/rc

≤ Kd
n exp

(
−c13 cd

14
n

2 r Kd
n

)
≤ 2d cd

9
n

ln(n)
exp

−c13 cd
14

ln(n)
2d+1 r cd

9


For sufficiently small c9, the right-hand side of the inequality above tends to zero as n→ ∞. �

Figure 1: Behavior of the test functions m1,m2,m3,m4,m5,m6.

7



Lemma 3. Let the random variables X, X1, . . . , Xn and the parameter Kn be chosen as in Lemma 2. Let r ∈ N be
an arbitrary constant and let B1, . . . , BrKd

n
be rKd

n balls with radius c14 1/Kn, whose centers lie in [0, 1]d. Then for
c9 ≡ c9(r, c13, c14) > 0 sufficiently small

lim
n→∞

Pr
{
∀ j∈{1,...,r Kd

n }
∃i∈{1,...,n} : Xi ∈ B j

}
= 1.

Proof. At first, we note that

Pr
{
∀ j∈{1,...,r·Kd

n }
∃i∈{1,...,n} : Xi ∈ B j

}
≥

r∏
k=1

Pr
{
∀ j∈{(k−1)·Kd

n +1,...,k·Kd
n }
∃i∈{(k−1)·bn/rc+1,...,k·bn/rc} : Xi ∈ B j

}
.

The assertion follows from the application of Lemma 2 to the inner expression. �

Proof of Theorem 1. Let Qj(m) ∈ R be the coefficients of the spline approximant of m in Theorem 1 in [13] which
ensures that

m̄n(x) =
∑

j∈{−M,...,Kn−1}d
Qj(m)Bj,M(x)

fulfills |m̄n(x) − m(x)| ≤ c15 K−p
n for all x ∈ [0, 1]d and a constant c15 > 0. Consequently, for n sufficiently large, a

right-hand side of the type 2` with ` ∈ {−n, . . . , n} which makes system (6) solvable exists and the smallest value of
this type is smaller than 2 c15 K−p

n . Then the bound δn ≤ c10 K−p
n holds. These considerations imply

|mn(Xi) − m̄n(Xi)| ≤ |mn(Xi) − m(Xi)| + |m̄n(Xi) − m(Xi)| ≤ δn + c15 K−p
n ≤ c16 {ln(n)/n}p/d (7)

for n sufficiently large and an adequately chosen c16 > 0. Set zj = ĉj − Qj(m) for every j ∈ {−M, . . . ,Kn − 1}d. Then

mn(x) − m̄n(x) =
∑

j∈{−M,...,Kn−1}d
zj Bj,M (x)

holds, so we can conclude

|mn(x) − m̄n(x)| =
∣∣∣∣ ∑

j∈{−M,...,Kn−1}d
zj Bj,M (x)

∣∣∣∣ ≤ max
j∈{−M,...,Kn−1}d

|zj|

for all x ∈ [0, 1]d, because the B-splines are non-negative and sum up to 1 (see, e.g., Lemma 15.2 in [9]). Combining
this with the previous bounds we get

|mn(x) − m(x)| ≤ |mn(x) − m̄n(x)| + |m̄n(x) − m(x)| ≤ max
j∈{−M,...,K−1}d

|zj| + c17 t{ln(n)/n}p/d

and thus it suffices to show that maxj∈{−M,...,Kn−1}d |zj| ≤ c18 {ln(n)/n}p/d for a certain c18 > 0 outside of an event, whose
probability tends to zero for n→ ∞.

By (7) our estimate fulfills, for each i ∈ {1, . . . , n},∑
j∈{−M,...,Kn−1}d

zj Bj,M (Xi) = ε(i) (8)

for an adequately chosen

ε(i) ∈
[
−c16 {ln(n)/n}p/d, c16 {ln(n)/n}p/d

]
. (9)

Next, consider a fixed d-dimensional spline node interval Aj = (u j1 , u j1+1) × · · · × (u jd , u jd+1) for an arbitrarily chosen
j ∈ {−M, . . . ,Kn − 1}d. Let Sj ⊆ {−M, . . . ,Kn − 1}d contain exactly those indices k = (k1, . . . , kd) that fulfill

∀i∈{1,...,d} ji − M ≤ ki ≤ ji.
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If we put (M + 1)d different values x1, . . . , x(M+1)d ∈ Aj in equations of the type (8), this leads to the linear system of
equations

∀i∈{1,...,(M+1)d}

∑
k∈Sj

zk Bk,M (xi) = ε(i), (10)

because the rest of the B-spline terms vanish on Aj. We will abbreviate (10) in matrix notation by Bj zj = εj. Because
the remaining B-splines are polynomials on this set, (10) equals a polynomial interpolation problem on Aj.

Let B̄k,M be the univariate B-spline of degree M with knot sequence ūk = k (k ∈ Z) and support [k, k + M + 1], and
set

B̄k,M (x) = Bk1,M(x(1)) · · · Bkd ,M(x(d))

for k = (k1, . . . , kd). Then it is easy to see that

Bk,M(x) = B̄k,M{Kn (x − k/Kn)} = B̄k,M (Kn x − k) ,

and consequently we can consider the polynomial interpolation problem Bj zj = εj on (0, 1)d rather than on Aj and
with B-splines B̄j,M , which are based on the nodes with node distance 1, rather than with B-splines which use node
distance 1/Kn.

Due to the local linear independence of the B-splines (see Lemma 14.5 in [9]) the polynomials form a (M + 1)d–
dimensional vector space. So according to Lemma 1 there is a set of distinct points x̃1, . . . , x̃(M+1)d ∈ (0, 1)d (almost
every set would work), such that this interpolation problem is uniquely solvable, which means | det(Bj)| is greater than
zero. Moreover, the absolute value of the determinant of Bj is a continuous function of the inputs x̃1, . . . , x̃(M+1)d , since
the B-splines are continuous functions of their arguments for degree greater than zero.

So there is a closed ball with radius c19 around all of these values, where | det(Bj)| ≥ cmin > 0 holds. Note that this
argument is independent of the size of Aj (which depends on n), because the B-splines are scaled according to Aj by
definition and the closed balls exist in a scaled version with radius c19/Kn in Aj. So cmin does not depend on n.

Due to Lemma 3 at least (M + 1)d of the realizations Xi fall into the above-mentioned compact balls in Aj for
sufficiently large n. We call these realizations X̃1, . . . , X̃(M+1)d . Their corresponding equations in (8) form a system
like (10) which can be solved by Cramer’s rule in the form of

zk = det{Bj(k, εj)}/det(Bj)

for all k ∈ Sj, where Bj(k, εj) symbolizes a version of Bj, in which the column that belongs to k is replaced by εj.
The fact that the B-spline values and the determinant of Bj are bounded allows the conclusion

|zk| =
| det{Bj(k, εj)}|
| det(Bj)|

≤
c20

cmin
max

i∈{1,...,(M+1)d}
|ε(i)| ≤ c18 {ln(n)/n}p/d (11)

because of (9). Since the above works for all of the Aj simultaneously (see Lemma 3), every zj in (8) can be bounded
by (11), and this implies the assertion.

5.2. Proof of Theorem 2

Set Mn = b{2 n/ ln(n)}1/dc and let
{
An, j

}
j=1,...,Md

n
be a partition of [0, 1]d into cubes of side length 1/Mn. Choose a

(p, 2s−1C)-smooth function g : Rd → R (where s comes from the definition of the (p,C)-smoothness in the theorem)
satisfying

supp(g) ⊆ (−1/2, 1/2)d

and reaching a certain constant c21 > 0 on its support, i.e., satisfying c21 = supx∈Rd g(x) = g(x0) > 0 for some
x0 ∈ (−1/2, 1/2)d . For j ∈ {1, . . . ,Md

n } let an, j be the center of An, j and set gn, j(x) = M−p
n g{Mn(x − an, j)}. We define

m(cn) : Rd → R by

m(cn) =

Md
n∑

j=1

cn, j gn, j(x),

9



where cn = (cn, j) j=1,...,Md
n
∈ {−1, 1}M

d
n .

The functions m(cn) are (p,C)-smooth for all cn ∈ {−1, 1}M
d
n (see, e.g., [9], proof of Theorem 3.2), hence we have{

m(cn) : cn ∈ {−1, 1}M
d
n
}
⊆ F (p,C). (12)

Randomizing the coefficients of this type of functions we introduce random variables Cn,1, . . . ,Cn,Md
n

which are inde-
pendent from each other and from X1, . . . , Xn, such that

Pr
{
Cn,k = −1

}
= Pr

{
Cn,k = 1

}
= 1/2

for all k ∈ {1, . . . ,Md
n }, and we set Cn = (Cn,1, . . . ,Cn,Md

n
). Using the relation Mn ≤ {2 n/ ln(n)}1/d, (12) allows the

following bounding for an arbitrary estimate mn:

sup
m∈F (p,C)

Pr
[
‖mn(·, (X1,m(X1)), . . . , (Xn,m(Xn))) − m‖∞,[0,1]d ≥ c21 {ln(n)/(2n)}p/d

]
≥ sup

cn∈{−1,1}M
d
n

Pr
{
‖mn(·, (X1,m(cn)(X1)), . . . , (Xn,m(cn)(Xn))) − m(cn)‖∞,[0,1]d ≥ c21 M−p

n

}
≥ Pr

{
‖mn(·, (X1,m(Cn)(X1)), . . . , (Xn,m(Cn)(Xn))) − m(Cn)‖∞,[0,1]d ≥ c21 M−p

n

}
≥ Pr

{
∃ j∈{1,...,Md

n} : X1 < An, j, . . . , Xn < An, j and

|mn(x0, j, (X1,m(Cn)(X1)), . . . , (Xn,m(Cn)(Xn))) − m(Cn)(x0, j)| ≥ c21 M−p
n

}
,

where x0, j = an, j + x0/Mn ∈ An, j. Since the variables X1, . . . , Xn, Cn,1, . . . , Cn,Md
n

are independent, we can reformulate
the last probability as∫

. . .

∫
1{∃ j∈{1,...,Md

n }
: x1 < An, j, . . . , xn < An, j}

× Pr
{
|mn(x0, j, (x1,m(Cn)(x1)), . . . , (xn,m(Cn)(xn))) − m(Cn)(x0, j)| ≥ c21M−p

n

}
µ (dxn) · · · µ (dx1) ,

where µ denotes the distribution of X. By definition of x0 we have m(Cn)(x0, j) = Cn, j M−p
n g(x0) = c21 M−p

n Cn, j. If a
certain An, j does not contain any of the x1, . . . , xn, then mn(x0, j, (x1,m(Cn)(x1)), . . . , (xn,m(Cn)(xn))) is independent of
Cn, j, from which we can conclude that

Pr
{
|mn(x0, j, (x1,m(Cn)(x1)), . . . , (xn,m(Cn)(xn))) − m(Cn)(x0, j)| ≥ c21 M−p

n

}
≥ 1/2.

Summarizing the above results we see that we have shown

sup
m∈F (p,C)

Pr
[
‖mn(·, (X1,m(X1)), . . . , (Xn,m(Xn))) − m‖∞,[0,1]d ≥ c21{ln(n)/(2n)}p/d

]
≥

1
2

Pr
{
∃ j∈{1,...,Md

n} : X1 < An, j, . . . , Xn < An, j
}
.

Hence it suffices to show that

lim inf
n→∞

Pr
{
∃ j∈{1,...,Md

n} : X1 < An, j, . . . , Xn < An, j

}
> 0. (13)

The event in (13) describes the random allocation of n balls into Md
n urns and its probability is the classical probability

of leaving at least one urn empty. We believe that its lower bound has already been computed in the literature, but
since we could not find a proper reference, we provide the rigorous derivation of it below.

Since the probability in (13) is monotonically increasing in Mn, and since Mn satisfies for sufficiently large n
the relation Md

n ≥ bn/{ln(n) − ln ln(n)}c , we can assume without loss of generality that we have d = 1 and Mn =

bn/{ln(n) − ln ln(n)}c . Let C j be the event that An, j remains empty. Then we are interested in the probability

Pr

 Mn⋃
j=1

C j

 .
10



According to the inclusion-exclusion principle (the Sylvester–Poincaré formula), it can be written as

Pr

 Mn⋃
j=1

C j

 =

Mn∑
k=1

∑
I⊆{1,...,Mn },
|I|=k

(−1)|I|−1 Pr

⋂
i∈I

Ci

 =

Mn∑
k=1

(−1)k−1
(
Mn

k

) (
1 −

k
Mn

)n

.

By a tedious but not very difficult argument, it is possible to show that this probability tends to 1 − 1/e as n → ∞,
which implies the assertion (see Appendix). �
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Appendix: Lower bound on the probability in the proof of Theorem 2

Lemma 4. Let n ∈ N and set Mn = bn/[ln(n) − ln{ln(n)}]c. Then

lim
n→∞

Mn∑
k=1

(−1)k−1
(
Mn

k

) (
1 −

k
Mn

)n

= 1 −
1
e
.

Proof. Throughout the proof we will apply several times the following consequence of the Lagrange formula for the
remainder of a Taylor expansion. For any x ∈ (0, 1) there exists ξx ∈ (0, x) such that

ln(1 − x) = −x −
1

2(1 − ξx)2 x2.

In the first step of the proof, we show that, for any k ∈ N0,

lim
n→∞

(
Mn

k

) (
1 −

k
Mn

)n

=
1
k!
. (14)

Because of (
Mn

k

) (
1 −

k
Mn

)n

=
1
k!

Mn(Mn − 1) · · · (Mn − k + 1)
{(

1 −
1

Mn

)n}k
 1 − k

Mn(
1 − 1

Mn

)k


n

=
1
k!

1
(
1 −

1
Mn

)
· · ·

(
1 −

k − 1
Mn

) {
Mn · · ·

(
1 −

1
Mn

)n}k
 1 − k

Mn(
1 − 1

Mn

)k


n

,

the assertion of Step 1 follows from the fact that Mn → ∞ as n→ ∞, which implies in turn that,

lim
n→∞

{
1 − k/Mn

(1 − 1/Mn)k

}n

= 1 (15)

and
lim
n→∞

Mn (1 − 1/Mn)n = 1. (16)

Here (15) follows from the fact that, as n→ ∞,

n
{

ln
(
1 −

k
Mn

)
− k ln

(
1 −

1
Mn

)}
= n

[
−

k
Mn
−

1
2(1 − ξk/Mn )2

k2

M2
n
− k

{
−

1
Mn
−

1
2(1 − ξ1/Mn )2

1
M2

n

}]
11



=
n

M2
n

{
k

2(1 − ξ1/Mn )2 −
k2

2(1 − ξk/Mn )2

}
→ 0.

Furthermore, the definition of Mn implies that, as n→ ∞,

ln Mn + n ln (1 − 1/Mn) = ln Mn + n
{
−

1
Mn
−

1
2(1 − ξ1/Mn )2

1
M2

n

}
=

(
ln Mn −

n
Mn

)
−

1
2(1 − ξ1/Mn )2

n
M2

n
→ 0,

hence also (16) holds.
In the second step of the proof we show that, for all k ∈ {1, . . . ,Mn − 1},∣∣∣∣∣∣(−1)k−1

(
Mn

k

) (
1 −

k
Mn

)n∣∣∣∣∣∣ ≤ 2k

k!
(17)

for n sufficiently large. Since

ln
(
1 −

k
Mn

)
=

∞∑
`=1

−1
`

(
k

Mn

)`
≤ k

∞∑
`=1

−1
`

(
1

Mn

)`
= k ln

(
1 −

1
Mn

)
,

we have ∣∣∣∣∣∣(−1)k−1
(
Mn

k

) (
1 −

k
Mn

)n∣∣∣∣∣∣ ≤
(
Mn

k

) (
1 −

1
Mn

)n·k

≤
1
k!

{
Mn

(
1 −

1
Mn

)n}k

≤
2k

k!
,

for n sufficiently large, where the last inequality follows from (16).
In the third step of the proof, we show the assertion. Here we apply the dominated convergence theorem together

with (14) and (17) and conclude

Mn∑
k=1

(−1)k−1
(
Mn

k

) (
1 −

k
Mn

)n

=

∞∑
k=1

(−1)k−1
(
Mn

k

) (
1 −

k
Mn

)n

1(k ≤ Mn − 1),

which converges to 1 − 1/e as n→ ∞. �
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