
A Lecture on Hashing
Aram-Alexandre Pooladian, Alexander Iannantuono

March 22, 2017

This is the scribing of a lecture given by Luc Devroye on the 17th of
March 2017 for Honours Algorithms and Data Structures (COMP 252).
The subject was hashing and their uses.

Hashing

Definition 1. A hash function, h(·), is a map from the space of keys,
K, to another space,M = {0, 1, . . . , m− 1} (we note that the cardinal-
ity ofM, |M|, is m). Hence, we write h : K → M, and note that the
mapping usually appears to be random and uniformly distributed.

Example 2. Consider a hash function that takes the last two digits
of a phone number. Hence, this would map a phone number, say
514.844.1395 7→ 95. Using this hash function, we have that m = 100,
and thus M = {0, 1, . . . , 99}.

There are different methods of using hash functions in data struc-
tures that permit dictionary operations. We looked into the following
three methods during this lecture:

1. Direct Addressing

2. Hashing with Chaining

3. Open Addressing

Direct Addressing

For a key k, we have h(k) = k. The table that the keys are mapped to
is defined as T = T[0], T[1], . . . , T[m − 1]. This table is represented
in the computer as an array, and is typically implemented as an ex-
ogenous data structure and has pointers that go to the necessary data
(see figure 1). For a data item x, its key is denoted by key[x].

x

T

0

1

2

k

m− 2

m− 1

...

...

Figure 1: Example of a direct hash table

Operations - Simple

The following dictionary operations work under the assumption that
all keys are unique. They all require O(1) time.

a lecture on hashing 2

INSERT(x, T)

1 T[h(key[x])] = x

DELETE(x, T)

1 T[h(key[x])] = NIL

SEARCH(k, T)

1 if T[k] == NIL
2 return “Not Found”
3 else
4 return T[k]

Avoiding Initialization

A possible issue with implementing the hash table in this specific
way occurs when |K| << |M|. Then we would need to initialize
a table that would be very large — arguably larger than how much
memory available at our disposal. However, suppose this was pos-
sible. We would also be ‘wasting’ storage space because we would
have slots in our table that never get used! Lastly, this could would
take O(m) since we initialize every slot to contain NIL. We need to
do better. A possible solution would be to simply identify end points
(our smallest and largest values inM) and consider everything be-
tween these points to be our table. However, this could result in
our table T having “garbage” values. It takes Θ(m) time to delete
the “garbage”. To avoid initialization, we need a second table, T?

such that |T| = |T?|, and a stack S. As we shall see below, with this
method, we are able to identify “garbage” by the clever use of for-
ward and backward pointers. The stack S has positions indexed by
1 to Last[S]. T?[k] points to a place in S where k is a stored key, and
S[i] = k as a check. We rewrite the basic dictionary operations:

Operations - Avoiding Initialization

INSERT(x, T)

1 Last[S] + = 1 // A new element is added in the stack
2 k = key[x] // Note: the keys are still unique
3 T[k] = x // Pointer to x
4 T?[k] = Last[S]
5 S[Last[S]] = k // Acts as a “back-pointer”

a lecture on hashing 3

DELETE(x, T)

1 k = key[x]
2 T[k] = NIL // Step not required
3 p = T?[k] // Want to delete p
4 q = Last[S]
5 Last[S] − = 1 // Decrement the size of the stack
6 T?[q] = p
7 S[p] = q

T

k k

x

T?

q

S

p

Last[S]

Figure 2: Process of avoiding initial-
ization. The dotted line illustrates the
DELETE operation.

SEARCH(k, T)

1 if T[k] ≤ Last[S] and S[T?[k]] == k
2 return t[k]
3 else
4 return “Not Found”

Hashing with Chaining

As before, we have our table T of size m but now instead of con-
taining the pointers to our data, it contains pointers to linked lists
that contain the data, i.e., T[k] is a pointer to the head of the linked
list. All elements x in that list have keys that hash to k — that is,
h(key[x]) = k. This is to say that the linked lists are somewhat
‘nested’ inside the array. We will see that this is a convenient way
to avoid collisions. That being said, before we continue, we must first
formally define a collision.

Definition 3. A collision is said to occur when for a given hash
function h(k), ∃k1, k2 ∈ K such that k1 6= k2 and h(k1) = h(k2)

1. 1 In other words, h(k) is not injective.

Operations

INSERT(x, T)

1 k = h(key[x])
2 LinkedListINSERT(x, T[k])

DELETE(x, T)

1 k = h(key[x])
2 LinkedListDELETE(x, T[k])

T

. . .

. . .

. . .

. . .

. . .

m− 1

1

3

2

0

Figure 3: Process of Hashing with
chaining. Dotted lines indicate pointers
to head of linked list.

SEARCH(k, T)

1 k? = h(key[x])
2 if k? is there
3 return ListSEARCH(k, T[k?])

a lecture on hashing 4

Expected Time for Unsuccessful Search

Let TU be the expected time for an unsuccessful search. Assume that
each key gets mapped uniformly at random to one of the m chains.
Let ES be the expected list size which is n/m, n being the number of
items and m being |T|. This ratio is known as the load factor and is
denoted by α. We have

TU = 1 + ES = 1 +
n
m

= 1 + α,

where the +1 is due to overhead.

Figure 4: The dotted green circle
outlines the desired sweet-spot for
the load factor

We also have that the total space, TS, used is n cells + m headers
or,

TS = n + m = n
(

1 +
m
n

)
= n

(
1 +

1
α

)
.

We then notice a trade-off between TU and TS, as illustrated in the
figure. It is recommended that α ' 1 in order to have optimal speed
when performing operations.

Discussion of Result

If we keep α fixed, then the expected time of an INSERT, SEARCH
or DELETE operation is O(1), regardless of how large n is. This
makes hashing a formidable competitor for binary search trees.

Dynamic Hashing

In practice, if we consider the load factor as a function of time, i.e.,
as dictionary operations are performed on the hash table, we would
like it to remain within reasonable bounds. To keep it within bounds,
we check if the current load factor is within our bounds before per-
forming the operations INSERT or DELETE and if it is beyond the
bound, we do what is known as rehashing — a process in which the
hash table size is changed to keep the load factor near a target value
α and then hashing every element in our table to place it into the new
table. Consider the following example:

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

Time [t]

Lo
ad

Fa
ct

or
[α

]

Figure 5: Load factor as a function of
time with dynamic hashing.

Example 4. We set our upper and lower bounds to 1
2 and 2 respec-

tively. Thus, α ∈ (1
2 , 2). If α goes below or reaches 1

2 , we make a new
table T′ of size m/2 and iterate through all of our elements in the
table T. For every element, we insert them into T′. We can then re-
label T to be T′. On the other hand, if α goes above or reaches 2, we
rehash to a table T′ of size 2m. This assures that α remains close to 1.
Rehashing takes O(n) time but its amortized cost is O(1).

a lecture on hashing 5

Radix Sort

Radix sort can be regarded as a version of hashing with chaining. We
demonstrate how radix sort works for integers, given in a decimal
base. As an example, take

319 329 707 729 321 327 322.

We first create ten linked lists (so |M| = 10) and perform what is
called “bucketing” using the following hash function

h(x) = x mod 10,

where x is simply the integer we want to sort. We place them in their
respective “buckets” as follows:

0 1 2 3 4 5 6 7 8 9

321 322 707 319

327 329

729

Then we concatenate the linked lists from left to right

321 322 707 327 319 329 729,

and repeat the process with the following function

h(x) = (x÷ 10) mod 10.

Their buckets are

0 1 2 3 4 5 6 7 8 9

707 319 321

322

327

329

729

Doing a third and final round would place them all in order. We
note that this procedure takes time n · # of rounds , so in this small
example, the time and space are indeed O(n).

Assume now that we wish to sort n numbers from the space
{1, 2, . . . , n17} in O(n) time and space (in RAM). The number of
rounds would be log10 n17 = 17 log10 n, leading to time complex-
ity Θ(n log10 n), which is not good! A solution is to change the base
from 10 to something else . . . like n. Then any number in the range of
[0, n17) can be written as follows

x = x0 + x1 · n1 + x2 · n2 + · · ·+ x16n16,

a lecture on hashing 6

with the coefficients being:

x0 = x mod n, x1 =
x− x0

n
mod n, x2 =

x− x0 − x1 · n
n2 mod n,

and so on. Writing the integers in this fashion and using radix sort
gives us hash tables of size n and time complexity O(n), since only 17

rounds are required.

Open Addressing

This method does not require any linked lists but it does need that
the number of elements n be less than or equal to |T| = m. The idea
behind open addressing is to store a key in the first available slot.
We start by checking if T[k] is free to be filled and if not, we generate
some new index every time we find a full slot until we find an empty
one. An interesting difference in open addressing, in comparison to
the previous methods we saw, is that a key’s location in the table is
affected by the order in which the keys were inserted. To consider
examples of hashing functions, we must first define the concept of a
probe sequence.

Definition 5. A probe sequence is a sequence of indices of the slots
checked in attempt to insert a key into the table T.

We use the notation h(k, 0), h(k, 1), . . . , h(k, m − 1) for the probe
sequence, where it is understood that this must form a permutation
of 0, 1, . . . , m− 1.

INSERT(x, T)

1 k = key[x]
2 j = 0 // Counts the number of attempts
3 while j < m and T[h(k, j)] 6= NIL
4 j+ = 1
5 if j = m // Used all possible options
6 return “Table is Full”
7 else
8 T[h(k, j)] = x

T
0

m− 1

h(k, 0)

h(k, 1)

h(k, 2)

Figure 6: Probe sequence, illustrated.
The hatched lines indicate filled slots.

SEARCH(k, T)

1 j = 0
2 while j < m and T[h(k, j)] 6= NIL
3 if key[T[h(k, j)]] = k
4 return T[h(k, j)]
5 j = j + 1
6 return “Not Found”

a lecture on hashing 7

Speed Comparison with Chaining Method

Recall that we have a table of size m with n ≤ m items stored. As-
sume that each item is inserted using an independent, uniform ran-
dom permutation for h(k, 0), . . . , h(k, m − 1) (this is unrealistic but
nevertheless insightful). Let us look at the operation INSERT in order
to compare with the chaining method. We have

P[Finding an empty space in 1st attempt] = (m− n)/m = 1− α,

and thus,

P[Finding an occupied space in 1st attempt] = 1− (1− α) = α.

Clearly, P[Finding an empty space in 2nd attempt] is

P[O2] =

(
n
m

)(
n− 1
m− 1

)
≤
(

n
m

)2

= α2,

and, in general, the P[Finding an empty space in kth attempt]

P[Ok] =

(
n
m

)(
n− 1
m− 1

)
· · ·
(

n− k
m− k

)
≤
(

n
m

)k

= αk.

Thus we can say that the expected time to insert, E[TINSERT], is

E[TINSERT] = 1 ·P[O1] + 2 ·P[O2] + 3 ·P[O3] + · · ·
= P[O1] + P[O2] + P[O3] + · · ·︸ ︷︷ ︸

=1

+P[O2] + P[O3] + · · ·︸ ︷︷ ︸
≤α1

+P[O3] + · · ·︸ ︷︷ ︸
≤α2

· · ·

≤
∞

∑
j=0

αj =
1

1− α
.

This is worse than chaining (since 1 + α ≤ 1/(1− α)), but can get
close when α is small. It is recommended to keep α small preferably
less than 0.5. If we maintain that, then, just like chaining, we have a
formidable competition for binary search trees in dictionary applica-
tions.

0 0.5 1 1.5 2
0

2

4

6

8

10

α

E
(T

IN
SE

R
T
)

Chaining
Open Addressing

Figure 7: The Open Addressing asymp-
totically approach infinity as α → 1
whereas chaining does not have this
behavior

a lecture on hashing 8

Examples of Hashing Functions

Linear Probing

Linear Probing is a method of probing whose probe sequence is
generated by the equations below:

h(k, j) = h(k) + j (mod m)

or
h(k, j) = h(k) + c · j (mod m) where gcd(c, m) = 1.

Remark 6. Linear probing, while easy to implement, has a flaw in it
known as primary clustering. Clustering begins to reveal itself as the
slots in the table T fill up, thus negatively affecting the search and
insert times.

Random Probing

Random Probing is another method of probing whose probe se-
quence is generated by the equations below:

h(k, j) = h(k) + dj (mod m)

where dj is a sequence with j ∈ [0, m− 1] that forms a permutation of
{0, 1, . . . , m− 1} that appears to be, or is close to a, truly random uni-
form permutation. An example is the linear congruential sequence:
d0 = 0 and di+1 = (a · di + 1) mod m, where a is an integer. It is well
known that d0, . . . , dm−1 is a permutation ofM if and only if a− 1 is
a multiple of every prime that divides m, where “4” is considered a
prime. If m is prime, then all values of a are good. If m = 100, then a
must be 1, 4, 41, 61 or 81.

References

[1] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. 2009. Cambridge, MA.

[2] Kaylee Kutschera, Pavel Kondratyev, and Ralph Sarkis. A Lecture
on Cartesian Trees. 2017. Montreal, QC.
http://luc.devroye.org/Kutschera-Kondratyev-Sarkis-

CartesianTreesLectureNotes-McGillUniversity-2017.pdf

	Hashing
	Direct Addressing
	Hashing with Chaining
	Dynamic Hashing
	Radix Sort
	Open Addressing
	Examples of Hashing Functions

