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Labelled vs. Unlabelled Graphs




Generating Functions

gn ... humber of graphs of size n (in a given graph class)

Labelled Graphs

n
G(z) = Z gn
n>0
Unlabelled Graphs
G(z) = > gna"

n>0




Generating Functions — Extensions

gn,m ... number of graphs of size n with m edges

Vertext-labelled Graphs with unlabelled edges

n

X
G, y)= D, gnm—y"
n,m>0 n:

Unlabelled Graphs

G(z,y) = >  gnmz"y™
n,m=>0




Block-Decomposition
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Block-Decomposition

block: 2-connected component

Block-stable graph class §: all components and all 2-connected
components of a graph G € ¢ are also contained in ¢

Examples: Planar graphs, series-parallel graphs, minor-closed graph
classes etc.

B(x) ... GF for 2-connected graphs in G
C(x) ... GF for connected graphs in G
G(x) ... GF for all graphsin G



Generating Functions for Block-Decomposition

Vertex-rooted graphs: one vertext (the root) is distinguished (and
usually discounted, that is, it gets no label)

le-

Generating function: (in den labelled case)

G*(z) = G/ (x)




Generating Functions for Block-Decomposition

xC°

xC° RO

¥C° (CO xC°®

C*(z) = B° @0 (@)




Generating Functions for Block-Decomposition

G

G*(z) = exp (C(z)) C*(z)| < |G(z) = @)




Labelled Trees

Rooted Trees:

le—0O
B®(x) ==z

T(x) = x2C*®(x) ... generating function of rooted, labelled trees

C.(iv) — eB'(a;C'(:C)) — T(ZB) — weT(m)

Remark: T(z) ... GF for unrooted labelled trees:

Tz = %T(x) s T(2) = T(x) — %T(@Q



Series-Parallel Graphs

Series-parallel extension of a tree or forest

Series-extension: . o —> - o o

. [ ® —
Parallel-extension: ~~



Series-Parallel Graphs

Generating functions

bn.m ... number of 2-connected labelled series-parallel graphs with
n vertices and m edges

n

T
B(x,y) = Z bn,m—lym
n.m n!

cnm ... humber of connected labelled series-parallel graphs with n
vertices and m edges

"
C(z,y) = Z Cn,may

n,m
gn,m ... Number of labelled series-parallel graphs with n vertices and
m edges

xn

G(z,y) =) gn,mgym

n,m



Series-Parallel Graphs

Generating functions

G(z,y) = /")

oC(x,y) — e <8B (x(?C(a:,y) y))

ox ox ox

OB(z,y)  x° 14 D(z,y)
oy 2 14y

D(z,y) = (1 4 y)e5@¥) 1,




Labelled Planar Graphs

G(z,y) = exp (C(z,y)),
oC(x,y) — exp (83 (x(‘)C’(a:,y) y))

ox Ox ox
0B(z,y) _ x* 1+ D(z,y)
oy 2 14y
M (x, D) 1+ D xD?
— |Og T )
212D 1+y 1+ xD
1 1 (14+0U)2(14 V)2
M — 2,2 — 1=
(ry) =y <1+:cy+1+y QI+U+V)E )

U=ay(l+V)?
V=y(1+U)%



Critical vs. Subcritical Graphs

Functional equations

Suppose that |A(z) = P(x, A(x))|, where d(z,a) has a power series
expansion at (0,0) with non-negative coefficients and

Doa(x,a) £ O.

Let g > 0, ag > O (inside the region of convergence of &) satisfy
the system of equations:

ag = P(zg,ap0), 1= DPu(zg,aq)|

Then there exists analytic function g(x), h(x) such that locally

T

A(x) = g(x) — h(x), /1 — % :

Remark. If there is no zg, ag inside the region of convergence of &
then the singular behaviour of ® determines the singular behaviour of
A(x) M



Critical vs. Subcritical Graphs

A(z) = 2C*%(2), D(z,a) = 2eB°(@) z0°%(2) = 2eB°(@C*(2))

—> |A(x) = P(x, A(x))

Case 1: the case. The system
ag = a:oeB.(CLO), 1= CEOGB.(CUO)B./(G,())

has positive solutions xg,ag such that ag is smaller than the radius of
convergence n of B®. Equivalenty

nB"(n) € (1,q]

Case 2: the critical case. The other case:

nB"(n) = 1|
Here the singular behaviour of B® determines the singular behaviour of
C®(x).




Critical vs. Subcritical Graphs

e Trees are
e Series-parallel graphs are

e Planar graphs are critical

Lemma. If B®(x) is entire or has a squareroot singularity:
° X
B*(z) = g(z) — h(z),|1 — o

then we are in the case.



Critical vs. Subcritical Graphs

What does “ ” mean?

In a subcritical graph class the average size of the 2-connected
components is bounded.

— T his leads to a tree like structure.

—> T he law of large numbers should apply so that we can expect
universal behaviours that are independent of the the precise structure
of 2-connected components.

Critical graph classes are notoriously more difficult to analyze and
we cannot expect universal laws.



Planar Maps

N

A planar map is a connected planar graph, possibly with loops and
multiple edges, together with an embedding in the plane.

A map is rooted if a vertex v and an edge e incident with v are dis-
tinguished, and are called the root-vertex and root-edge, respectively.
The face to the right of e is called the root-face and is usually taken
as the outer face.



Planar Maps

My, ... number of rooted maps with n edges [Tutte]

_2@2n) _,
Mn = (n + 2)!n!3

The proof is given with the help of generating functions and the so-
called quadratic method.

Asymptotics:
M, ~ c-n"2/212"



Planar Maps

Generating functions

M, . ... number of maps with n edges and outer-face-valency k

Y

M(z,u) =) Mn’kukzn
n,k

uM(z,u) — M(z,1)
u— 1

M(z,u) =14 zu°M(z,u)? + uz

u ... ‘“‘catalytic variable”



2-Connected Planar Maps

B(z) ... GF of 2-connected rooted planar maps

M(z) = B(zM(2)?)

and

M(z,u) = B (zM(z)Q, uM(z, u))

M(z)
Planar maps are also critical.

The equations are slightly different but analytically they are very sim-
ilar.



Non-Crossing Configurations

Rooted convex n-gon with non-intersecting straight lines as edges
(we restrict ourselves to connected graphs)



Non-Crossing Configurations

z

1 — B(C(2)2/z)

C(z) =

B(z) ... GF for 2-connected non-crossing configurations (dissections):

B(2)?
1 — B(z)

B(z) =z +

1—|—z—\/1—6z—|—z2
4

B(z) =

Non-crossing configurations are



Unlabelled Graph Classes

Cycle index sums

1 ci1\O Co\O Cn\O
Zg(s1,82,...) == Z—I Z 311( )822( )---sn( )

n: 0,9€6nXGn
7-9=g

where c;(o) denotes the number of cycles of size j in o € Gy,
G(z) = Zg(x,x°, 23, )

0

Zge(s1,82,...) = D51 g(s51,82,--.)

G.(m) — Zg°($>$2>$37 T ) — i 9(75737275337 t )
0s1



Unlabelled Graph Classes

Block decomposition

G(x) = exp (Z 10(@)

i>1 "

C*(z) = exp (Z l_zB.(a;ic;'(a;i), 22 G (Y, .. .))

i>1 "

e Dichotomy between and critical can be defined in a
natural way.

e Unlabelled trees are

e Unlabelled series-parallel graphs are



Subcritical Graph Classes

Universal properties
e Asymptotic enumeration:

LLabelled case:

—5/2p—n

gn ~gn n!

Unlabelled case:

—5/2p—n

gn ~ gn

(g9 > 0, p ... radius of convergence of G(z))

[D.4+Fusy+Kang+Kraus+Rue 2011]



Subcritical Graph Classes

Universal properties
e Additive parameters [D.4+Fusy+Kang+Kraus+Rue 2011]

Xn ... number of edges / number of blocks / number of cut-vertices
/ number of vertices of degree k

Central limit theorem:

Xn — un

Jn

» N (0, 02)

with ¢ > 0 and ¢2 > 0.

Remark. There is an easy to check ‘“combinatorial condition” that
ensures o2 > 0.



Subcritical Graph Classes

Proof Methods:
Refined versions of the functional equation C*(z) = eB°(=C* (@),
+ singularity analysis (always squareroot singularity)

E.g: number of edges:

C'(x7 y) — eB.(ZUC.(ZE‘,y),y)

s Cayy) = g(a,y) — h(a, y>\/1 _r
p(y)

—  [2"C%(x,y) ~ C(y)p(y) "n3/2

+ application of Quasi-Power-Theorem (by Hwang).



Subcritical Graph Classes

Universal properties in the labelled case

e Maximum block size M7§2)

E M,@ = O(logn)

If the limit lim b, 41/(nby) exists and is positive then EMS?) is of order
log n and the deviation from the mean is a disrete version of the Gumbel
distribution.

e Diameter D,

ci1vn <ED, < covnlogn

e Maximum degree A,

cilogn <EA, <cylogn




Maximum BIlock Size

Bp(x) ... GF for 2-connected graphs of size <k
Cr(z) ... GF for connected graphs of size <k

Ch(z) = Br(xCr(2))

— [2"]Cp(z) ~ ckp,;nn_:%/z
with p. = p 4+ O(~*) and ¢, = ¢ + O(¥*) for some 0 < v < 1.

mn
= P[Mé”smrv(ﬁ) > e
Pk

—> Engz) = O(logn).



Diameter

Lower bound. D, ... maximum number of blocks in a path

Tree structure = E Dy ~ c14/n

Upper bound. D, ... maximum sum of block-heights on a path
dn(v) ... sum of block-heights on path between v and the root
Y, n .. profile related to dn: number of vertices with d,(v) = h
Lp(x,u) ... GF corresponding to the profile Y, ;,

B2, (x) ... GF of blocks with height =&

Lp(x,u) = exp (Z B':k(fULh—k(fﬂ,U)))

k<h

My (z) = L Lyp(z,u)|y=1 ... GF of EY,,}:

My (z) = e2k<n BLp(@CN@) 5™ pe 100 () M), ()
k<h



Diameter

= My(z) ~ C(z)a()",
where a(z) =1 — c’\/l —z/p+ O(|x — x0])

2
EY, n ~ c1hec2h°/m

First moment method: P[X > 0] < min{l, E X}

P[Dn > h] =P[Y,, , > 0] < min{1,EY,, 1}
—> ED,= )Y P[Dy>h] =0(/nlogn).

h>0

Conclusion. D, < Dy, < Dy,

— c1vn <ED, <covnlogn



Maximum Degree

Lower bound. 4, ... maximum block degree of cut-vertices

Tree structure =— EA, ~c1logn

Upper bound. fo) ... root degree
B®*(x,u) ... GF for root degree for 2-connected graphs

C®(xz,u) ... GF for root degree for connected graphs:

C'(m,u) — eB'(:UC'(:E),u)

pnk --- Probability that the root vertex has degree k:
_ [z C* (z, u)
k= e o0 ()
Zn. --- humber vertices of degree k in connected graphs of size n

EZnk = npy



Maximum Degree

First moment method: P[X > 0] < min{l, E X}

P[An > k] =PV, k41 + Yo 4o + - > 0]
SEY, g1 T EY, g0+
= n(pp k41 +Pnk+2+ )

[z"uF] C®(z,u) < [wn]u_keB.(xc.(x)’u) (u>1)
-~ C(u)u—kp—nn—IS/Q

—> P[A, > k] < min{1, Cnu_k}

—> EAp,= )Y P[A,>k] =0(ogn).
k>0



Planar Maps

Additive Parameters

e X, -~ number of vertices of degree k

Xnk — HEn

[ +2
oy

> N(0,1)

[D.4+ Panagiotou, ANALCO 2012]



Planar Maps

Extremal Parameters

e Maximum block size M7§2)

K M7§2) ~ Cc1Nn

with ¢; = 1/3 (GIANT 2-CONNECTED COMPONENT), Airy-law
[Gao+Wormald 1999, Banderier+Flajolet+Schaeffer4Soria 2001]

e Diameter D,

1 1
nd ¢ < Dy < nate w.h.p.
[Chapuy+Fusy+Gimenez+Noy 2010]

e Maximum degree A,

-+ discrete version of Gumbel law
[Gao+Wormald 2000]



Random Planar Graphs

Additive Parameters

e Y, ... number of edges in a graph of size n

Yn — un

(7277,

» N(0,1)

u=2.213..., 02 = 0.4303...
[Gimenez+Noy 2009]

e X, --- number of vertices of degree k

EXn ke~ pgn

[D.4+ Gimenez+ Noy 2011; Panagiotou+4Steger 2011]
Open Problem. CLT 777

Remark. (u)r ... asymptotic degree distribution



Random Planar Graphs

Extremal Parameters

e Maximum block size M7§2)

K Méz) ~ C1Mn

with ¢; = 0.959... (GIANT 2-CONNECTED COMPONENT), Airy-law
[Panagiotou+4Steger 2010]

e Diameter D,

n%_g < D, < n%_l_s w.h.p.
[Chapuy+Fusy+Gimenez+Noy 2010]

e Maximum degree A,

EA, ~clogn
[D.4+Gimenez+Noy+Panagiotou+Steger 2012+




Random Planar Graphs

Degree Distribution (more precise formulation)
Theorem [D.4+Giménez+Noy]

Let p, ) be the probability that a random node in a random planar
graph R, has degree k. Then the limit

Pk -— n||—>moo Pn.k

exists. The probability generating function

p(w) = Y prw®

k>1

can be explicitly computed. We also have
1
p ~ ¢ k7 2g"

for some ¢/ > 0 and some ¢ < 1.



Random Planar Graphs

Maximum Degree (more precise formulation)
Theorem [D.4+Giménez+Panagiotou+Noy—+Steger]

Set ¢ = (Iog(l/q))_1 = 2.529464248..., where ¢ = 0.6734506... appear
1
in the asymptotics of p; ~ ¢ k™ 2¢".

T hen

|Ap — clogn| = O(loglogn) w.h.p

and

E A, ~ clogn.

Remark. [McDiarmid+Reed (2008)]

ci1logn < Ap < cologn w.h.p.




Maximum Degree

Relation to number of vertices of given degree
T(Lk) ... number of vertices of degree Lk in Gy,.
X7g>k) — quk_"l) + X,,gk_"Q) + --- ... number of vertices of degree > k.

Ay, ... maximum degree:

An>k — xRS0

First moment method:

P{A, >k} = P{X$F > 0}
< min{1,E X"



Maximum Degree

First moments

Pnk --- Probability that a random vertex in G, has degree k

k
EX?Q, ) = N Pn.k

— EXyM=F (Z ng@) =n ) Poy
1>k >k

Precise asymptotics or upper bounds for p, ;. are needed that are uni-
form in n and k.



Maximum Degree

Remark 1 In order to get upper bound it is sufficient to know

Pn = O(¢") uniformly for all n,k >0

for some q.



Proof Strategy

1. Establish generating functions for p, j

2. Analytic structure of generating functions
3. Upper bound with First Moment Method

4. Lower bound with Boltzmann Sampling



Random Planar Graphs

Counting Generating Functions

G(z,y) = exp (C(z,y)),
oC(x,y) — exp (83 (xﬁC’(a:,y) y))

ox ox ox
OB(z,y) _ x2 14 D(z,y)

oy 2 14y
M(z,D) og (LD D2
222D 09 14y 1+ 2D’

1 1

M (x, = 22 2( —+ —

) =\ 1y Y1y

U=zy(1l+ V)Q,
V =qy(1+U)?

LA+ 02+ V)2

(1+U+V)3

).



Random Planar Graphs

Asymptotic enumeration of planar graphs

—n I 1
bnzb-plnn 2nl (1—|—O<5>>,

n I 1
cn=c-py 'n 2n! (1—I—O(g>>,

n I 1
gnzg'Pan 2n/! (1+O(g))

p1 = 0.038109...,
p> = 0.03672841...,
b= 0.3704247487...- 107>,
¢ = 0.4104361100... - 107>,
g = 0.4260938569... - 107°



Random Planar Graphs

Generating functions for the degree distribution of planar graphs
C® = %—g ... GF, where one vertex is marked
w ... additional variable that counts the degree of the marked vertex

Generating functions:

G*(z,y,w) all rooted planar graphs

C*(x,y,w) connected rooted planar graphs
B®*(x,y,w) 2-connected rooted planar graphs
T*(z,y,w) 3-connected rooted planar graphs



Random Planar Graphs

G*(z,y,w) = exp (C(=x,y,1)) C*(z,y,w),
C*(z,y,w) = exp (B®* (zC*(x,y,1),y,w)),

B*
ow
1

D(z,y,w) = (1 + yw) exp (S(w,y,w) + 2D (o, 0) X

% T* <a:,D(:1:,y, 1), g({;’;’ Z 7“8)) —1

S(x7 y7 w) — xD(:U7 y7 1) (‘D('CU7 y? w) T S(:E7 y? w)) 9
$2y2w2 1 n 1
2 l4+wy 14 xy
(w4 1)? (—w1(u,0,w) + (u = w+ 1)y fwz(u,0,0))
B 2w(vw + u?2 +2u+ 1)(1 +u + v)3 ,

1
22D (z,y, w)

T° (:U, D(x,y,1), D(z,y, w))

D(z,y,1) )

T*(z,y,w) =

u(z,y) = zy(1 +v(z,v))?,  v(z,y) =y(1 +ulz,y))?



Degree Distribution

with polynomials wy = w1 (u,v,w) and wo = wo(u,v,w) given by

w1 = — wow? + w(l 4 4v + 3uv? + 502 + u? + 2u + 20° + 3uv 4 Tww)
+ (u+ 1)?(u+2v+ 1 +02),

wo =uv?w? — 2wuv(2u?v + 6uv + 203 + 3uv® + 502 +u? +F 2u+4v 4+ 1)
+ (u+ 1)°(u+2v + 14+ v?)>.



Asymptotics for Random Planar Graphs

Functional equations

Suppose that |A(x,uv) = ®(z,u, A(x,u))|, where ®(z,u,a) has a power
series expansion at (0,0, 0) with non-negative coefficients and
Cbaa(x7u7a) # O

Let g > 0, ag > O (inside the region of convergence) satisfy the system
of equations:

ag = P(xg,1,ag9), 1= Pu(xp,1,a0)|

Then there exists analytic function g(x,u), h(x,u), and p(u) such that
locally

X

p(u) |

A(xz,u) = g(x,u) — h(m,u)\/l —




Asymptotics for Random Planar Graphs

Asymptotics for coefficients

A(x) = g(x) — h(x),/1 — * (4 some technical conditions)
P

— [ A(z) = Zf—p} —n =3 (1 +0 (:L)) |
Similarly:
Al(z,u) = g(x,u) — h(:c,u)\/ pécu) (+ some technical conditions)

s [2"] Az, ) = h(”z(\"“%’ W )3 (1 +0 (1)) |

n




Asymptotics for Random Planar Graphs

Asymptotics for coefficients

and

A(x) = g(x) + h(x) (1 — %) (4 some technical conditions)

— [2"] A(x) = I_}Z(_p(i) p el (1 + O (%))



Asymptotics for Random Planar Graphs

Singular expansion

A(z) =|g(z) — h(z) /1 ——

:(90+91($—p)+92(:1:—p)2_|_...>
+(ho_l_hl(w_[))‘|‘h2($—p)2-|-...> 1_%

1 2 3
= ag + ay (1—E>2—|—a2(1—£>2—|—a3<1—£>2—|—---
p p p

=lag+ a1 X +a>X%+azX3+---

x=/1-2
o

with



Asymptotics for Random Planar Graphs

U(z,y) = zy(1 + V(z,y))?,
V(z,y) = y(1+ U(z,y))?

—  U(z,y) = 2y(1 +y(1 + U(z,y))?)?

p—

— V(a,y) = golany) — h2<x,y>\/1 -

" =

U(z,y) = g(z,y) — h(w,w\/ 1

Yy

7(x)

1 1

M (z,y) = x%y? ( +

1+ay  1+y

Yy

7(x)

L A+0)2a+v)?

(1+U+V)3

M(z,y) = g3(z,y) + h3(z,y) (1 —

y )5
T(x)

due to cancellation of the \/1 —y/7(x)-term

|



Asymptotics for Random Planar Graphs

M (x, D) (1 + D) D2
= log —
212D l1+y 1+ 2D

3
" = | D(z,y) = ga(=z,y) + hal(z,y) <1 a RZA)

due to interaction of the singularities!!!

OB(z,y)  x° 14 D(z,y)
oy 2 14y

I — | B(z,y) = gs(z,y) + hs(z,7) <1 - Rfy))Q

=
—> |bp~b-R(1)" "n 2n!




Asymptotics for Random Planar Graphs

3
B'(z,y) = g6(z,y) + he(x,y) (1 - R(y)> :

C/(aj, y) — eB/(ZCC/(ZC,y),y)’

3

due to interaction of the singularities!!!

— |C(z,y) = gs(z,y) + hs(z,y) (1— . >§
r(y)

T
—> |cp~cr(l) "n 2n!




Asymptotics for Random Planar Graphs

C(z,y) = gs(z,y) + hg(z,y) (1 S )j
r(y)

— G(w,y) = eC(x,y) = gg(x,y) —I— hg(a?,y) (1 — ré))j .

-
= |(gn~g-r(1)" "™n 2n!




Asymptotic Degree Distribution

3-connected planar graphs

T'(w,y,w)=x2y2w2 SRR S
2 l+wy 14 xy

(U 4 1)2 <—w1(U, V,w) + (U — w + 1) Jwa (U, V,w))
i 2w(Vw + U2 + 20 + 1)(1 + U + V)3 ’

SN ST b ST g (y)
oW =31 g%3; "= G0+ a2

X:\/l_r@

— | T*(z,y,w) = To(y,w) + To(y, w) X* 4 Ta(y, w) X° + O(X*)

due to cancellation of the \/1 — x/r(z)-term.



Asymptotic Degree Distribution

Planar networks

1
D(z,y,w) = (1 + yw) exp <s<w, D)+ g

o D(z,y, w)
X T <a:,D(a:,y,1),D(x,y,1)>> -1
S(w,y,w) — CED(CB,y, 1) (D(:I;,y,w) o S(:U,y,w))

7(x) ... inverse function of r(y)

D(R(y),y,1) = 7(R(y))

X:\/l_my)

—> | D(z,y,w) = Do(y,w) + Do(y, w)X? + D3(y, w)X> + O(X*)

~




Asymptotic Degree Distribution

2-connected planar graphs

1
22D (z,y, w)

0B*(z,y, w)
w

= zyw exp (S(az, y,w) +
ow

T° (:1:, D(x,y,1), Dz, y, w))

D(z,y,1)

—> | B*(z,y,w) = Bo(y,w) + Ba(y,w)X? + B3y, w)X> + O(X%)

Remark. All these functions B,;(y,w) can be explicitly computed.

If x = pp then they are analytic for w < wg and have an algebraic
singularity at w = wg !



Asymptotic Degree Distribution

connected planar graphs

C®(x,1,w) = exp (B' (azC/(:c), 1, w))

— | C*(z,y,w) = Co(y,w) + Co(y,w)X? + C3(y,w) X> + O(X*)

Xz\/l‘fe(y)



Asymptotic Degree Distribution

connected planar graphs

Remark. Here we use |z — C®(x, wp)

_ [z"wk]C®(z, 1, w)
[z"]C®(x,1,1)

Pn.k
[z"]C®%(x,1,1) ~ cln_5/2pan.

[z"wF]C® (2, 1, w) < wak[:cn]C”(a:, 1,wgo)

—> Pk = O(wy ™) = O(q") (¢ =1/wo)




Asymptotic Degree Distribution

First moment method for upper bound

— P{An, >k} = O(ng"®)

—>P{A, <clogn +r} <1—0(q")




Boltzmann Sampling

Probability distribution

C®(x) ... (exponential) generating function for rooted (connected)
planar graphs

~ ... (random) rooted connected planar graph

Boltzmann distribution

. 2|7
relv] =
’ vt C*(x)
Special case: x = p¢
ied
p
Priy] = .

Y['C*(pc)



Boltzmann Sampling

Conditional distribution

o
Pl =11 = G0
Priv||y| = n] =i
rd ... root degree
() — ] = [0 (o, w)

C*(pc)



Boltzmann Sampling

Root degree distribution

Lemma 1l
Prird(v) > k] ~ C3k_5/2w6k

Proof.

C.(,Oc,w) — Co(l,w) = g(w) -+ h(w) (]_ _ w/wo)3/2

Remark. Here we use the function |w — C®*(po, w)




Boltzmann Sampling

Largest 2-connected component

Lemma 2

Ib ... size of largest 2-connected component

P{Ib(Cn) = [(1 — pp)B"(pp)n + an?/3|} = ©(n2/3)

uniformly for |x| < C (for a given constant C).



Boltzmann Sampling

Largest 2-connected component

Lemma 3

Suppose that |m — (1 — pg)B"(pp)n| < Cn?/3 and ~4,...,vm random
rooted connected planar graphs (drawn according to the Boltzmann

distribution). Then

Pri > hil = n] = O(n?/3).
1=1




Boltzmann Sampling

Completion of the proof

B ... largest 2-connected component of random connected planar
graph

m ... size of B: |m— (1 — pg)B"(pp)n| < Cn2/3 w.h.p.

Y1,---,Ym ... cOnnected graph rooted at vertices of B:

A, > max rd(~y;
n 2 max rd(y)

W.h.p. v1,...,7m Can be drawn independently according to the Boltz-
mann distribution: Lemma 1 —>

| o —5/2 —k\™
Pr lgaénrd(fy]) <k] < (1 c3k wq )



Boltzmann Sampling

Completion of the proof

Pr| max rd(v;) < k] < (1 — C3k_5/2’w6k)m

1<j<m

k= (1-0)l0gy,n =c(1l—4)logn,
where § = C'loglogn/logn;

m >n/2 (w.h.p.)

—> Pr|_max rd(vy;) < k:] =0 (e_c4('og ”)0_5/2)

1<j<m

—> |P{Ap >c(1—-9)logn}>1-0 (6—04(Iog n)C—5/2)




T hank You for Your Attention!



