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Labelled vs. Unlabelled Graphs
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Labelled vs. Unlabelled Graphs
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Generating Functions

gn ... number of graphs of size n (in a given graph class)

Labelled Graphs

G(x) =
∑
n≥0

gn
xn

n!

Unlabelled Graphs

G(x) =
∑
n≥0

gnx
n



Generating Functions – Extensions

gn,m ... number of graphs of size n with m edges

Vertext-labelled Graphs with unlabelled edges

G(x, y) =
∑

n,m≥0

gn,m
xn

n!
yn

Unlabelled Graphs

G(x, y) =
∑

n,m≥0

gn,mx
nym



Block-Decomposition
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Block-Decomposition

block: 2-connected component

Block-stable graph class G: all components and all 2-connected

components of a graph G ∈ G are also contained in G

Examples: Planar graphs, series-parallel graphs, minor-closed graph

classes etc.

B(x) ... GF for 2-connected graphs in G

C(x) ... GF for connected graphs in G

G(x) ... GF for all graphs in G



Generating Functions for Block-Decomposition

Vertex-rooted graphs: one vertext (the root) is distinguished (and

usually discounted, that is, it gets no label)

1

24

3

Generating function: (in den labelled case)

G•(x) = G′(x)



Generating Functions for Block-Decomposition

B° B°

B°

xC°
xC°

xC°xC°

xC°
xC°

xC°

C•(x) = eB
•(xC•(x))



Generating Functions for Block-Decomposition

G

C

C
C

C
C

G•(x) = exp (C(x)) C•(x) ⇐⇒ G(x) = eC(x)



Labelled Trees

Rooted Trees:

B•(x) = x

1

T (x) = xC•(x) ... generating function of rooted, labelled trees

C•(x) = eB
•(xC•(x)) =⇒ T (x) = xeT (x)

Remark: T̃ (x) ... GF for unrooted labelled trees:

T̃ (x)′ =
1

x
T (x) =⇒ T̃ (x) = T (x)−

1

2
T (x)2



Series-Parallel Graphs

Series-parallel extension of a tree or forest

Series-extension:

Parallel-extension:



Series-Parallel Graphs

Generating functions

bn,m ... number of 2-connected labelled series-parallel graphs with

n vertices and m edges

B(x, y) =
∑
n,m

bn,m
xn

n!
ym

cn,m ... number of connected labelled series-parallel graphs with n

vertices and m edges

C(x, y) =
∑
n,m

cn,m
xn

n!
ym

gn,m ... number of labelled series-parallel graphs with n vertices and

m edges

G(x, y) =
∑
n,m

gn,m
xn

n!
ym



Series-Parallel Graphs

Generating functions

G(x, y) = eC(x,y)

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
,

D(x, y) = (1 + y)eS(x,y) − 1,

S(x, y) = (D(x, y)− S(x, y))xD(x, y).



Labelled Planar Graphs

G(x, y) = exp (C(x, y)) ,

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
,

M(x,D)

2x2D
= log

(
1 +D

1 + y

)
−

xD2

1 + xD
,

M(x, y) = x2y2
(

1

1 + xy
+

1

1 + y
− 1−

(1 + U)2(1 + V )2

(1 + U + V )3

)
,

U = xy(1 + V )2,

V = y(1 + U)2.



Critical vs. Subcritical Graphs

Functional equations

Suppose that A(x) = Φ(x,A(x)) , where Φ(x, a) has a power series
expansion at (0,0) with non-negative coefficients and
Φaa(x, a) 6= 0.

Let x0 > 0, a0 > 0 (inside the region of convergence of Φ) satisfy
the system of equations:

a0 = Φ(x0, a0), 1 = Φa(x0, a0) .

Then there exists analytic function g(x), h(x) such that locally

A(x) = g(x)− h(x)

√
1−

x

x0
.

Remark. If there is no x0, a0 inside the region of convergence of Φ
then the singular behaviour of Φ determines the singular behaviour of
A(x) !!!



Critical vs. Subcritical Graphs

A(x) = xC•(x), Φ(x, a) = xeB
•(x), xC•(x) = xeB

•(xC•(x))

=⇒ A(x) = Φ(x,A(x))

Case 1: the subcritical case. The system

a0 = x0e
B•(a0), 1 = x0e

B•(x0)B•′(a0)

has positive solutions x0, a0 such that a0 is smaller than the radius of

convergence η of B•. Equivalenty

ηB′′(η) ∈ (1,∞]

Case 2: the critical case. The other case:

ηB′′(η) = 1 .

Here the singular behaviour of B• determines the singular behaviour of

C•(x).



Critical vs. Subcritical Graphs

• Trees are subcritical

• Series-parallel graphs are subcritical

• Planar graphs are critical

Lemma. If B•(x) is entire or has a squareroot singularity:

B•(x) = g(x)− h(x)

√
1−

x

η
,

then we are in the subcritical case.



Critical vs. Subcritical Graphs

What does “subcritical” mean?

In a subcritical graph class the average size of the 2-connected

components is bounded.

=⇒ This leads to a tree like structure.

=⇒ The law of large numbers should apply so that we can expect

universal behaviours that are independent of the the precise structure

of 2-connected components.

Critical graph classes are notoriously more difficult to analyze and

we cannot expect universal laws.



Planar Maps

A planar map is a connected planar graph, possibly with loops and

multiple edges, together with an embedding in the plane.

A map is rooted if a vertex v and an edge e incident with v are dis-

tinguished, and are called the root-vertex and root-edge, respectively.

The face to the right of e is called the root-face and is usually taken

as the outer face.



Planar Maps

Mn ... number of rooted maps with n edges [Tutte]

Mn =
2(2n)!

(n+ 2)!n!
3n

The proof is given with the help of generating functions and the so-

called quadratic method.

Asymptotics:

Mn ∼ c · n−5/212n



Planar Maps

Generating functions

Mn,k ... number of maps with n edges and outer-face-valency k

M(z, u) =
∑
n,k

Mn,ku
kzn

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u)−M(z,1)

u− 1

u ... “catalytic variable”



2-Connected Planar Maps

B(z) ... GF of 2-connected rooted planar maps

M(z) = B(zM(z)2)

and

M(z, u) = B

(
zM(z)2,

uM(z, u)

M(z)

)

Planar maps are also critical.

The equations are slightly different but analytically they are very sim-

ilar.



Non-Crossing Configurations

Rooted convex n-gon with non-intersecting straight lines as edges

(we restrict ourselves to connected graphs)



Non-Crossing Configurations

C(z) =
z

1−B(C(z)2/z)

B(z) ... GF for 2-connected non-crossing configurations (dissections):

B(z) = z +
B(z)2

1−B(z)

B(z) =
1 + z −

√
1− 6z + z2

4
Non-crossing configurations are subcritical



Unlabelled Graph Classes

Cycle index sums

ZG(s1, s2, . . .) :=
∑
n

1

n!

∑
σ,g∈Sn×Gn
σ·g=g

s
c1(σ)
1 s

c2(σ)
2 · · · scn(σ)

n

where cj(σ) denotes the number of cycles of size j in σ ∈ Sn

G(x) = ZG(x, x2, x3, · · · )

ZG•(s1, s2, . . .) =
∂

∂s1
ZG(s1, s2, . . .)

G•(x) = ZG•(x, x
2, x3, · · · ) =

∂

∂s1
ZG(x, x2, x3, · · · )



Unlabelled Graph Classes

Block decomposition

G(x) = exp

∑
i≥1

1

i
C(xi)



C•(x) = exp

∑
i≥1

1

i
ZB•(x

iG•(xi), x2iG•(x2i), . . .)



• Dichotomy between subcritical and critical can be defined in a

natural way.

• Unlabelled trees are subcritical.

• Unlabelled series-parallel graphs are subcritical.



Subcritical Graph Classes

Universal properties

• Asymptotic enumeration:

Labelled case:

gn ∼ g n−5/2ρ−nn!

Unlabelled case:

gn ∼ g n−5/2ρ−n

(g > 0, ρ ... radius of convergence of G(z))

[D.+Fusy+Kang+Kraus+Rue 2011]



Subcritical Graph Classes

Universal properties

• Additive parameters [D.+Fusy+Kang+Kraus+Rue 2011]

Xn ... number of edges / number of blocks / number of cut-vertices

/ number of vertices of degree k

Central limit theorem:

Xn − µn√
n

→ N(0, σ2)

with µ > 0 and σ2 ≥ 0.

Remark. There is an easy to check “combinatorial condition” that

ensures σ2 > 0.



Subcritical Graph Classes

Proof Methods:

Refined versions of the functional equation C•(x) = eB
•(xC•(x)),

+ singularity analysis (always squareroot singularity)

E.g: number of edges:

C•(x, y) = eB
•(xC•(x,y),y)

−→ C•(x, y) = g(x, y)− h(x, y)

√
1−

x

ρ(y)

−→ [xn]C•(x, y) ∼ C(y)ρ(y)−nn−3/2

+ application of Quasi-Power-Theorem (by Hwang).



Subcritical Graph Classes

Universal properties in the labelled case

• Maximum block size M
(2)
n

EM(2)
n = O(logn)

If the limit lim bn+1/(nbn) exists and is positive then EM(2)
n is of order

logn and the deviation from the mean is a disrete version of the Gumbel

distribution.

• Diameter Dn

c1
√
n ≤ EDn ≤ c2

√
n logn

• Maximum degree ∆n

c1 logn ≤ E∆n ≤ c2 logn



Maximum Block Size

B•k(x) ... GF for 2-connected graphs of size ≤ k
C•k(x) ... GF for connected graphs of size ≤ k

C•k(x) = eB
•
k(xC•k(x))

=⇒ [xn]C•k(x) ∼ ckρ−nk n−3/2

with ρk = ρ+O(γk) and ck = c+O(γk) for some 0 < γ < 1.

=⇒ P[M(2)
n ≤ k] ∼

(
ρ

ρk

)n
≥ e−Cnγ

k

=⇒ EM(2)
n = O(logn).



Diameter

Lower bound. Dn ... maximum number of blocks in a path

Tree structure =⇒ EDn ∼ c1
√
n

Upper bound. Dn ... maximum sum of block-heights on a path

dn(v) ... sum of block-heights on path between v and the root

Yn,h ... profile related to dn: number of vertices with dn(v) = h

Lh(x, u) ... GF corresponding to the profile Yn,h

B•=k(x) ... GF of blocks with height = k

Lh(x, u) = exp

∑
k≤h

B•=k(xLh−k(x, u))


Mh(x) = ∂

∂uLh(x, u)|u=1 ... GF of EYn,k:

Mh(x) = e
∑
k≤hB

•
=k(xC•(x)) ∑

k≤h
B•=k

′(xC•(x))Mh−k(x)



Diameter

=⇒ Mh(x) ∼ C(x)α(z)h,

where α(z) = 1− c′
√

1− x/ρ+O(|x− x0|)

EYn,h ∼ c1he−c2h
2/n

First moment method: P[X > 0] ≤ min{1, EX}

P[Dn > h] = P[Yn,h > 0] ≤ min{1,EYn,h}

=⇒ EDn =
∑
h≥0

P[Dn > h] = O(
√
n logn).

Conclusion. Dn ≤ Dn ≤ Dn

=⇒ c1
√
n ≤ EDn ≤ c2

√
n logn



Maximum Degree

Lower bound. ∆n ... maximum block degree of cut-vertices

Tree structure =⇒ E∆n ∼ c1 logn

Upper bound. D(r)
n ... root degree

B•(x, u) ... GF for root degree for 2-connected graphs

C•(x, u) ... GF for root degree for connected graphs:

C•(x, u) = eB
•(xC•(x),u)

pnk ... probability that the root vertex has degree k:

pn,k =
[xnuk]C•(x, u)

[xn]C•(x)

Znk ... number vertices of degree k in connected graphs of size n

EZnk = npn,k



Maximum Degree

First moment method: P[X > 0] ≤ min{1, EX}

P[∆n > k] = P[Yn,k+1 + Yn,k+2 + · · · > 0]

≤ EYn,k+1 + EYn,k+2 + · · ·
= n(pn,k+1 + pn,k+2 + · · · )

[xnuk]C•(x, u) ≤ [xn]u−keB
•(xC•(x),u) (u > 1)

∼ C(u)u−kρ−nn−3/2

=⇒ pn,k ≤ C(u)u−k (u > 1)

=⇒ P[∆n > k] ≤ min{1, C nu−k}

=⇒ E∆n =
∑
k≥0

P[∆n > k] = O(logn).



Planar Maps

Additive Parameters

• Xn,k ... number of vertices of degree k

Xn,k − µkn√
σ2
kn

→ N(0,1)

[D.+ Panagiotou, ANALCO 2012]



Planar Maps

Extremal Parameters

• Maximum block size M
(2)
n

EM(2)
n ∼ c1n

with c1 = 1/3 (GIANT 2-CONNECTED COMPONENT), Airy-law
[Gao+Wormald 1999, Banderier+Flajolet+Schaeffer+Soria 2001]

• Diameter Dn

n
1
4−ε ≤ Dn ≤ n

1
4+ε w.h.p.

[Chapuy+Fusy+Gimenez+Noy 2010]

• Maximum degree ∆n

E∆n ∼ logn

+ discrete version of Gumbel law
[Gao+Wormald 2000]



Random Planar Graphs

Additive Parameters

• Yn ... number of edges in a graph of size n

Yn − µn√
σ2n

→ N(0,1)

µ = 2.213..., σ2 = 0.4303...

[Gimenez+Noy 2009]

• Xn,k ... number of vertices of degree k

EXn,k ∼ µkn

[D.+ Gimenez+ Noy 2011; Panagiotou+Steger 2011]

Open Problem. CLT ???

Remark. (µk)k ... asymptotic degree distribution



Random Planar Graphs

Extremal Parameters

• Maximum block size M
(2)
n

EM(2)
n ∼ c1n

with c1 = 0.959... (GIANT 2-CONNECTED COMPONENT), Airy-law

[Panagiotou+Steger 2010]

• Diameter Dn

n
1
4−ε ≤ Dn ≤ n

1
4+ε w.h.p.

[Chapuy+Fusy+Gimenez+Noy 2010]

• Maximum degree ∆n

E∆n ∼ c logn

[D.+Gimenez+Noy+Panagiotou+Steger 2012+]



Random Planar Graphs

Degree Distribution (more precise formulation)

Theorem [D.+Giménez+Noy]

Let pn,k be the probability that a random node in a random planar

graph Rn has degree k. Then the limit

pk := lim
n→∞ pn,k

exists. The probability generating function

p(w) =
∑
k≥1

pkw
k

can be explicitly computed. We also have

pk ∼ c′ k−
1
2qk

for some c′ > 0 and some q < 1.



Random Planar Graphs

Maximum Degree (more precise formulation)

Theorem [D.+Giménez+Panagiotou+Noy+Steger]

Set c = (log(1/q))−1 = 2.529464248..., where q = 0.6734506... appear

in the asymptotics of pk ∼ c′ k−
1
2qk.

Then

|∆n − c logn| = O(log logn) w.h.p

and

E∆n ∼ c logn.

Remark. [McDiarmid+Reed (2008)]

c1 logn ≤∆n ≤ c2 logn w.h.p.



Maximum Degree

Relation to number of vertices of given degree

X
(k)
n ... number of vertices of degree k in Gn.

X
(>k)
n = X

(k+1)
n +X

(k+2)
n + · · · ... number of vertices of degree > k.

∆n ... maximum degree:

∆n > k ⇐⇒ X
(>k)
n > 0

First moment method:

P{∆n > k} = P{X(>k)
n > 0}

≤ min{1,EX(>k)
n }



Maximum Degree

First moments

pn,k ... probability that a random vertex in Gn has degree k

EX(k)
n = n pn,k

=⇒ EX(>k)
n = E

∑
`>k

X
(`)
n

 = n
∑
`>k

pn,`.

Precise asymptotics or upper bounds for pn,k are needed that are uni-

form in n and k.



Maximum Degree

Remark 1 In order to get upper bound it is sufficient to know

pn,k = O(qk) uniformly for all n, k ≥ 0

for some q.



Proof Strategy

1. Establish generating functions for pn,k

2. Analytic structure of generating functions

3. Upper bound with First Moment Method

4. Lower bound with Boltzmann Sampling



Random Planar Graphs

Counting Generating Functions

G(x, y) = exp (C(x, y)) ,

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
,

M(x,D)

2x2D
= log

(
1 +D

1 + y

)
−

xD2

1 + xD
,

M(x, y) = x2y2
(

1

1 + xy
+

1

1 + y
− 1−

(1 + U)2(1 + V )2

(1 + U + V )3

)
,

U = xy(1 + V )2,

V = y(1 + U)2.



Random Planar Graphs

Asymptotic enumeration of planar graphs

bn = b · ρ−n1 n−
7
2n!

(
1 +O

(
1

n

))
,

cn = c · ρ−n2 n−
7
2n!

(
1 +O

(
1

n

))
,

gn = g · ρ−n2 n−
7
2n!

(
1 +O

(
1

n

))

ρ1 = 0.03819...,

ρ2 = 0.03672841...,

b = 0.3704247487... · 10−5,

c = 0.4104361100... · 10−5,

g = 0.4260938569... · 10−5



Random Planar Graphs

Generating functions for the degree distribution of planar graphs

C• = ∂C
∂x ... GF, where one vertex is marked

w ... additional variable that counts the degree of the marked vertex

Generating functions:

G•(x, y, w) all rooted planar graphs

C•(x, y, w) connected rooted planar graphs

B•(x, y, w) 2-connected rooted planar graphs

T •(x, y, w) 3-connected rooted planar graphs



Random Planar Graphs

G•(x, y, w) = exp (C(x, y,1))C•(x, y, w),

C•(x, y, w) = exp
(
B•

(
xC•(x, y,1), y, w

))
,

w
∂B•(x, y, w)

∂w
= xyw exp

(
S(x, y, w) +

1

x2D(x, y, w)
T •

(
x,D(x, y,1),

D(x, y, w)

D(x, y,1)

))

D(x, y, w) = (1 + yw) exp

(
S(x, y, w) +

1

x2D(x, y, w)
×

× T •
(
x,D(x, y,1),

D(x, y, w)

D(x, y,1)

))
− 1

S(x, y, w) = xD(x, y,1) (D(x, y, w)− S(x, y, w)) ,

T •(x, y, w) =
x2y2w2

2

(
1

1 + wy
+

1

1 + xy
− 1−

−
(u+ 1)2

(
−w1(u, v, w) + (u− w + 1)

√
w2(u, v, w)

)
2w(vw + u2 + 2u+ 1)(1 + u+ v)3

 ,
u(x, y) = xy(1 + v(x, y))2, v(x, y) = y(1 + u(x, y))2.



Degree Distribution

with polynomials w1 = w1(u, v, w) and w2 = w2(u, v, w) given by

w1 =− uvw2 + w(1 + 4v + 3uv2 + 5v2 + u2 + 2u+ 2v3 + 3u2v + 7uv)

+ (u+ 1)2(u+ 2v + 1 + v2),

w2 =u2v2w2 − 2wuv(2u2v + 6uv + 2v3 + 3uv2 + 5v2 + u2 + 2u+ 4v + 1)

+ (u+ 1)2(u+ 2v + 1 + v2)2.



Asymptotics for Random Planar Graphs

Functional equations

Suppose that A(x, u) = Φ(x, u,A(x, u)) , where Φ(x, u, a) has a power

series expansion at (0,0,0) with non-negative coefficients and

Φaa(x, u, a) 6= 0.

Let x0 > 0, a0 > 0 (inside the region of convergence) satisfy the system

of equations:

a0 = Φ(x0,1, a0), 1 = Φa(x0,1, a0) .

Then there exists analytic function g(x, u), h(x, u), and ρ(u) such that

locally

A(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)
.



Asymptotics for Random Planar Graphs

Asymptotics for coefficients

A(x) = g(x)− h(x)

√
1−

x

ρ
(+ some technical conditions)

=⇒ [xn]A(x) =
h(ρ)

2
√
π
ρ−n n−

3
2

(
1 +O

(
1

n

))
.

Similarly:

A(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)
(+ some technical conditions)

=⇒ [xn]A(x, u) =
h(ρ(u), u)

2
√
π

ρ(u)−n n−
3
2

(
1 +O

(
1

n

))
.



Asymptotics for Random Planar Graphs

Asymptotics for coefficients

and

A(x) = g(x) + h(x)

(
1−

x

ρ

)α
(+ some technical conditions)

=⇒ [xn]A(x) =
h(ρ)

Γ(−α)
ρ−n n−α−1

(
1 +O

(
1

n

))
.



Asymptotics for Random Planar Graphs

Singular expansion

A(x) = g(x)− h(x)

√
1−

x

ρ

=
(
g0 + g1(x− ρ) + g2(x− ρ)2 + · · ·

)
+
(
h0 + h1(x− ρ) + h2(x− ρ)2 + · · ·

)√
1−

x

ρ

= a0 + a1

(
1−

x

ρ

)1
2

+ a2

(
1−

x

ρ

)2
2

+ a3

(
1−

x

ρ

)3
2

+ · · ·

= a0 + a1X + a2X
2 + a3X

3 + · · ·

with

X =

√
1−

x

ρ
.



Asymptotics for Random Planar Graphs

U(x, y) = xy(1 + V (x, y))2,

V (x, y) = y(1 + U(x, y))2

=⇒ U(x, y) = xy(1 + y(1 + U(x, y))2)2

=⇒ U(x, y) = g(x, y)− h(x, y)

√
1−

y

τ(x)

=⇒ V (x, y) = g2(x, y)− h2(x, y)

√
1−

y

τ(x)

M(x, y) = x2y2
(

1

1 + xy
+

1

1 + y
− 1−

(1 + U)2(1 + V )2

(1 + U + V )3

)

!!! =⇒ M(x, y) = g3(x, y) + h3(x, y)

(
1−

y

τ(x)

)3
2

due to cancellation of the
√

1− y/τ(x)-term



Asymptotics for Random Planar Graphs

M(x,D)

2x2D
= log

(
1 +D

1 + y

)
−

xD2

1 + xD

!!! =⇒ D(x, y) = g4(x, y) + h4(x, y)

(
1−

x

R(y)

)3
2

due to interaction of the singularities!!!

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
,

!!! =⇒ B(x, y) = g5(x, y) + h5(x, y)

(
1−

x

R(y)

)5
2

=⇒ bn ∼ b ·R(1)−nn−
7
2n!



Asymptotics for Random Planar Graphs

B′(x, y) = g6(x, y) + h6(x, y)

(
1−

x

R(y)

)3
2
,

C′(x, y) = eB
′(xC′(x,y),y),

!!! =⇒ C′(x, y) = g7(x, y) + h7(x, y)

(
1−

x

r(y)

)3
2

due to interaction of the singularities!!!

=⇒ C(x, y) = g8(x, y) + h8(x, y)

(
1−

x

r(y)

)5
2

=⇒ cn ∼ c r(1)−nn−
7
2n!



Asymptotics for Random Planar Graphs

C(x, y) = g8(x, y) + h8(x, y)

(
1−

x

r(y)

)5
2

=⇒ G(x, y) = eC(x,y) = g9(x, y) + h9(x, y)

(
1−

x

r(y)

)5
2
.

=⇒ gn ∼ g · r(1)−nn−
7
2n!



Asymptotic Degree Distribution

3-connected planar graphs

T •(x, y, w) =
x2y2w2

2

(
1

1 + wy
+

1

1 + xy
− 1−

−
(U + 1)2

(
−w1(U, V,w) + (U − w + 1)

√
w2(U, V,w)

)
2w(V w + U2 + 2U + 1)(1 + U + V )3

 ,

ũ0(y) = −
1

3
+

√
4

9
+

1

3y
, r(y) =

ũ0(y)

y(1 + y(1 + ũ0(y))2)2
,

X̃ =

√
1−

x

r(y)

=⇒ T •(x, y, w) = T̃0(y, w) + T̃2(y, w)X̃2 + T̃3(y, w)X̃3 +O(X̃4)

due to cancellation of the
√

1− x/r(z)-term.



Asymptotic Degree Distribution

Planar networks

D(x, y, w) = (1 + yw) exp

(
S(x, y, w) +

1

x2D(x, y, w)
×

× T •
(
x,D(x, y,1),

D(x, y, w)

D(x, y,1)

))
− 1

S(x, y, w) = xD(x, y,1) (D(x, y, w)− S(x, y, w))

τ(x) ... inverse function of r(y)

D(R(y), y,1) = τ(R(y))

X =

√
1−

x

R(y)

=⇒ D(x, y, w) = D0(y, w) +D2(y, w)X2 +D3(y, w)X3 +O(X4) ,



Asymptotic Degree Distribution

2-connected planar graphs

w
∂B•(x, y, w)

∂w
= xyw exp

(
S(x, y, w) +

1

x2D(x, y, w)
T •

(
x,D(x, y,1),

D(x, y, w)

D(x, y,1)

))

=⇒ B•(x, y, w) = B0(y, w) +B2(y, w)X2 +B3(y, w)X3 +O(X4)

Remark. All these functions Bj(y, w) can be explicitly computed.

If x = ρB then they are analytic for w < w0 and have an algebraic

singularity at w = w0 !!!



Asymptotic Degree Distribution

connected planar graphs

C•(x,1, w) = exp
(
B•

(
xC′(x),1, w

))

=⇒ C•(x, y, w) = C0(y, w) + C2(y, w)X2 + C3(y, w)X3 +O(X4)

X =

√
1−

x

R(y)



Asymptotic Degree Distribution

connected planar graphs

pn,k =
[xnwk]C•(x,1, w)

[xn]C•(x,1,1)

[xn]C•(x,1,1) ∼ c1n−5/2ρ−nC .

[xnwk]C•(x,1, w) ≤ w−k0 [xn]C•(x,1, w0)

∼ w−k0 c2n
−5/2ρ−nC

=⇒ pn,k = O(w−k0 ) = O(qk) (q = 1/w0)

Remark. Here we use x 7→ C•(x,w0)



Asymptotic Degree Distribution

First moment method for upper bound

=⇒ P{∆n > k} = O(nqk)

=⇒ P{∆n ≤ c logn+ r} ≤ 1−O(qr)



Boltzmann Sampling

Probability distribution

C•(x) ... (exponential) generating function for rooted (connected)

planar graphs

γ ... (random) rooted connected planar graph

Boltzmann distribution

Prx[γ] =
x|γ|

|γ|!C•(x)

Special case: x = ρC

Pr[γ] =
ρ
|γ|
C

|γ|!C•(ρC)



Boltzmann Sampling

Conditional distribution

Pr[|γ| = n] =
c•nρ

n
C

|γ|!C(ρC)

Pr[γ | |γ| = n] =
1

c•n

rd ... root degree

Pr[rd(γ) = k] =
[wk]C•(ρC, w)

C•(ρC)



Boltzmann Sampling

Root degree distribution

Lemma 1

Pr[rd(γ) ≥ k] ∼ c3k−5/2w−k0

Proof.

C•(ρC, w) = C0(1, w) = g(w) + h(w) (1− w/w0)3/2

Remark. Here we use the function w 7→ C•(ρC, w)



Boltzmann Sampling

Largest 2-connected component

Lemma 2

lb ... size of largest 2-connected component

P{lb(Cn) = b(1− ρB)B′′(ρB)n+ xn2/3c} = Θ(n−2/3)

uniformly for |x| ≤ C (for a given constant C).



Boltzmann Sampling

Largest 2-connected component

Lemma 3

Suppose that |m − (1 − ρB)B′′(ρB)n| ≤ Cn2/3 and γ1, . . . , γm random

rooted connected planar graphs (drawn according to the Boltzmann

distribution). Then

Pr

 n∑
i=1

|γi| = n

 = Θ(n−2/3).



Boltzmann Sampling

Completion of the proof

B ... largest 2-connected component of random connected planar

graph

m ... size of B: |m− (1− ρB)B′′(ρB)n| ≤ Cn2/3 w.h.p.

γ1, . . . , γm ... connected graph rooted at vertices of B:

∆n ≥ max
1≤j≤m

rd(γj)

W.h.p. γ1, . . . , γm can be drawn independently according to the Boltz-

mann distribution: Lemma 1 =⇒

Pr

[
max

1≤j≤m
rd(γj) < k

]
≤
(
1− c3k−5/2w−k0

)m



Boltzmann Sampling

Completion of the proof

Pr

[
max

1≤j≤m
rd(γj) < k

]
≤
(
1− c3k−5/2w−k0

)m
k = (1− δ) logw0 n = c(1− δ) logn,

where δ = C log logn/ logn;

m ≥ n/2 (w.h.p.)

=⇒ Pr

[
max

1≤j≤m
rd(γj) < k

]
= O

(
e−c4(logn)C−5/2

)

=⇒ P{∆n ≥ c(1− δ) logn} ≥ 1−O
(
e−c4(logn)C−5/2

)



Thank You for Your Attention!


