Dynamic Programming

Anna Brandenberger

February 2, 2020

This is the augmented transcript of lectures given by Luc Devroye on the week of the 25th of January 2018 for the Honours Data Structures and Algorithms class (COMP 252, McGill University). The subject was Dynamic Programming.

The Principle: in dynamic programming, to find a solution of a problem of a given size, we solve all the necessary sub-problems.

1 Binomial Coefficient

We would like to compute the binomial coefficient defined as

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \cdots(n-k+1)}{k(k-1) \cdots 1}
$$

Direct computation: if $k<n / 2$, this can be done in $2 k$ multiplications. So we have RAM model complexity $\Theta(\min (k, n-k))$, since one of k or $n-k$ will be $\leq n / 2$ and $\binom{n}{k}=\binom{n}{n-k}$.

Recurrence relation: the binomial coefficient $\binom{n}{k}$ is the number of ways of choosing k out of n integers. Recall the recursive formula: ${ }^{1}$

$$
\begin{aligned}
& \binom{n}{0}=\binom{n}{n}=1 \\
& \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
\end{aligned}
$$

Using this, we can form a Pascal Triangle as shown in Figure 1. The following algorithm will, for a given element (N, K), compute the matrix below that element, obtaining $\binom{N}{K}$.

Compute-Binomial-Coefficient (N, K)

for $n=0$ to $N \quad / /$ rows

$$
\begin{aligned}
& \text { for } k=0 \text { to } K \quad / / \text { columns } \\
& \quad \text { if } k=0 \text { or } k=n \text { then }\binom{n}{k}=1 \\
& \text { else }\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
\end{aligned}
$$

This algorithm has time complexity $O(N K)$.
Exercise 1. Improve the code to get complexity $O(K \cdot(N-K))$.
Hint: compute only a strip as shown in Figure 2.

Figure 1: To compute $\binom{6}{4}$, compute all entries in the matrix below this element.
${ }^{1}$ Why is this true?
Proof. Fix some integer a. It is either part of the k or not.

- If the set of k numbers contains a, then for the remaining we must pick $k-1$ out of $n-1$ integers.
- If the set doesn't contain a, we must pick k out of $n-1$ integers.

Figure 2: Hint for Exercise 1.

2 Partitions of $\{1, \ldots, n\}$ into k non-empty sets

Given $\{1, \ldots, n\}$, we want to compute the number of possible partitions of these integers into k non-empty sets. Indeed, observe the recursion:

$$
\begin{aligned}
P(\{1, \ldots, n\}, k) & =\underbrace{P(\{1, \ldots, n-1\}, k) \cdot k}_{\text {element } n \text { joins an existing set }}+\underbrace{P(\{1, \ldots, n-1\}, k-1)}_{\text {starts a new set by itself }} \\
P_{n, k} & =k \cdot P_{n-1, k}+P_{n-1, k-1}
\end{aligned}
$$

We see that we can use exactly the same matrix-filling algorithm as the last section with only minor changes. Note that here, in the initialization, $P_{n, n}=P_{n, 1}=1$.

The complexity is therefore the same as Section 1: $O(n k)$.

3 Travelling Salesman Problem (TSP)

Input: Matrix of distances $\operatorname{dist}[i, j]$ between all cities $1 \leq i, j \leq n$.
Оbjective: Find the tour through all cities of smallest total length.

3.1 Naive Algorithm

Consider all $(n-1)$! permutations of $\{2, \ldots, n\}$ and compute the lengths of all tours that start and end at " 1 ".

With this approach, we obtain complexity $T(n)=n \times(n-1)!=n$! where n comes from summing the lengths and $(n-1)$! is the number of tours.

3.2 Dynamic Programming Approach: Finding $L[1, S, j]$

Definition 2. Consider $L(1, S, j)$, the length of the shortest path between 1 and j via all of S, where $S \subseteq\{1, \ldots, n\}$ is the set of all cities with 1 and j removed, i.e., $S=\{1, \ldots, n\}-\{1\}-\{j\}$.

In this algorithm, we will store $L[1, S, j]$ for all j and subsets S in a large matrix. Figure 5 illustrates line 5 of the algorithm. Once this matrix is found, computing the TSP tour will only require $\Theta(n)$ time.

TSP-DP-Algorithm (dist $[i, j] \forall i, j)$

```
for all \(j \neq 1: L[1, \varnothing, j]=\operatorname{dist}[1, j] \quad / /\) initialization
for \(k=1\) to \(n-2 \quad / / k\) : size of \(S\)
    for all \(S\) with \(|S|=k, S \subseteq\{2, \ldots, n\}\)
        for all \(j \notin S\)
            \(L[1, S, j]=\min _{\ell \in S}(L[1, S-\{\ell\}, \ell]+\operatorname{dist}[\ell, j])\)
```


Figure 3: We compute, for example, 140 via: $140=5 \times 15+65$

Figure 4: Example of a tour through $n=11$ cities.

Figure 5: Illustration of innermost algorithm loop: recall that

$$
S=\{1, \ldots, n\}-\{1\}-\{j\}
$$

The length of the path between city 1 and city j is equal to the length of the shortest path between 1 and some city $\ell \in S$, plus the distance between ℓ and j. To find the shortest path between 1 and j, we must choose the city ℓ which minimizes this quantity.

To analyze the time complexity, we must consider three parts:

- all subsets of S are considered at most once: ${ }^{2}$ contribution $\leq 2^{n}$
- for every set S, we consider at most n values of j : contribution $\leq n$
- for each (S, j) pair, we calculate a minimum over at most n choices of ℓ : contribution $\leq n$

So the total complexity of the dynamic programming algorithm to find L, the length of the shortest path between 1 and any other city j, is $T(n) \leq n^{2} \cdot 2^{n}$ in the ram model. Note that this is $<n!$. Storage of order $\Theta\left(n \cdot 2^{n}\right)$ is needed.

3.3 Finding the TSP Tour

Once we have $L[1, S, j]$ for all $S \subseteq\{1, \ldots, n\}$ and $j \in S$, the length of the TSP tour is, as shown in Figure 6

$$
\text { TSPLen }=\min _{j \neq 1}(L[1, S, j]+\operatorname{dist}[1, j])
$$

where we can read all $L[1, S, j]$ off our table. The time complexity of this search (over $n-1$ possibilities of j) is just $\Theta(n)$, which is added to the time needed to build L. Therefore the total algorithm time complexity remains $T(n)=O\left(n^{2} 2^{n}\right)$.

Exercise 3. Use additional storage so that you also output the optimal tour as a sequence of vertices. ${ }^{3}$

4 Knapsack Problem

Input: Items of sizes $x_{1}, \ldots, x_{N} \in \mathbb{Z}$; and a knapsack of size $K \in \mathbb{Z}$.
Objective: Determine if there exists a subset $S \subseteq\{1, \ldots, N\}$ for the input sizes such that $\sum_{i \in S} x_{i}=K$.

Notation 4. Define the matrices $P[n, k]$ and $S[n, k]$ respectively as

$$
\begin{aligned}
& P[n, k]=\left\{\begin{array}{l}
1 \text { if } \operatorname{KnAPSACK}\left(\left\{x_{1}, \ldots, x_{n}\right\}, k\right) \text { has a solution } \\
0 \text { else }
\end{array}\right. \\
& S[n, k]=\left\{\begin{array}{l}
1 \text { if } x_{n} \text { belongs to a solution of } P[n, k] \\
0 \text { else }
\end{array}\right.
\end{aligned}
$$

such that P tells us, for a knapsack of capacity k, whether or not there exists a solution with elements up to element n; and S tells us, given a knapsack of capacity k, if we should select element n or not.
${ }^{2}$ Recall that a set of size n has 2^{n}
subsets

Figure 6: Completing the TSP tour.
${ }^{3}$ Hint: think about pointers from j to
the last vertex in S visited for $L[1, S, j]$.

Figure 7: Example of a solution: a set of items $x_{i}, i \in S \subseteq\{1, \ldots, N\}$, which fill a knapsack of size K

4.1 Solving for possibility matrix $P[N, K]$

To find the matrix P, we will be computing all values $P[i, j]$ for $i \leq n$ and $j \leq k$. As defined in the inputs, let the knapsack size be K and number of elements be N.

Knapsack-Compute- $P(N, K)$

$$
\begin{aligned}
& \text { for } n=0 \text { to } N \\
& \text { for } k=0 \text { to } K \\
& \quad \begin{array}{l}
\text { if } n=k=0 \text { then } P[n, k]=1 \\
\quad \text { else if } n=0, k>0 \text { then } P[0, k]=0 \quad / / \text { no elements } \\
\quad \text { else if } n>0, k=0 \text { then } P[n, 0]=1 \quad / / \text { can choose the } \\
\\
\\
\quad \text { else empty set } S \text { to fill a knapsack of capacity } 0
\end{array}
\end{aligned}
$$

$$
P[n, k]= \begin{cases}P[n-1, k] & \text { if } x_{n}>k \\ 1 & \text { if } x_{n}=k \\ \max \left(P[n-1, k], P\left[n-1, k-x_{n}\right]\right) & \text { if } x_{n}<k\end{cases}
$$

This algorithm has complexity $T(N)=\Theta(N K)$.

4.2 Computing a solution via $S[N, K]$

We can easily modify the previous algorithm ${ }^{4}$ (by simply adding a few lines) to also fill the matrix S, which tells us which items x_{i}, $i \in S \subseteq\{1, \ldots, N\}$ are used to fill the knapsack.

Knapsack-also-Compute- $S(N, K)$

```
for }n=0\mathrm{ to }
    for }k=0\mathrm{ to }
        if }n=k=0\mathrm{ then }P[n,k]=1,S[n,k]=
        else if }n=0,k>0\mathrm{ then P[0,k]=0,S[0,k]=0
        else if }n>0,k=0\mathrm{ then }P[n,0]=1,S[n,0]=
            // we choose the empty set so no elements are selected
        else
            if }\mp@subsup{x}{n}{}>k\mathrm{ then P[n,k]=P[n-1,k],S[n,k]=0
            // don't select this element
        else if }\mp@subsup{x}{n}{}=k\mathrm{ then P[n,k]=1,S[n,k]=1
            // we add this element to the solution
            else if }\mp@subsup{x}{n}{}<
            P[n,k]= max (P[n-1,k],P[n-1,k-\mp@subsup{x}{n}{}])
            if P[n,k]=0 then S[n,k]=0
                // neither was possible
            else if P[n-1,k-\mp@subsup{x}{n}{}]=1 then S[n,k]=1
                // choosing to put in }\mp@subsup{x}{n}{}\mathrm{ worked
            else}S[n,k]=0\quad// solution without \mp@subsup{x}{n}{}\mathrm{ worked
```

${ }^{4}$ The previous algorithm gave us whether it is possible to solve the knapsack problem for N elements x_{1}, \ldots, x_{N} and a knapsack of size K.

This will have the same time complexity as the previous algorithm.

Exercise 5. Write a program that also outputs a knapsack solution if it exists. Assume $P[N, K]=1$ and all entries $P[n, k]$ and $S[n, k]$ for $n \leq N, k \leq K$ are known.

Exercise 6. Modify the dynamic program for the case that there is an unlimited supply of items of each of the sizes x_{1}, \ldots, x_{n}.

5 Assignment Problem

Input: An $n \times n$ matrix, as shown in figure 8 , which describes matches $\delta_{i j} \geq 0$.

Objective: Find the permutation $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ of $(1, \ldots, n)$ that maxi$\operatorname{mizes} \sum_{i=1}^{n} \delta_{i \sigma_{j}}$

Naively, this can be done in time $O(n!\cdot n)$. We will use dynamic programming to reduce this, by computing sub-solutions for all submatrices $A \times B$ where $A, B \subseteq\{1, \ldots, n\}$, as shown in Figure 8 .

Definition 7. Denote the best assignment for this sub-matrix $A \times B$ as $\operatorname{Best}[A, B]$. The goal is to compute $\operatorname{Best}[A, B]$ for all sets A and B such that $|A|=|B|=k$, for k running from 1 to n.

Find-Best-Assignment $\left(\delta_{i j} \forall i, j\right)$

$$
\begin{aligned}
& \text { for } k=0 \text { to } n \\
& \text { for all sets } A, B \subseteq\{1, \ldots, n\} \text { with }|A|=|B|=k \quad / / \text { of size } k \\
& \quad \text { if } k=0 \text { then } \operatorname{BEst}(\varnothing, \varnothing)=0 \\
& \quad \text { else } \\
& \quad \operatorname{Best}[A, B]=\max _{x \in A, y \in B}\left(\delta_{x y}+\operatorname{Best}[A-\{x\}, B-\{y\}]\right)
\end{aligned}
$$

For the time complexity of this algorithm, we again consider different parts of the algorithm. We consider all sets A, B of size k, so since there are 2^{k} subsets of size k and we consider k running up to n, we can upper bound this by $2^{n} \cdot 2^{n}$. In the else loop, we compute the minimum over all $x \in A$ and $y \in B$ which both have size k : we can therefore upper bound this cost by n^{2}.

We therefore have total cost $T(n) \leq 2^{n} \cdot 2^{n} \cdot n^{2}=O\left(n^{2} 4^{n}\right)$.

6 Job Scheduling

InPUT: jobs J_{1}, \ldots, J_{n} requiring times $\tau_{1}, \ldots, \tau_{n}$ to complete; and $c_{i}(t)=$ cost incurred if job i ends at time t.

Objective: Find a permutation $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ of $(1, \ldots, n)$ such that the total cost is minimal if jobs are sequenced as job $J_{\sigma_{1}}$ first, then job $J_{\sigma_{2}}$, etc.

Solution (4).

$$
\begin{aligned}
& k \leftarrow K \\
& \text { for } n=N \text { down to } 1 \\
& \text { if } S[n, k]=1 \\
& \quad \text { output } x_{n} \\
& \quad k \leftarrow k-x_{n}
\end{aligned}
$$

Figure 8: The assignment matrix can be thought of as matching n workers to n jobs. Entries $\delta_{i j}$ represent how well worker i and job j 'match'.

Figure 9: Job scheduling problem visualization

This total cost will be

$$
\text { Cost }=c_{\sigma_{1}}\left(T_{\sigma_{1}}\right)+c_{\sigma_{2}}\left(T_{\sigma_{1}}+T_{\sigma_{2}}\right)+\cdots+c_{\sigma_{n}}\left(T_{\sigma_{1}}+\cdots+T_{\sigma_{n}}\right)
$$

For our dynamic programming algorithm, let $S \subseteq\{1, \ldots, n\}$ be a subset of the jobs and set $C(S)$ be the optimal cost for that subset.

Job-Scheduling $\left(J_{i}, \tau_{i}, c_{i}(t) \forall i\right)$

```
    for }k=0\mathrm{ to }
```

for all $S \subseteq\{1, \ldots, n\}$ of size k do:

3
$C(s)=\min _{i \in S}\left(C(S-\{i\})+c_{i}\left(\sum_{j \in S} \tau_{j}\right)\right)$
// i is the last job: find the one that minimizes total cost
By a similar analysis as in Section 5, this algorithm has complexity $T(n)=O\left(n \cdot 2^{n}\right)$.

7 Longest Common Subsequence

The next two sections (7 and 8) are adapted from Ruo Yu Tao and Sitong Chen's 2018 scribed notes ${ }^{5}$, with a few adjustments.

InPUT: two ordered sequences: x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} where all elements x_{i} and y_{i} come from a finite alphabet A, (for example $\{0,1\}$ or $\{A, C, G, T\})$.

Оbjective: Find the longest common subsequence: that is, the longest sequences $1 \leq i_{1}<i_{2} \cdots<i_{k} \leq n, 1 \leq j_{1}<\cdots<j_{k} \leq m$ such that $x_{i_{1}}=y_{j_{1}}, \ldots, x_{i_{k}}=y_{j_{k}}$. See Figure 10 for an example.

Let the matrix element $L[i, j]$ be the length of the longest common subsequence of x_{1}, \ldots, x_{i} and y_{1}, \ldots, y_{j}. The following dynamic program will fill the matrix L.

Compute-LCS-Length (n, m)

$$
\begin{aligned}
& \text { for all } i=0 \text { to } n \\
& \qquad \begin{array}{l}
\text { for all } j=0 \text { to } m \\
\quad \text { if } i=0 \text { or } j=0 \text { then } L[i, j]=0 \quad / / \text { initialize } \\
\quad \text { else }
\end{array}
\end{aligned}
$$

$$
L[i, j]=\left\{\begin{array}{lll}
1+L[i-1, j-1] & \text { if } & x_{i}=x_{j} \\
\max (L[i-1, j], L[i, j-1]) & \text { if } & x_{i} \neq x_{j}
\end{array}\right.
$$

The entry $L[n, m]$ will be the length of the Longest Common Subsequence for the given input x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m}. The construction of this matrix L takes time $\Theta(n m)$.

We can now define an algorithm that takes in the matrix defined above and returns the longest common subsequence:
$C(S-\{i\}):$ cost of all jobs without job i $c_{i}\left(\sum_{j \in S} \tau_{j}\right):$ cost of job i
${ }^{5}$ R. Y. Tao and S. Chen. Dynamic Programming (2). McGill University, January 2018

Figure 10: Example of a two sequences with longest common subsequence 1110.

The last element in the matrix L would be:

$$
L[i, j]=\left\{\begin{array}{r}
1+L[i-1, j-1] \\
\text { if } x_{i}=x_{j} \\
\max (L[i-1, j] \\
L[i, j-1]) \\
\text { if } x_{i} \neq x_{j}
\end{array}\right.
$$

Compute-LCS

```
let \(i=n, j=m, r=\) empty list for results.
// We start at the cell of the last row of the last column.
while \(i \geq 0\) and \(j \geq 0 \quad / /\) repeat this until out of matrix bounds
    if \(x_{i}=y_{j}\)
        append \(x_{i}\) to \(r\).
        \(i=i-1, j=j-1 \quad / /\) go North West (NW) one cell
    else // else, if \(x_{i} \neq y_{j}\), choose the maximum between the
        // the numbers in the West and North cells.
    if \(L[i-1, j] \geq L[i, j-1]\) then \(i=i-1\)
    else \(j=j-1\)
return \(r\)
```

This algorithm is illustrated in Figure 7, by the circles and arrows.

8 Optimal Binary Search Tree

Once again, this section is adapted from Ruo Yu Tao and Sitong Chen's 2018 scribed notes ${ }^{6}$.

8.1 Background

Suppose that we are designing a compiler for a language, in which there are n syntactic keywords with corresponding semantics. For each occurrence of a keyword, we would want to perform a lookup operation by building a static binary search tree with n syntactic words as keys and their semantics as data stored in corresponding nodes. For the efficiency of the compiler, we would like to design a static binary search tree that minimizes total search time. 7

We know that for a balanced tree, we can ensure an $O(\log n)$ search time per occurrence; however those syntactic words can appear with different frequencies. For example, if a frequently used word such as "if" is placed at the leave of this tree, it will greatly increase the total search time and hence the compiling time, vice versa. Therefore, given that we know the frequency of each key word appearing, we would like to organize a binary search tree in a way that minimizes the overall number of nodes visited. Such a tree is known as an optimal binary search tree. Moreover, it may be intuitive to consider a tree with smallest depth and key words of highest frequency at the root as an optimal binary search tree. However neither condition is necessary. ${ }^{8}$

	Sequence x, with $x_{i} \in x, i=1, \ldots, n$									
		-	1	\%	(1)	1	1	1	O	
	1	\bigcirc	1	1	1	1	1	1	1	
	1	o	1	1	2	2	2	2	2	
	o	1	1	2	2	2	2	2	3	
	o	1	1	2	2	2	2)	2	3	
	o	1	1	2	2	2	2	2	3	
\\|	1	o	2	2	3	3	3	3	3	
	-	1	2	3	3	3	3	3	(4)	

Figure 11: Example of two sequences with a longest common subsequence of length 4 .
${ }^{6}$ R. Y. Tao and S. Chen. Dynamic Programming (2). McGill University, January 2018

7

Key words	Frequency (w)
If	w_{1}
Do	w_{2}
While	w_{3}
For	w_{4}
When	w_{5}
\cdots	\cdots
Keyword $_{n}$	w_{n}

${ }^{8}$ T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 3rd edition, 1989

8.2 Algorithm

Input: sorted (key, weight) pairs $\left(k_{1}, w_{1}\right), \ldots\left(k_{n}, w_{n}\right)$, where the weights denote frequency or popularity.

Objective: construct a binary search tree (BST) of minimal total weight $\sum_{i=1}^{n} d_{i} w_{i}$, where key k_{i} is at depth d_{i}.

Observe that any subtree of a binary search tree contains keys in a contiguous range $k_{i} \ldots k_{j}$, for some $1 \leq i \leq j \leq n$. If an optimal binary search tree T has a subtree T^{\prime} containing keys $k_{i} \ldots k_{j}$, then this subtree T^{\prime} must be optimal as well for the subproblem with key $k_{i} \ldots k_{j}$. If there were a subtree $T^{\prime \prime}$ whose expected cost of searching is lower than that of T^{\prime}, then we could replace T^{\prime} with $T^{\prime \prime}$.

Therefore, given a binary tree with keys $k_{i} \ldots k_{j}$, say k_{r} where $i \leq$ $r \leq j$ is the root of an optimal subtree, then the left subtree contains keys $k_{i} \ldots k_{r-1}$, while the right subtree contains keys $k_{r+1} \ldots k_{j}$. If we check all possible candidate roots k_{r}, and identify the left and right subtree with minimum cost of searching, we are guaranteed to find an optimal binary search tree.

Definition 8.

- Let $C[i, j]=\sum_{k=i}^{j} w_{k} d_{k}$ denote the optimal cost for the tree contain$\operatorname{ing}\left(k_{i}, w_{i}\right), \ldots,\left(k_{j}, w_{j}\right)$.
- Let $W[i, j]=\sum_{k=i}^{j} w_{k}$ denote the total weight of all keywords with indices i, \ldots, j.

We will compute $C[1, n]$ by computing all $C[i, j]$ for $1 \leq i \leq j \leq n$.

Computing W

From Definition 8, we have that

$$
W[i, j]= \begin{cases}w_{i} & \text { if } i=j, \\ W[i, j-1]+w_{j} & \text { if } i<j .\end{cases}
$$

```
Compute-W \(\left(\left(k_{i}, w_{i}\right) \forall i\right)\)
    for \(i=1\) to \(n: W[i, i]=w_{i} \quad / /\) initialization
    for \(k=1\) to \(n-1\)
        for \(i=1\) to \(n\)
        if \(i+k \leq n\) then \(W[i, i+k]=W[i, i+k-1]+w_{i+k}\)
return \(W\)
```

Compute- W has time complexity $T(n)=\Theta\left(n^{2}\right)$.

Computing C

If $k_{r}, r \in[i, j]$ is the root of the optimal subtree for the tree containing k_{i} to k_{j}, we can consider subtrees as in Figure 8.2 where the left and right subtrees are both optimal and respectively contain $\left(k_{i}, w_{i}\right), \ldots,\left(k_{r-1}, w_{r-1}\right)$ and $\left(k_{r+1}, w_{r+1}\right) \ldots,\left(k_{j}, w_{j}\right)$. Taking the root that yields minimum total cost thus yields the following formula

$$
C[i, j]=\min _{i \leq r \leq j}\left\{\begin{array}{c}
C[i, r-1]+W[i, r-1] \\
+C[r+1, j]+W[r+1, j] \\
+w_{r}
\end{array}\right\}
$$

which we can rewrite using $W[i, j]=W[i, r-1]+W[r+1, j]+w_{r}$, to

$$
C[i, j]=\min _{i \leq r \leq j}(C[i, r-1]+C[r+1, j]+W[i, j])
$$

where we have $C[i, j]=0$ if $i=j$.
Having computed the matrix W in time $\Theta\left(n^{2}\right)$, we can now find C :
Compute-C $\left(\left(k_{i}, w_{i}\right) \forall i\right)$

```
for \(i=1\) to \(n: C[i, i]=w_{i}\)
    for sizeofSubtree \(=2\) to \(n\)
        for \(i=1\) to \(n\)
        \(j=i+\) sizeofSubtree -1
        if \(j \leq n\)
                \(C[i, j]=\min _{i \leq r \leq j} C[i, r-1]+C[r+1, j]+W[i, j]\)
            \(\operatorname{root}[i, j]=\) one of the \(r^{\prime} s\) that minimizes \(C[i, j]\)
return C, root
```

Compute- C has time complexity $T(n)=\Theta\left(n^{3}\right)$, i.e., the algorithm takes time $\Theta\left(n^{3}\right)$ in total.
Remark 9. Knuth ${ }^{9}$ has shown that there are always roots of an optimal subtree such that $\operatorname{root}[i, j-1] \leq \operatorname{root}[i, j] \leq \operatorname{root}[i+1, j]$ for all $1 \leq$ $i<j \leq n$. Hence we can reduce the running time of Compute- C to $\Theta\left(n^{2}\right)$ by replacing the innermost for loop for $r=i$ to j with for $r=\operatorname{root}[i, j-1]$ to $\operatorname{root}[i+1, j]$.

9 Matrix Multiplication

InPut: matrices $M_{1}, M_{2}, \ldots, M_{n}$ of dimensions $r_{1} \times c_{1}, r_{2} \times c_{2}, \ldots$, $r_{n} \times c_{n} . r_{i}$ stands for the number of rows and c_{i} the number of columns. For the matrix multiplication to make sense, we require $c_{1}=r_{2}, c_{2}=r_{3}, \ldots, c_{n-1}=r_{n}$.

Оbjective: compute $M_{1} \times M_{2} \times \cdots \times M_{n}$ using standard matrix multiplication, such that the total number of operations is smallest in the RAM model.

Figure 12: The above is an tree view of our recursive formula for computing total cost of searching given a keyword is chosen as the root.
${ }^{9}$ D. E. Knuth. The Art of Computer Programming, volume 3. AddisonWesley, 1998

Figure 13: The number of operations needed to multiply matrices A and B of sizes $a \times b$ and $b \times c$ is $a \cdot b \cdot c$.

For the algorithm, we store the following subproblems:

Definition 10.

- Let $C[i, j]$ be the optimal number of operations for multiplying $M_{i} \times \cdots \times M_{j}, 1 \leq i \leq j \leq n$.
- Let $B[i, j]$ be the index of best split when multiplying $M_{i} \times \cdots \times$ M_{j}, say ℓ where $i \leq \ell \leq j$, so that we first do $M_{i} \times \cdots \times M_{\ell}$, then $M_{\ell+1} \times \cdots \times M_{j}$, and then $\left(M_{i} \times \cdots \times M_{\ell}\right) \times\left(M_{\ell+1} \times \cdots \times M_{j}\right)$. $B[i, j]$ is needed if we want to output the best schedule.

$\operatorname{Matrix}-\operatorname{Multiply}\left(M_{i} \forall i\right)$

1 for $i=1$ to n do $C[i, i]=0 \quad / /$ initialization: multiplying no // matrices takes no operations
2 for $k=1$ to $n-1$ // iterate over the number of matrices to be
$3 \quad j=i+k \quad / /$ multiplied together
$4 \quad$ if $j \leq n$ then $/ / j$ can't go over the number of matrices
5

$$
C[i, j]=\min _{i \leq \ell \leq j}\left(C[i, \ell]+C[\ell+1, j]+r_{i} r_{\ell+1} c_{j}\right)
$$

$$
/ / \text { find the index of best split for } M_{i} \times \cdots \times M_{j}
$$

6

$$
B[i, j]=\underset{i \leq \ell \leq j}{\arg \min }\left(C[i, \ell]+C[\ell+1, j]+r_{i} r_{\ell+1} c_{j}\right)
$$

The term in red on line $5, r_{i} r_{\ell+1} c_{j}$, comes from the fact that this line is splitting $M_{i} \times \cdots \times M_{j}$ into

$$
\underbrace{\left(M_{i} \times \cdots \times M_{\ell}\right)}_{r_{i} \times r_{\ell+1} \text { matrix }} \times \underbrace{\left(M_{\ell+1} \times \cdots \times M_{j}\right)}_{r_{\ell+1} \times c_{j}}
$$

and counting the total number of operations needed to get the answer. $C[i, \ell]$ and $C[\ell+1, j]$ respectively count the number of operations needed to perform $M_{i} \times \cdots \times M_{\ell}$ and $M_{\ell+1} \times \cdots \times M_{j}$. The middle multiplication requires $r_{i} r_{\ell+1} c_{j}$ operations, as explained in Figure 13.

Exercise 11. The tree view of this algorithm is shown in Figure 14. Given the $B[\cdot, \cdot]$ matrix, write an algorithm to construct this optimal tree.

Figure 14: Tree view of the matrix multiplication algorithm.

References

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 3rd edition, 1989.
D. E. Knuth. The Art of Computer Programming, volume 3. AddisonWesley, 1998.
R. Y. Tao and S. Chen. Dynamic Programming (2). McGill University, January 2018.

