
Dynamic Programming
Anna Brandenberger

February 2, 2020

This is the augmented transcript of lectures given by Luc Devroye on
the week of the 25th of January 2018 for the Honours Data Structures
and Algorithms class (COMP 252, McGill University). The subject was
Dynamic Programming.

The Principle: in dynamic programming, to find a solution of a
problem of a given size, we solve all the necessary sub-problems.

1 Binomial Coefficient

We would like to compute the binomial coefficient defined as(
n
k

)
=

n!
k!(n− k)!

=
n(n− 1) · · · (n− k + 1)

k(k− 1) · · · 1

Direct computation: if k < n/2, this can be done in 2k multiplica-
tions. So we have RAM model complexity Θ(min(k, n− k)), since one
of k or n− k will be ≤ n/2 and (n

k) = (n
n−k). Figure 1: To compute (6

4), compute all
entries in the matrix below this element.

Recurrence relation: the binomial coefficient (n
k) is the number

of ways of choosing k out of n integers. Recall the recursive formula:1 1 Why is this true?

Proof. Fix some integer a. It is either
part of the k or not.

• If the set of k numbers contains a,
then for the remaining we must pick
k− 1 out of n− 1 integers.

• If the set doesn’t contain a, we must
pick k out of n− 1 integers.

(
n
0

)
=

(
n
n

)
= 1(

n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1

k

)
Using this, we can form a Pascal Triangle as shown in Figure 1.

The following algorithm will, for a given element (N, K), compute
the matrix below that element, obtaining (N

K).

Compute-Binomial-Coefficient(N, K)

1 for n = 0 to N // rows
2 for k = 0 to K // columns
3 if k = 0 or k = n then (n

k) = 1
4 else (n

k) = (n−1
k−1) + (n−1

k)

This algorithm has time complexity O(NK).

Figure 2: Hint for Exercise 1.

Exercise 1. Improve the code to get complexity O(K · (N − K)).
Hint: compute only a strip as shown in Figure 2.

dynamic programming 2

2 Partitions of {1, . . . , n} into k non-empty sets

Given {1, . . . , n}, we want to compute the number of possible par-
titions of these integers into k non-empty sets. Indeed, observe the
recursion:

P ({1, . . . , n}, k) = P ({1, . . . , n− 1}, k) · k︸ ︷︷ ︸
element n joins an existing set

+ P ({1, . . . , n− 1}, k− 1)︸ ︷︷ ︸
starts a new set by itself

Pn,k = k · Pn−1,k + Pn−1,k−1

We see that we can use exactly the same matrix-filling algorithm
as the last section with only minor changes. Note that here, in the
initialization, Pn,n = Pn,1 = 1.

The complexity is therefore the same as Section 1: O(nk).

Figure 3: We compute, for example, 140

via: 140 = 5× 15 + 65

3 Travelling Salesman Problem (TSP)

Input: Matrix of distances dist[i, j] between all cities 1 ≤ i, j ≤ n.

Objective: Find the tour through all cities of smallest total length.

Figure 4: Example of a tour through
n = 11 cities.

3.1 Naive Algorithm

Consider all (n − 1)! permutations of {2, . . . , n} and compute the
lengths of all tours that start and end at ”1”.

With this approach, we obtain complexity T(n) = n× (n− 1)! = n!
where n comes from summing the lengths and (n− 1)! is the number
of tours.

3.2 Dynamic Programming Approach: Finding L[1, S, j]

Definition 2. Consider L(1, S, j), the length of the shortest path be-
tween 1 and j via all of S, where S ⊆ {1, . . . , n} is the set of all cities
with 1 and j removed, i.e., S = {1, . . . , n} − {1} − {j}.

Figure 5: Illustration of innermost
algorithm loop: recall that

S = {1, . . . , n} − {1} − {j}.

The length of the path between city 1
and city j is equal to the length of the
shortest path between 1 and some city
` ∈ S, plus the distance between ` and
j. To find the shortest path between 1
and j, we must choose the city ` which
minimizes this quantity.

In this algorithm, we will store L[1, S, j] for all j and subsets S in a
large matrix. Figure 5 illustrates line 5 of the algorithm. Once this
matrix is found, computing the TSP tour will only require Θ(n) time.

TSP-DP-Algorithm(dist[i, j] ∀i, j)

1 for all j 6= 1: L[1, ∅, j] = dist[1, j] // initialization
2 for k = 1 to n− 2 // k: size of S
3 for all S with |S| = k, S ⊆ {2, . . . , n}
4 for all j 6∈ S

5 L[1, S, j] = min
`∈S

(
L[1, S− {`}, `] + dist[`, j]

)

dynamic programming 3

To analyze the time complexity, we must consider three parts:

• all subsets of S are considered at most once:2 contribution ≤ 2n 2 Recall that a set of size n has 2n

subsets
• for every set S, we consider at most n values of j: contribution ≤ n

• for each (S, j) pair, we calculate a minimum over at most n choices
of `: contribution ≤ n

So the total complexity of the dynamic programming algorithm to
find L, the length of the shortest path between 1 and any other city j,
is T(n) ≤ n2 · 2n in the ram model. Note that this is� n!. Storage of
order Θ(n · 2n) is needed.

3.3 Finding the TSP Tour

Figure 6: Completing the TSP tour.

Once we have L[1, S, j] for all S ⊆ {1, . . . , n} and j ∈ S, the length of
the TSP tour is, as shown in Figure 6

TSPLen = min
j 6=1

(
L[1, S, j] + dist[1, j]

)
where we can read all L[1, S, j] off our table. The time complexity of
this search (over n− 1 possibilities of j) is just Θ(n), which is added
to the time needed to build L. Therefore the total algorithm time
complexity remains T(n) = O(n22n).

Exercise 3. Use additional storage so that you also output the opti-
mal tour as a sequence of vertices.3 3 Hint: think about pointers from j to

the last vertex in S visited for L[1, S, j].

4 Knapsack Problem

Input: Items of sizes x1, . . . , xN ∈ Z; and a knapsack of size K ∈ Z.

Objective: Determine if there exists a subset S ⊆ {1, . . . , N} for the
input sizes such that ∑i∈S xi = K.

Figure 7: Example of a solution: a set of
items xi , i ∈ S ⊆ {1, . . . , N}, which fill a
knapsack of size K

Notation 4. Define the matrices P[n, k] and S[n, k] respectively as

P[n, k] =

1 if Knapsack ({x1, . . . , xn}, k) has a solution

0 else

S[n, k] =

1 if xn belongs to a solution of P[n, k]

0 else

such that P tells us, for a knapsack of capacity k, whether or not there
exists a solution with elements up to element n; and S tells us, given
a knapsack of capacity k, if we should select element n or not.

dynamic programming 4

4.1 Solving for possibility matrix P[N, K]

To find the matrix P, we will be computing all values P[i, j] for i ≤ n
and j ≤ k. As defined in the inputs, let the knapsack size be K and
number of elements be N.

Knapsack-Compute-P(N, K)

1 for n = 0 to N
2 for k = 0 to K
3 if n = k = 0 then P[n, k] = 1
4 else if n = 0, k > 0 then P[0, k] = 0 // no elements
5 else if n > 0, k = 0 then P[n, 0] = 1 // can choose the

// empty set S to fill a knapsack of capacity 0
6 else

7 P[n, k] =

P[n− 1, k] if xn > k

1 if xn = k

max
(

P[n− 1, k], P[n− 1, k− xn]
)

if xn < k

xn > k: the element xn is greater than
the remaining capacity: no solution

xn = k: there definitely exists a solution
containing xn

xn < k: we either (1st option) don’t put
xn into the set or (2nd option) put it in

This algorithm has complexity T(N) = Θ(NK).

4.2 Computing a solution via S[N, K]

We can easily modify the previous algorithm4 (by simply adding 4 The previous algorithm gave us
whether it is possible to solve the
knapsack problem for N elements
x1, . . . , xN and a knapsack of size K.

This will have the same time complexity
as the previous algorithm.

a few lines) to also fill the matrix S, which tells us which items xi,
i ∈ S ⊆ {1, . . . , N} are used to fill the knapsack.

Knapsack-also-Compute-S(N, K)

1 for n = 0 to N
2 for k = 0 to K
3 if n = k = 0 then P[n, k] = 1, S[n, k] = 0
4 else if n = 0, k > 0 then P[0, k] = 0, S[0, k] = 0
5 else if n > 0, k = 0 then P[n, 0] = 1, S[n, 0] = 0

// we choose the empty set so no elements are selected
6 else
7 if xn > k then P[n, k] = P[n− 1, k], S[n, k] = 0

// don’t select this element
8 else if xn = k then P[n, k] = 1, S[n, k] = 1

// we add this element to the solution
9 else if xn < k

10 P[n, k] = max
(

P[n− 1, k], P[n− 1, k− xn]
)

11 if P[n, k] = 0 then S[n, k] = 0
// neither was possible

12 else if P[n− 1, k− xn] = 1 then S[n, k] = 1
// choosing to put in xn worked

13 else S[n, k] = 0 // solution without xn worked

dynamic programming 5

Exercise 5. Write a program that also outputs a knapsack solution
if it exists. Assume P[N, K] = 1 and all entries P[n, k] and S[n, k] for
n ≤ N, k ≤ K are known.

Solution (4).

1 k← K
2 for n = N down to 1
3 if S[n, k] = 1
4 output xn
5 k← k− xn

Exercise 6. Modify the dynamic program for the case that there is an
unlimited supply of items of each of the sizes x1, . . . , xn.

5 Assignment Problem

Figure 8: The assignment matrix can be
thought of as matching n workers to
n jobs. Entries δij represent how well
worker i and job j ’match’.

Input: An n × n matrix, as shown in figure 8, which describes
matches δij ≥ 0.

Objective: Find the permutation (σ1, . . . , σn) of (1, . . . , n) that maxi-
mizes ∑n

i=1 δiσj

Naively, this can be done in time O(n! · n). We will use dynamic
programming to reduce this, by computing sub-solutions for all sub-
matrices A× B where A, B ⊆ {1, . . . , n}, as shown in Figure 8.

Definition 7. Denote the best assignment for this sub-matrix A× B
as Best[A, B]. The goal is to compute Best[A, B] for all sets A and B
such that |A| = |B| = k, for k running from 1 to n.

Find-Best-Assignment(δij ∀i, j)

1 for k = 0 to n
2 for all sets A, B ⊆ {1, . . . , n} with |A| = |B| = k // of size k
3 if k = 0 then Best(∅, ∅) = 0
4 else

5 Best[A, B] = max
x∈A, y∈B

(
δxy + Best[A− {x}, B− {y}]

)
For the time complexity of this algorithm, we again consider dif-

ferent parts of the algorithm. We consider all sets A, B of size k, so
since there are 2k subsets of size k and we consider k running up to n,
we can upper bound this by 2n · 2n. In the else loop, we compute the
minimum over all x ∈ A and y ∈ B which both have size k: we can
therefore upper bound this cost by n2.

We therefore have total cost T(n) ≤ 2n · 2n · n2 = O(n24n).

6 Job Scheduling

Figure 9: Job scheduling problem
visualization

Input: jobs J1, . . . , Jn requiring times τ1, . . . , τn to complete; and
ci(t) = cost incurred if job i ends at time t.

Objective: Find a permutation (σ1, . . . , σn) of (1, . . . , n) such that
the total cost is minimal if jobs are sequenced as job Jσ1 first, then
job Jσ2 , etc.

dynamic programming 6

This total cost will be

Cost = cσ1(Tσ1) + cσ2(Tσ1 + Tσ2) + · · ·+ cσn (Tσ1 + · · ·+ Tσn)

For our dynamic programming algorithm, let S ⊆ {1, . . . , n} be a
subset of the jobs and set C(S) be the optimal cost for that subset.

Job-Scheduling(Ji, τi, ci(t) ∀i)

1 for k = 0 to N
2 for all S ⊆ {1, . . . , n} of size k do:

3 C(s) = min
i∈S

(
C(S− {i}) + ci

(
∑
j∈S

τj

))
// i is the last job: find the one that minimizes total cost

C(S− {i}): cost of all jobs without job i

ci

(
∑
j∈S

τj

)
: cost of job i

By a similar analysis as in Section 5, this algorithm has complexity
T(n) = O(n · 2n).

7 Longest Common Subsequence

The next two sections (7 and 8) are adapted from Ruo Yu Tao and
Sitong Chen’s 2018 scribed notes5, with a few adjustments. 5 R. Y. Tao and S. Chen. Dynamic

Programming (2). McGill University,
January 2018Input: two ordered sequences: x1, . . . , xn and y1, . . . , ym where all

elements xi and yi come from a finite alphabet A, (for example
{0, 1} or {A, C, G, T}).

Objective: Find the longest common subsequence: that is, the
longest sequences 1 ≤ i1 < i2 · · · < ik ≤ n, 1 ≤ j1 < · · · < jk ≤ m
such that xi1 = yj1 , . . . , xik = yjk . See Figure 10 for an example.

Figure 10: Example of a two sequences
with longest common subsequence
1110.

Let the matrix element L[i, j] be the length of the longest common
subsequence of x1, . . . , xi and y1, . . . , yj. The following dynamic The last element in the matrix L would

be:

L[i, j] =

1 + L[i− 1, j− 1]
if xi = xj,

max(L[i− 1, j],
L[i, j− 1])

if xi 6= xj.

program will fill the matrix L.

Compute-LCS-Length(n, m)

1 for all i = 0 to n
2 for all j = 0 to m
3 if i = 0 or j = 0 then L[i, j] = 0 // initialize
4 else

5 L[i, j] =

1 + L[i− 1, j− 1] if xi = xj

max
(

L[i− 1, j], L[i, j− 1]
)

if xi 6= xj

The entry L[n, m] will be the length of the Longest Common Sub-
sequence for the given input x1, . . . , xn and y1, . . . , ym. The construc-
tion of this matrix L takes time Θ(nm).

We can now define an algorithm that takes in the matrix defined
above and returns the longest common subsequence:

dynamic programming 7

Compute-LCS

1 let i = n, j = m, r = empty list for results.
// We start at the cell of the last row of the last column.

2 while i ≥ 0 and j ≥ 0 // repeat this until out of matrix bounds
3 if xi = yj

4 append xi to r.
5 i = i− 1, j = j− 1 // go North West (NW) one cell
6 else // else, if xi 6= yj, choose the maximum between the

// the numbers in the West and North cells.
7 if L[i− 1, j] ≥ L[i, j− 1] then i = i− 1
8 else j = j− 1
9 return r

Figure 11: Example of two sequences
with a longest common subsequence of
length 4.

This algorithm is illustrated in Figure 7, by the circles and arrows.

8 Optimal Binary Search Tree

Once again, this section is adapted from Ruo Yu Tao and Sitong
Chen’s 2018 scribed notes6. 6 R. Y. Tao and S. Chen. Dynamic

Programming (2). McGill University,
January 2018

8.1 Background

Suppose that we are designing a compiler for a language, in which
there are n syntactic keywords with corresponding semantics. For
each occurrence of a keyword, we would want to perform a lookup
operation by building a static binary search tree with n syntactic
words as keys and their semantics as data stored in corresponding
nodes. For the efficiency of the compiler, we would like to design a
static binary search tree that minimizes total search time.7

7

Key words Frequency(w)

If w1
Do w2

While w3
For w4

When w5
.

Keywordn wnWe know that for a balanced tree, we can ensure an O(log n)
search time per occurrence; however those syntactic words can ap-
pear with different frequencies. For example, if a frequently used
word such as "if" is placed at the leave of this tree, it will greatly in-
crease the total search time and hence the compiling time, vice versa.
Therefore, given that we know the frequency of each key word ap-
pearing, we would like to organize a binary search tree in a way that
minimizes the overall number of nodes visited. Such a tree is known
as an optimal binary search tree. Moreover, it may be intuitive to
consider a tree with smallest depth and key words of highest fre-
quency at the root as an optimal binary search tree. However neither
condition is necessary.8 8 T. H. Cormen, C. E. Leiserson, R. L.

Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 3rd edition, 1989

dynamic programming 8

8.2 Algorithm

Input: sorted (key, weight) pairs (k1, w1), . . . (kn, wn), where the
weights denote frequency or popularity.

Objective: construct a binary search tree (BST) of minimal total
weight ∑n

i=1 diwi, where key ki is at depth di.
Here di = 1 if ki is the root.

Observe that any subtree of a binary search tree contains keys in
a contiguous range ki . . . k j, for some 1 ≤ i ≤ j ≤ n. If an optimal
binary search tree T has a subtree T′ containing keys ki . . . k j, then
this subtree T′ must be optimal as well for the subproblem with key
ki . . . k j. If there were a subtree T′′ whose expected cost of searching
is lower than that of T′, then we could replace T′ with T′′.

Therefore, given a binary tree with keys ki . . . k j, say kr where i ≤
r ≤ j is the root of an optimal subtree, then the left subtree contains
keys ki . . . kr−1, while the right subtree contains keys kr+1 . . . k j. If
we check all possible candidate roots kr, and identify the left and
right subtree with minimum cost of searching, we are guaranteed to
find an optimal binary search tree.

Definition 8.

• Let C[i, j] = ∑
j
k=i wkdk denote the optimal cost for the tree contain-

ing (ki, wi), . . . , (k j, wj).

• Let W[i, j] = ∑
j
k=i wk denote the total weight of all keywords with

indices i, . . . , j.

We will compute C[1, n] by computing all C[i, j] for 1 ≤ i ≤ j ≤ n.

Computing W

From Definition 8, we have that

W[i, j] =

wi if i = j,

W[i, j− 1] + wj if i < j.

Compute-W((ki, wi) ∀i)

1 for i = 1 to n: W[i, i] = wi // initialization
2 for k = 1 to n− 1
3 for i = 1 to n
4 if i + k ≤ n then W[i, i + k] = W[i, i + k− 1] + wi+k

5 return W

Compute-W has time complexity T(n) = Θ(n2).

dynamic programming 9

Computing C

If kr, r ∈ [i, j] is the root of the optimal subtree for the tree con-
taining ki to k j, we can consider subtrees as in Figure 8.2 where the
left and right subtrees are both optimal and respectively contain
(ki, wi), . . . , (kr−1, wr−1) and (kr+1, wr+1) . . . , (k j, wj). Taking the root
that yields minimum total cost thus yields the following formula

Figure 12: The above is an tree view of
our recursive formula for computing
total cost of searching given a keyword
is chosen as the root.

C[i, j] = min
i≤r≤j

C[i, r− 1] + W[i, r− 1]

+ C[r + 1, j] + W[r + 1, j]
+ wr

which we can rewrite using W[i, j] = W[i, r− 1] + W[r + 1, j] + wr, to

C[i, j] = min
i≤r≤j

(
C[i, r− 1] + C[r + 1, j] + W[i, j]

)
where we have C[i, j] = 0 if i = j.
Having computed the matrix W in time Θ(n2), we can now find C:

Compute-C((ki, wi) ∀i)

1 for i = 1 to n : C[i, i] = wi

2 for sizeofSubtree = 2 to n
3 for i = 1 to n
4 j = i + sizeofSubtree− 1
5 if j ≤ n
6 C[i, j] = mini≤r≤j C[i, r− 1] + C[r + 1, j] + W[i, j]
7 root[i, j] = one of the r′s that minimizes C[i, j]
8 return C, root

Compute-C has time complexity T(n) = Θ(n3), i.e., the algorithm
takes time Θ(n3) in total.

Remark 9. Knuth9 has shown that there are always roots of an optimal 9 D. E. Knuth. The Art of Computer
Programming, volume 3. Addison-
Wesley, 1998

subtree such that root[i, j − 1] ≤ root[i, j] ≤ root[i + 1, j] for all 1 ≤
i < j ≤ n . Hence we can reduce the running time of Compute-C to
Θ(n2) by replacing the innermost for loop for r = i to j with for

r = root[i, j− 1] to root[i + 1, j].

9 Matrix Multiplication

Figure 13: The number of operations
needed to multiply matrices A and B of
sizes a× b and b× c is a · b · c.

Input: matrices M1, M2, . . . , Mn of dimensions r1 × c1, r2 × c2, . . . ,
rn × cn. ri stands for the number of rows and ci the number of
columns. For the matrix multiplication to make sense, we require
c1 = r2, c2 = r3, . . . , cn−1 = rn.

Objective: compute M1 × M2 × · · · × Mn using standard matrix
multiplication, such that the total number of operations is smallest
in the RAM model.

dynamic programming 10

For the algorithm, we store the following subproblems:

Definition 10.

• Let C[i, j] be the optimal number of operations for multiplying
Mi × · · · ×Mj, 1 ≤ i ≤ j ≤ n.

• Let B[i, j] be the index of best split when multiplying Mi × · · · ×
Mj, say ` where i ≤ ` ≤ j, so that we first do Mi × · · · ×M`, then
M`+1 × · · · ×Mj, and then

(
Mi × · · · ×M`

)
×
(

M`+1 × · · · ×Mj
)
.

B[i, j] is needed if we want to output the best schedule.

Matrix-Multiply(Mi ∀i)

1 for i = 1 to n do C[i, i] = 0 // initialization: multiplying no
// matrices takes no operations

2 for k = 1 to n− 1 // iterate over the number of matrices to be
3 j = i + k // multiplied together
4 if j ≤ n then // j can’t go over the number of matrices

5 C[i, j] = min
i≤`≤j

(
C[i, `] + C[`+ 1, j] + rir`+1cj

)
// find the index of best split for Mi × · · · ×Mj

6 B[i, j] = arg min
i≤`≤j

(
C[i, `] + C[`+ 1, j] + rir`+1cj

)
The term in red on line 5, rir`+1cj, comes from the fact that this

line is splitting Mi × · · · ×Mj into(
Mi × · · · ×M`

)︸ ︷︷ ︸
ri×r`+1 matrix

×
(

M`+1 × · · · ×Mj
)︸ ︷︷ ︸

r`+1×cj matrix

and counting the total number of operations needed to get the an-
swer. C[i, `] and C[` + 1, j] respectively count the number of opera-
tions needed to perform Mi × · · · × M` and M`+1 × · · · × Mj. The
middle multiplication requires rir`+1cj operations, as explained in
Figure 13.

M1 ×M2 × · · · ×M6 ×M7;

M1 ×M2 ×M3 ×M4

M4 ×M5 ×M6 ×M7

M7M5 ×M6

M6M5

M4

M1 ×M2 ×M3

M3M1 ×M2

M2M1

Figure 14: Tree view of the matrix
multiplication algorithm.

Exercise 11. The tree view of this algorithm is shown in Figure 14.
Given the B[·, ·] matrix, write an algorithm to construct this optimal
tree.

dynamic programming 11

References

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 3rd edition, 1989.

D. E. Knuth. The Art of Computer Programming, volume 3. Addison-
Wesley, 1998.

R. Y. Tao and S. Chen. Dynamic Programming (2). McGill University,
January 2018.

	Binomial Coefficient
	Partitions of {1, …, n} into k non-empty sets
	Travelling Salesman Problem (TSP)
	Naive Algorithm
	Dynamic Programming Approach: Finding L[1, S, j]
	Finding the TSP Tour

	Knapsack Problem
	Solving for possibility matrix P[N,K]
	Computing a solution via S[N,K]

	Assignment Problem
	Job Scheduling
	Longest Common Subsequence
	Optimal Binary Search Tree
	Background
	Algorithm

	Matrix Multiplication

