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I. LOCAL OPTIMA OF THE HAMILTONIAN

Let W = (Wi,j)n×n be a symmetric matrix with zero diagonal such that the (Wi,j)1≤i<j≤n are independent standard
normal random variables. The Sherrington-Kirpatrick model of spin glasses is defined by a random Hamiltonian, that
is, a random function H : {−1,+1}n → R. For a configuration σ = (σi)

n
i=1 ∈ {−1,+1}n, H(σ) is defined as follows.

H(σ) :=
∑

1≤i<j≤n

σi σjWij .

We follow the usual convention of calling σ ∈ {−1,+1}n a spin configuration, the coordinates of σ spins, and the
value H(σ) the energy of configuration σ.

Given i ∈ [n] (where [n] = {1, . . . , n}) and σ as above, we let σ(i) denote a new configuration obtained from σ by
flipping the i-th spin and leaving other coordinates unchanged. That is, the components of σ(i) are defined as

σ
(i)
j :=

{
−σi, j = i ;
σj , j ∈ [n]\{i} .

We say that σ is a local minimum or a local optimum of H if

H(σ(i)) ≥ H(σ) for all i ∈ [n] .

That is, σ is a local minimum if flipping the sign of any individual spin does not decrease the value of the energy.
The global optimum minσ∈{−1,+1}n H(σ)—called the “ground-state energy”—has been extensively studied. The

problem was introduced by Sherrington and Kirkpatrick [11] as a mean-field model for spin glasses. The value of the
optimum was determined non-rigorously in the seminal work of Parisi [10], as a consequence of the so-called “Parisi
formula”. Parisi’s formula was proved by Talagrand [12] in a breakthrough paper, see also Panchenko [9] for an
overview. It follows from Talagrand’s result that

n−3/2 min
σ∈{−1,+1}n

H(σ)→ −c in probability,

where c is a constant whose value is numerically estimated to be about 0.7632... (Crisanti and Rizzo [4]) and known

to be bounded by
√

2/π ≈ 0.797885... (Guerra [8]).
In this paper we are interested in locally optimal solutions. An important reason of why local optima are worth

considering is because local optima may be computed quickly by simple greedy algorithms, see Etscheid and Röglin
[6], Angel, Bubeck, Peres, and Wei [2] and Section I B below. We show that the expected number of local optima
grows exponentially and we establish the rate of growth. Also, we examine the conditional distribution of H(σ)n−3/2

given that σ is locally optimal. We prove that the distribution is concentrated on an interval of width O(n−1/4) and
determine its location.

A. Results

In order to state the main result of the paper, we need a few definitions.
Let Φ(λ) = P{N ≤ λ} be the distribution function of a standard normal random variable N and introduce

φ(λ) = log(2Φ(λ)). For x ≥
√

2/π, we let µ∗(x) denote the Fenchel-Légendre transform

µ∗(x) := sup
λ≥0

(
λx− λ2

2
− φ(λ)

)
.

Lemma 2 below shows that µ∗ : [
√

2/π,+∞)→ R is well defined. Lemma 4 shows that the mapping

R(x) :=
x2

4
− µ∗(x)

is strictly concave for x ≥
√

2
π and achieves its global maximum at x = v∗ >

√
2
π . We let α∗ = R(v∗) > 0 denote the

maximum value of R.
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Theorem 1. For any fixed n ≥ 1, the probability P {σ is locally optimal} is the same for all σ = σ(n) ∈ {−1,+1}n.
Moreover,

lim
n→+∞

1

n
logP {σ is locally optimal} = α∗ − log 2 .

Also, there exist constants ε0 > 0, L > 0, and n0 such that, for 0 < ε < ε0 and n ≥ n0,

P
{
−v
∗

2
− ε ≤ n−3/2H(σ) ≤ −v

∗

2
+ ε

∣∣∣∣ σ is locally optimal

}
≥ 1− exp

(
L
√
n− ε2 n

)
.

The values of the constants are numerically evaluated to be α∗ ≈ 0.199 and v∗/2 ≈ 0.506. Tanaka and Bray [13]
have found these values analytically using a different derivation involving a complex-valued integral representation
for the average number of local minima. Since the global minimum of H(σ) is about −0.763n3/2, the typical value a
local optimum −0.506n3/2 comes fairly close.

Also note that Proposition 2 below implies that α∗ is between 1/(2π) ≈ 0.1591 . . . and 2/(3π) ≈ 0.2122 . . ..

B. Local minima, greedy algorithms and MaxCut

Our problem is related to finding a local optimum of weighted MaxCut on the complete graph, which was recently
studied in Etscheid and Röglin [6] and Angel, Bubeck, Peres, and Wei [2]. Given S ⊂ [n], we denote the value of the
cut (S, [n]\S) as

Cut(S, [n]\S) :=
∑
i∈S

∑
j∈[n]\S

Wi,j .

Note that there is a direct correspondence between cuts (S, [n]\S) and spin configurations σS given by

σS :=
(
21{i∈S} − 1

)n
i=1

,

Cut(S, [n]\S) =
−H(σS) +

∑
1≤i<j≤nWij

2
.

In particular, what [2] calls locally optimal cuts correspond exactly to our notion of local minimum and Theorem 1
may be formulated in terms of locally optimal cuts. (Note that n−3/2

∑
1≤i<j≤nWij = Op(n

−1/2) and therefore this

term does not play a significant role in the typical value of a locally optimal cut.)
The papers [6] and [2] study the typical running time simple greedy algorithms take to find locally optimal cuts.

Such algorithms start from a given σ and perform a sequence of local “greedy moves”– that is, single spin flips that
decrease energy– until no more such moves are available. The main result of [2] is that this process ends at a local
minimum after a polynomial number of moves.

Perhaps surprisingly, it is not clear that the distribution of the value of this local minimum is similar to the one
we study in Theorem 1. In Figure 1 we present numerical evidence that two variants of local greedy search can
find spin configurations with energies roughly of order −0.7n3/2, which is better than the typical value −0.506n3/2

coming out of Theorem 1. Eastham et al. [5] found the same energy value −0.7n3/2 for random greedy ascent, where
the coordinate to be flipped is chosen uniformly from all flips that decrease energy. Those authors explain why this
finding contradicts the so-called Edwards hypothesis, whereby “quasiequilibrium steady states” should be describable
by a thermodynamic measure over the metastable states (i.e., the local minima). It would be interesting to put these
observations on a rigorous footing.

II. THE PROBABILITY OF LOCAL OPTIMALITY

In this section we take the first and crucial step to prove Theorem 1. For any fixed spin configuration σ ∈ {−1,+1}n,
we establish integral formulae for the probability that σ is locally optimal and for the conditional distribution of its
energy.
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FIG. 1. Energy plots for two variants of the local greedy algorithm for finding a local optimum. The x axis in each plot is
the value of the dimension n which takes values n = 100, 200, 300, . . . , 2000. The y axis is the value of H(σ)n−3/2 when the
algorithm halts, averaged over 100 runs of the algorithm. The algorithm used in figure 1.A is the local greedy rule whereby
the first coordinate that gives an improvement in energy is flipped at each step. In figure 1.B, the coordinate giving the largest
improvement is used at each step.

Proposition 1 (Key integral formulae; proof in §II A). Let N denote a n-dimensional standard Gaussian random
vector. Then for all σ ∈ {−1,+1}n and ∆ ∈ R,

P{σ is locally optimal} = 2−n
√

n− 2

2n− 2
E exp

(
‖N‖21

4(n− 1)

)
; (1)

P
{
−H(σ)

n3/2
≤ ∆

∣∣∣∣σ is locally optimal

}
=

E
[
1{‖N‖1≥2∆n3/2/

√
n−2} exp

(
‖N‖21

4(n−1)

)]
E exp

(
‖N‖21

4(n−1)

) . (2)

In Section III, we take a closer look at the integral expression of the probability of local optimality. In fact, we
prove that (1/n) logP{σ is locally optimal} converges to α∗− log 2 defined in the introduction. Before we do that, we
take a brief detour in §II B to give some explicit upper and lower bounds on the probability of local optimality.

Proposition 2 (Proven in §II B). For all spin configurations σ ∈ {−1, 1}n,

1

2π
− log 2−O

(
1

n

)
≤ 1

n
logP{σ is locally optimal} ≤ 2

3π
− log 2 +O

(
1

n

)
.

A. Proof of the integral formulae

We prove here Proposition 1.

Proof of Proposition 1: For i ∈ [n], define

Zi(σ) :=
H(σ(i))−H(σ)

2
= −

∑
j∈[n]\i

σi σjWi,j .

Note that

σ is a local minimum if and only if Zi(σ) ≥ 0 for all i ∈ [n] . (3)

Moreover,

−H(σ) =
1

2

n∑
i=1

∑
j∈[n]\i

−σi σjWi,j =

∑n
i=1 Zi(σ)

2
. (4)



5

Since σ is fixed, we write Zi instead of Zi(σ) most of the time. A key point in our calculations is that the random
vector

Z = (Z1, Z2, . . . , Zn)T

is a multivariate normal vector with zero mean and covariance matrix C = (Ci,j)n×n such that Ci,i = n − 1 for all
i ∈ [n] and Ci,j = 1 for all i 6= j. In other words,

C = (n− 2)Idn + 1n1
T
n ,

where Idn is the n× n identity matrix and 1n = (1, 1, . . . , 1)T is the column vector with 1 in each component.
Clearly, the eigenvalues of C are 2n − 2 with multiplicity 1 and n − 2 with multiplicity n − 1, and therefore

det(C) = (2n− 2)(n− 2)n−1.
One may use the Sherman-Morrison formula to invert C and obtain

C−1 =
1

n− 2

(
Idn −

1

2n− 2
1n1

T
n

)
.

Hence,

P{σ is locally optimal}

=
1

(2π)n/2 det(C)1/2

∫
[0,∞)n

exp

(
−xTC−1x

2

)
dx

=
1

(2π)n/2(2n− 2)1/2(n− 2)(n−1)/2

∫
[0,∞)n

exp

(
−‖x‖22

2(n− 2)
+

‖x‖21
2(n− 2)(2n− 2)

)
dx

= 2−n
1

(2π)n/2(2n− 2)1/2(n− 2)(n−1)/2

∫
Rn

exp

(
−‖x‖22

2(n− 2)
+

‖x‖21
2(n− 2)(2n− 2)

)
dx .

The change of variables u = x/
√
n− 2 allows us to rewrite this integral as:

P{σ is locally optimal} = 2−n
√

n− 2

2n− 2
E exp

(
‖N‖21

4(n− 1)

)
where N is a vector of n independent standard normal random variables. This gives the first part of the proposition.
To prove the second part, we follow the above calculations with slight modifications.

P
{
σ is locally optimal, n−3/2H(σ) ≤ −∆

}
= P

{
(∩ni=1{Zi ≥ 0})

⋂{
n∑
i=1

Zi ≥ 2∆n3/2

}}

=
1

(2π)n/2 det(C)1/2

∫
[0,∞)n∩{x:

∑
i xi≥2∆n3/2}

exp

(
−xTC−1x

2

)
dx

=
1

(2π)n/2(2n− 2)1/2(n− 2)(n−1)/2

∫
[0,∞)n∩{x:

∑
i xi≥2∆n3/2}

exp

(
−‖x‖22

2(n− 2)
+

‖x‖21
2(n− 2)(2n− 2)

)
dx

= 2−n
1

(2π)n/2(2n− 2)1/2(n− 2)(n−1)/2

∫
{x:‖x‖1≥2∆n3/2}

exp

(
−‖x‖22

2(n− 2)
+

‖x‖21
2(n− 2)(2n− 2)

)
dx .

Thus, by the same change of variables u = x/
√
n− 2 as before, we get:

P
{
σ is locally optimal, n−3/2H(σ) ≤ −∆

}
= 2−n

√
n− 2

2n− 2
E
[
1{‖N‖1≥2∆n3/2/

√
n−2} exp

(
‖N‖21

4(n− 1)

)]
,

where N is as above. 2
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B. Explicit estimate on the probability of local optimality

In what follows, we derive Proposition 2 on upper and lower bounds for P{σ is locally optimal}. We will use the
following Lemma.

Lemma 1. If N is a vector of independent standard normal random variables, then for all λ > 0,

λE‖N‖21 ≤ logE exp
(
λ‖N‖21

)
≤ λE‖N‖21

(
1 +

nλ

(1− nλ)

)
.

Proof of Lemma 1: The inequality on the left-hand side is obvious from Jensen’s inequality. To prove the right-
hand side, we use the Gaussian logarithmic Sobolev inequality. In particular, writing f(x) = ‖x‖21 and F (λ) =
E exp (λf(N)), the inequality on page 126 of Boucheron, Lugosi, and Massart [3] asserts that

λF ′(λ)− F (λ) logF (λ) ≤ λ2

2
E
[
eλf(N)‖∇f(N)‖2

]
.

Since ‖∇f(N)‖2 = 4n‖N‖21, we obtain the differential inequality

λF ′(λ)− F (λ) logF (λ) ≤ 2nλ2F ′(λ) .

This inequality has the same form as the one at the top of page 191 of [3] with a = 2n and b = 0 and Theorem 6.19
implies the result above. 2

Proof of Proposition 2: Since

E‖N‖21 = n+ n(n− 1)
2

π
,

we get

P{σ is locally optimal} ≥ 2−n
√

n− 2

2n− 2
exp

(
n/(4(n− 1)) +

n

2π

)
and

P{σ is locally optimal} ≤ 2−n
√

n− 2

2n− 2
exp

((
n/(4(n− 1)) +

n

2π

) 4n− 1

3n− 1

)
.

The Proposition follows from takings logarithms and dividing by n on both sides. 2

III. APPROXIMATING THE INTEGRAL

The key fact that emerges from Proposition 1 is that, in order to prove our main result, we need to analyze
exponential moments of ‖N‖1 =

∑n
i=1 |Ni|, a sum of absolute values of i.i.d. standard Gaussians. The next lemma

gives a quantitative version of the Large Deviations Principle for such a sum.

Lemma 2 (Quantitative LDP for ‖N‖1; proof in §IV B). For x ≥
√

2/π, define µ∗(x) as in the introduction. Let
N = (N1, . . . , Nn) be a vector of independent standard normal coordinates. Then

P {‖N‖1 ≥ nx} = e−(µ∗(x)+rn(x))n with 0 ≤ rn(x) ≤ κ

(
x−

√
2/π√
n

+
1

n

)
for some κ > 0 independent of x and n. Moreover, µ∗ is smooth, µ∗(

√
2/π) = µ′∗(

√
2/π) = 0, and 1 ≤ µ′′∗(x) ≤ 20

for all x ≥
√

2/π.

Given this Lemma, we will base our proof strategy on a Laplace-type approximation to the expectations in Propo-
sition 1. Modulo some technical assumptions, Varadhan’s Lemma (see e.g. [7, page 32]) leads one to expect that, as
n→∞,

1

n
log E

[
exp

(
‖N‖21

4(n− 1)

)]
≈ 1

n
log E

[
exp

(
n

(‖N‖1/n2)

4

)]
→ sup

v

(
v2

4
− µ∗(v)

)
.

In fact, the intuition behind the Varadhan’s lemma is that most of the “mass” of the expectation concentrates around
‖N‖1 ∼ v∗ n, where v∗ achieves the above supremum. This is precisely what we show in the proof of Theorem 1 in
§III A. The proofs of some additional Lemmas we use are presented in §III B and §III C.
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A. Proof of the main result

Proof of Theorem 1: We recall the formulae from Proposition 1.

P{σ is locally optimal} = 2−n
√

n− 2

2n− 2
E exp

(
‖N‖21

4(n− 1)

)
; (5)

P
{
−H(σ)

n3/2
≤ ∆

∣∣∣∣σ is locally optimal

}
=

E
[
1{‖N‖1≥2∆n3/2/

√
n−2} exp

(
‖N‖21

4(n−1)

)]
E exp

(
‖N‖21

4(n−1)

) ; (6)

where N is a vector of n i.i.d. random standard Gaussians. Using Lemma 2, we will be able to prove the following
result.

Lemma 3 (Proof in §III B). Given c ≥ 0, x ≥
√

2/π, define Rc(x) := cx2/2− µ∗(x). Letting rn(x) be as in Lemma

2, we have that for b ≥
√

2/π,

E
[
exp

(
c‖N‖21

2n

)
1{‖N‖1≥bn}

]
= exp {n (Rc(b)− rn(b))}

+cn

∫ +∞

b

x exp {n (Rc(x)− rn(x))} dx ,

whereas for a ≥
√

2/π,

E
[
exp

(
c‖N‖21

2n

)
1{‖N‖1≤an}

]
= (I) + (II) ,

where

1 ≤ (I) ≤ exp
(
nRc(

√
2/π)

)
and (II) = cn

∫ a

√
2/π

x exp(n (Rc(x)− rn(x))) dx.

The upshot is that, in order to understand our expectations, we will need to analyze the behavior of the function
Rc(x). Comparison with (5) and (6) shows that the value of interest for us is c = cn = n/2(n− 1) = 1/2 + o(1). We
will also consider the value c = 1/2 obtained when n→ +∞:

R(x) = R 1
2
(x) :=

x2

4
− µ∗(x) for x ≥

√
2/π . (7)

The next lemma collects some information about R(x).

Lemma 4 (Proven in §III C). Let x ≥
√

2/π. Define R as in equation (7) and µ∗ as in Lemma 2. Then there exists a

unique x = v∗ >
√

2/π that maximizes R(x) over x ≥
√

2/π. Letting α∗ := R(v∗) denote the value of the maximum,

we have the following strict concavity property: for any x ≥
√

2/π,

−10 (x− v∗)2 ≤ R(x)− α∗ ≤ (x− v∗)2

4
.

From now on, we assume n ≥ 100 for simplicity, and use the notation L to denote the value of a positive constant
independent of n whose value may change from line to line. Finally, we set

c = cn :=
n

2 (n− 1)
=

1

2
+

1

2 (n− 1)
.

The definition of Rc in Lemma 3 may be combined with the concavity property in Lemma 4 to obtain that for all

x ≥
√

2
π ,

−10 (x− v∗)2 ≤ Rc(x)− α∗ ≤ − (x− v∗)2

4
+

x2

4 (n− 1)
. (8)
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We now apply this to estimate expectations to the left of v∗. That is, we consider, for a ∈
[√

2
π , v
∗
]
,

E
[
exp

(
c‖N‖21

2n

)
1{‖N‖1≤an}

]
.

In this range |a− v∗| is uniformly bounded, so x2 ≤ L and

0 ≤ rn(x) ≤ L√
n

for all

√
2

π
≤ x ≤ v∗ .

Combining Lemma 3 with c ≤ 1 and (8), we obtain

E
[
exp

(
c‖N‖21

2n

)
1{‖N‖1≤an}

]
exp(nα∗)

≤ exp(n (Rc(
√

2/π)− α∗))

+cn

∫ a

√
2/π

x exp (n (Rc(x)− α∗)) dx

(9)

≤ exp

(
L−

(v∗ −
√

2/π)2

4
n

)

+n

∫ a

√
2/π

x exp

(
L+ n

(v∗ − x)2

4

)
dx

≤ L (1 + cn) exp

(
L− (a− v∗)2 n

4

)
≤ exp

(
L log n − (a− v∗)2 n

4

)
(10)

and

E
[
exp

(
c‖N‖21

2n

)
1{‖N‖1≤v∗n}

]
exp(nα∗)

≥ exp
(
−L
√
n
) ∫ v∗

v∗− 1√
n

x exp (n (Rc(x)− α∗)) dx

≥ exp (−L
√
n − 10)√
n

≥ exp(−L
√
n) . (11)

For bounding the expectation for b ≥ v∗, we cannot simply use x2 ≤ L and rn(x) ≤ L/
√
n. However, note that

−1

4
(x− v∗)2 +

x2

4 (n− 1)
≤

{
− 1

5 (x− v∗)2 + L√
n

for x ≤ (n− 1)1/4;

− 1
4 (x− v∗)2 + 2(x−v∗)2+2(v∗)2

(n−1) ≤ − 1
5 (x− v∗)2 + L

n for larger x.

Also, recalling the expression for rn in Lemma 2,

0 ≤ rn(x) ≤ κ

(
x−

√
2/π√
n

+
1

n

)
≤ L√

n
+
L (x− v∗)√

n
.

This allows us to obtain, for b ≤ v∗ + ε0,

E
[
exp

(
c‖N‖21

2n

)
1{‖N‖1≥bn}

]
exp(nα∗)

≤ exp

(
L
√
n− (b− v∗)2 n

4

)
. (12)

This leads to our main results. Indeed, we may upper bound

E
[
exp

(
c‖N‖21

2n

)]
= E

[
exp

(
c‖N‖21

2n

)
1{‖N‖1≤v∗n}

]
+E

[
exp

(
c‖N‖21

2n

)
1{‖N‖1≥v∗n}

]
(use (10) & (12) w/ a = b = v∗) ≤ exp (nα∗ + n δn) ,
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where |δn| ≤ L/
√
n for a positive constant L. At the same time, inequality (11) gives:

E
[
exp

(
c‖N‖21

2n

)]
≥ exp (nα∗ − n δn) ,

with δn as above. So Proposition 1 implies the first statement in the Theorem.
To obtain conditional concentration of the energy, we use Proposition 1 and obtain:

P
{
−H(σ) ≤ −v

∗

2
− ε
∣∣∣∣ σ local optimum

}
≤

E
[
1{‖N‖1≥b n} exp

(
‖N‖21

4(n−1)

)]
E
[
exp

(
‖N‖21

4(n−1)

])
(

with b = (v∗ + 2ε)

√
n

n− 1

)
= exp

(
−L
√
n− ε2 n

)
,

and, for ε small enough, so that the value of a below is at most
√

2/π,

P
{
−H(σ) ≥ −v

∗

2
+ ε

∣∣∣∣ σ local optimum

}
≤

E
[
1{‖N‖1≤an} exp

(
‖N‖21

4(n−1)

)]
E
[
exp

(
‖N‖21

4(n−1)

)]
(

with a = (v∗ − 2ε)

√
n

n− 1

)
= exp

(
−L
√
n− ε2 n

)
.

2

B. Estimates on the integrals

Proof of Lemma 3: Recall the definition of Rc from (7),

Rc(x) :=
cx2

2
− µ∗(x) for c ≥ 0, x ≥

√
2/π;

and that our goal is to estimate:

E
[
1{‖N‖1≤an} exp

(
cn ‖N‖21

2n

)]
and E

[
1{‖N‖1≥b n} exp

(
cn ‖N‖21

2n

)]
for a, b ≥

√
2/π, where N is a n-dimensional vector of independent standard Gaussians. Lemma 2 enters our proof

via the fact that:

∀x ≥
√

2

π
: P{‖N‖1 ≥ nx} = exp(−(µ∗(x) + rn(x))n) (13)

where rn(x) is as in that Lemma.

Let φc,n(x) = ecn x
2/2. Note that

1{‖N‖1≤an} exp

(
cn ‖N‖21

2n

)
= φc,n

(
‖N‖1
n

)
1{ ‖N‖1n ≤a} .

We may compute the expectation of this expression as follows.

E
[
1{‖N‖1≤an} exp

(
cn ‖N‖21

2n

)]
= 1 +

∫ a

0

φ′c,n(x)P
{
‖N‖1
n
≥ x

}
dx

= 1 + cn

∫ a

0

exp

(
cn x2

2

)
P
{
‖N‖1
n
≥ x

}
dx .
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We split the above integral in two parts.

(I) = 1 + cn

∫ √2/π

0

x exp

(
cn x2

2

)
P
{
‖N‖1
n
≥ x

}
dx

(II) = cn

∫ a

√
2/π

x exp

(
cn x2

2

)
P
{
‖N‖1
n
≥ x

}
dx .

For term (I), we bound the probability in the integral by 1, and obtain:

1 ≤ (I) ≤ 1 + cn

∫ √2/π

0

x exp

(
cn x2

2

)
dx = exp

(
cn x2

2

)∣∣∣∣
x=
√

2
π

= exp
(
nRc(

√
2/π)

)
because µ∗(

√
2/π) = 0. Term (II) may be evaluated using (13),

(II) = cn

∫ a

√
2/π

x exp

(
cn x2

2
− nµ∗(x)− n rn(x)

)
dx ,

which has the desired form because

cn x2

2
− nµ∗(x) = nRc(x) .

Similarly,

1{‖N‖1≥b n} exp

(
cn ‖N‖21

2n

)
= φc,n

(
‖N‖1
n

)
1{ ‖N‖1n ≥b} ,

and we finish the proof via the identity

E
[
1{‖N‖1≥b n} exp

(
cn ‖N‖21

2n

)]
= φc,n(b)P

{
‖N‖1
n
≥ b
}

+

∫ +∞

b

φ′c,n(x)P
{
‖N‖1
n
≥ x

}
dx

and using the bound in (13). 2

C. Estimates on the optimization problem

Proof of Lemma 4: Recall that our goal is to understand the function

R(x) =
x2

4
− µ∗(x)

with µ∗ as in Lemma 2. We will strongly use some properties of µ∗ obtained in that Lemma:

µ∗ is smooth, µ′∗(
√

2/π) = 0 and 1 ≤ µ′′∗(x) ≤ 20 for x ≥
√

2/π. (14)

This immediately implies:

−20 ≤ R′′(x) =
1

2
− (µ∗)

′′(x) ≤ −1

2
.

Note also that derivative of R at x =
√

2/π satisfies

R′(
√

2/π) =
1

2

√
2/π − µ′∗(

√
2/π) =

1√
2π

> 0 .
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So R is increasing in an interval to the right of
√

2/π. At the same time, it is a strictly concave function whose

derivative decreases to −∞ as x→ +∞. It follows that this function achieves its maximum at some v∗ >
√

2/π, with
R′(v∗) = 0.

Now consider

α∗ := R(v∗) = max
x≥
√

2/π

R(x) .

Since v∗ is a critical point, a Taylor expansion shows that, if x ≥
√

2/π,

R(x) = α∗ +
R′′(v∗ + θ (x− v∗))

2
(x− v∗)2

for some 0 ≤ θ ≤ 1, and the theorem follows because R′′ ∈ [−20,−1/2]. 2

IV. AUXILIARY RESULTS ON LARGE DEVIATIONS

This section is to prove a series of results on the `1 norm of a n-dimensional vector of i.i.d. standard Gaussians.
These results together imply Lemma 2 – a “finite-sample LDP” for ‖N‖1 – , which is proven in §IV B. A estimate on
derivatives is left to §IV C.

A. Preliminary estimates

We first find an expression for the Laplace transform of the absolute value of a standard normal random variable:

Lemma 5. Let N be a standard normal random variable. For all λ > 0,

Eeλ|N | = eλ
2/2+φ(λ) ,

where φ(λ) = log(2Φ(λ)), with Φ(λ) = P{N ≤ λ}.
Proof :

Eeλ|N | =
2√
2π

∫ ∞
0

eλx−x
2/2dx

= 2eλ
2/2 1√

2π

∫ ∞
0

e(x−λ)2/2dx

= 2eλ
2/2P{N > −λ} .

2

We need to compute the large deviations rate function for
∑n
i=1 |Ni|, with Ni independent standard normal random

variables. As usual, this is given by the Fenchel-Légendre transform of logEeλ|N |:

µ∗(x) := sup
λ≥0

(
λx− logEeλ|N |

)
.

The next lemma collects technical facts on µ∗ and the value λ = λ∗ that achieves the minimum.

Lemma 6. For each x ≥
√

2/π, there exists a unique λ = λ∗(x) ≥ 0 such that

λ+ φ′(λ) = x .

Defining

µ∗(x) := λ∗(x)x− λ∗(x)2

2
− φ(λ∗(x)) ,

for x ≥
√

2
π , we have that, for each x in this range, µ∗(x) is the global maximum of

λx− λ2

2
− φ(λ)

over λ ∈ [0,∞) which is uniquely achieved at λ = λ∗(x). We also have the following properties.
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1. Derivative: λ∗ is the derivative of µ∗ and µ∗(
√

2/π) = λ∗(
√

2/π) = 0.

2. Strict concavity. For each λ ≥ 0, x ≥
√

2/π,

(λ− λ∗(x))2

40
≤ µ∗(x)− (λx− logE eλ|N |) ≤ (λ− λ∗(x))2

2
. (15)

3. Derivative bounds for λ∗:

1 ≤ (µ∗)
′′(x) = λ′∗(x) ≤ 20 . (16)

Proof : By the previous Lemma,

λ+ φ′(λ) =
d

dλ
log Eeλ|N | ,

which is a smooth function because |N | has a Gaussian-type tail. Using this “lightness of the tail”, one can differentiate
under the expectation and obtain

φ′(0) =
d

dλ
logE eλ|N |

∣∣∣∣
λ=0

= E |N | =
√

2

π
.

Lemma 8 in §IV C implies that

−0.95 ≤ φ′′(λ) ≤ 0 .

Therefore, for all λ ≥ 0,

d

dλ
(λ+ φ′(λ)) ∈ [0.05, 1] . (17)

In particular, λ + φ′(λ) is an increasing function that is equal to
√

2/π at λ = 0 and diverges when λ ↗ +∞. It

follows that for all x ≥
√

2/π there exists a unique λ = λ∗(x) with λ∗(x) + φ′(λ∗(x)) = x, and λ∗(
√

2/π) = 0. The

implicit function theorem guarantees that λ∗ is smooth over [
√

2/π,+∞) and

λ′∗(x) =
1

d
dλ (λ+ φ′(λ)) |λ=λ∗(x)

∈ [1, 20] . (18)

Equation (17) above shows that

λx− λ2

2
− φ(λ) = λx− logE eλ|N |

is a strictly concave function of λ with second derivative

−1 ≤ − d2

(dλ)2

(
λ2

2
+ φ(λ)

)
≤ − 1

20
.

Thus λ∗(x), which is a critical point for this function, is the unique global maximum of λx − logE eλ|N |. The value
of the function at that point is precisely µ∗(x). Note also that:

(µ∗)
′(x) =

d

dx

(
λ∗(x)x− λ∗(x)2

2
− φ(λ∗(x))

)
= λ∗(x)

because x = λ∗(x) + φ′(λ∗(x)).
Let us now prove the estimates in the lemma. The strict concavity property in (15) follows from expanding

λx− logE eλ|N |

around the critical point λ = λ∗(x) and applying a second-order Taylor expansion:

λx− logE eλ|N | − µ∗(x) =
d

dλ
(λx− logE eλ|N |)

∣∣∣∣
λ=λ∗(x)

(λ− λ∗(x))

+
1

2

d2

(dλ)2

(
λx− logE eλ|N |

)∣∣∣∣
λ=λ̃

(λ− λ∗(x))2

with λ̃ = (1− θ)λ∗(x) + θλ, for some α ∈ [0, 1] ,

noting that the first derivative is 0 and the second one is between −1 and −1/20. Finally, the derivative bound in
item 2 is proven in (18). 2
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B. The quantitative LDP

We now have the tools to prove Lemma 2.
Proof of Lemma 2: The facts about values and derivatives about µ∗ are contained in Lemma 6. Our goal, then, is
to show that that for any n ≥ 1,

1

n
logP {‖N‖1 ≥ nx} = −µ∗(x)− rn(x) ,

where µ∗ is as in Lemma 6 and

0 ≤ rn(x) ≤ κ

(
x−

√
2/π√
n

+
1

n

)

for some universal κ > 0 that is independent of x ≥
√

2/π and n ≥ 1.
For any λ > 0, the usual Cramér-Chernoff trick may be combined with Lemma 6 to obtain

1

n
logP {‖N‖1 ≥ nx} ≤ inf

λ≥0

(
log E eλ|N | − λx

)
= −µ∗(x) .

To give a non-asymptotic lower bound for this probability, we use the following lemma that appears in the fourth
edition of the book of Alon and Spencer [1, Theorem A.2.1].

Lemma 7. Let u, λ, ε > 0 such that λ > ε. Let X be a random variable such that the moment generating function
EecX exists for c ≤ λ+ ε. For any a ∈ R, define ga(c) = e−acEecX . Then

P{X ≥ a− u} ≥ e−λu
(
ga(λ)− e−εu (ga(λ+ ε) + ga(λ− ε))

)
.

We apply Lemma 7 to the random variable X = ‖N‖1 with λ = λ∗(a/n) and a, u, ε to be chosen below. In the
notation of Lemma 7, for each λ ≥ 0,

ga(λ) = exp (−nµa(λ)) where µa(λ) =
(
λ (a/n)− log E eλ |N |

)
.

Using Lemma 6 to bound this expression, we obtain from (15) that

ga(λ∗(a/n) + ε)

ga(λ∗(a/n))
≤ enε

2/2 and
ga(λ∗(a/n)− ε)
ga(λ∗(a/n))

≤ enε
2/2 .

Moreover, ga(λ∗(a/n)) = e−nµ∗(a/n). So

P{‖N‖1 ≥ a− u} ≥ e−λ∗(a/n)ue−nµ∗(a/n)
(

1− 2e−εu+ ε2n
2

)
.

We now choose ε =
√

2/n and u = εn/2 + 1/ε =
√

2n to obtain

P{‖N‖1 ≥ a− u} ≥ e−λ∗(a/n)
√

2ne−nµ∗(a/n)

(
1− 2

e

)
.

Letting a = nx+
√

2n = n (x+ ε), we have that

P{‖N‖1 ≥ nx} = e−λ∗(x+ε)
√

2ne−nµ∗(x+ε)

(
1− 2

e

)
.

Recall from Lemma 6 that λ′∗(y) ≤ 20 (y−
√

2/π) and y−
√

2/π ≤ (µ∗)
′(y) ≤ 20 (y−

√
2/π) for all y ≥

√
2/π. Thus,

λ∗(x+ ε)
√

2n ≤ 20 (x+ ε−
√

2/π)
√

2n

and

µ∗(x+ ε) ≤ µ∗(x) + 20 ε (x+ ε−
√

2/π) .

Recalling ε =
√

2/n, we may plug theses estimates back in the lower bound for our probability and obtain the theorem.
2
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C. One more technical estimate

Lemma 8. Let f(λ) = (2π)−1/2e−λ
2/2 be the standard normal density let Φ(λ) =

∫ λ
−∞ f(x)dx be the corresponding

cumulative distribution function. Then for all λ ≥ 0,

f ′(λ)

Φ(λ)
− f(λ)2

Φ(λ)2
> −0.95 .

Proof : Note that f ′(λ) = −λf(λ), so we need only need to prove

sup
λ≥0

f(λ)

Φ(λ)

(
λ+

f(λ)

Φ(λ)

)
< 0.95 .

We combine three inequalities, considering three ranges of the value of λ, given by [0, λ1), [λ1, λ2], and (λ2,∞), where

λ1 =
0.95− 2

π√
2/π

≈ 0.3927 . . . and λ2 =

√
log

2/π

0.95−
√

2/(πe)
≈ 0.5584 . . . .

First, note that f(λ)/Φ(λ) ≤
√

2/π since f/Φ is a decreasing function. Thus,

f(λ)

Φ(λ)

(
λ+

f(λ)

Φ(λ)

)
≤ 2

π
+ λ

√
2

π
< 0.95 for λ ∈ [0, λ1).

Second, λe−λ
2/2 ≤ 1/

√
e, so

f(λ)

Φ(λ)

(
λ+

f(λ)

Φ(λ)

)
≤ 2λf(λ) + 2f(λ)2 ≤

√
2

πe
+

2

π
e−λ

2

< 0.95 for λ ∈ (λ2,∞).

Finally, since λe−λ
2/2 is increasing and e−λ

2/2 is decreasing on [λ1, λ2], on this interval we have

f(λ)

Φ(λ)

(
λ+

f(λ)

Φ(λ)

)
≤ 2λ2f(λ2) + 4f2(λ1) ≈ 0.92685 . . . < 0.95 .

2
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