Flow Networks

Abderrahman Laoufi, Yanis Merzouki

April 12, 2022

This is the augmented transcript of a lecture given by Luc Devroye on the 12th of April 2022 for the Honours Data Structures and Algorithms class (COMP 252). The subject was flow networks.

Flow Network

Definition 1. A flow network G = (V, E) is a directed graph whose edges $(u, v) \in E$ have a non negative capacity $c(u, v) \ge 0$. It is also distinguished by the presence of the vertices *s* (source) and *t* (target or sink).

In fact, for all $v \in V$, a flow network contains a path $s \rightsquigarrow v \rightsquigarrow t$, i.e., there exists a path from *s* to *t* which goes by *v*.

Definition 2. A **flow**¹ is a function $f : V \times V \rightarrow \mathbb{R}$ that satisfies:

- 1. Capacity rule: $\forall u, v \in V, 0 \le f(u, v) \le c(u, v)$
- 2. Skew symmetry: $\forall u, v \in V, f(u, v) = -f(v, u)$
- 3. Conservation (Kirchhoff's law²): $\forall u \in V / \{s, t\}$, we have:

$$\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u).$$

Definition 3. The **value**³ Val(f) of a flow network f is defined by the following formula:

$$\begin{aligned} Val(f) &= \sum_{v \in V} f(s, v) \qquad \text{(leaving s)} \\ &= \sum_{v \in V} f(v, t) \qquad \text{(arriving at t)}. \end{aligned}$$

Example 4. A flow network with a value Val(f) = 19.

Figure 1: Every arbitrary node $v \in V$ between *s* and *t* is reachable.

¹ One can compare a flow *f* with the current in an electrical network.

² Arshad [2010]

³ Our objective is to maximize the value of the flow.

Figure 2: Example of a flow network. Only positive flows are shown. For each edge, the numerator represents the flow, and the denominator represents the capacity. Some Properties

Definition 5. If we define f(A, B) as follows:

$$f(A,B) = \sum_{x \in A} \sum_{y \in B} f(x,y)$$

then, the following properties hold:

- 1. $\forall u \notin \{s,t\}$: $f(u, V \{u\}) = f(u, V) = 0$ $f(V, u) = f(V - \{u\}, u) = 0$
- 2. $f(s,v) = f(s,V \{s\})$
- 3. f(A, A) = 0
- 4. f(A, B) = -f(B, A)
- 5. $A \cap B = \emptyset \Rightarrow f(A \cup B, C) = f(A, C) + f(B, C)$

The Ford-Fulkerson Method

The Ford-Fulkerson⁴ method's goal is to increase the flow's value iteratively. We set $f(u, v) = 0 \quad \forall u, v \in V$ at the start of the method. Each loop iteration increases the flow value in *G* by finding an "augmenting path" in what we call a "residual network" G_f .⁵

Remark 6. Note that although the value of the flow f increases, the flow of a specific edge (u, v) could increase or decrease.

Ford-Fulkerson Method

- 1 flow $f \equiv 0$
- **2** while \exists an augmenting path p
- *3 // On which we can send more flow*
- 4 augment flow along *p*
- 5 return f

To be able to efficiently analyze the Ford-Fulkerson method, the notion of residual network needs to be introduced.

The Residual Network

Definition 7. The **residual network** defined on a flow network *G*, denoted by G_f , is a group of edges whose capacities $c_f(u, v)^6$ are altered depending on a flow *f* of *G*.

Definition 8.

$$c_f(u,v) = c(u,v) - f(u,v)$$

⁴ Ford and Fulkerson [1956]

⁵ Residual networks are explained below

⁶ $c_f(u, v)$ is called **residual capacity**

Example 9. Example of a residual capacity computation with two edges between two nodes

$$c_f(u, v) = 10 - 5 = 5$$

 $c_f(v, u) = 1 - (-5) = 6$

Example 10. Example of a residual capacity computation with one edge between two nodes

Example 11. An example of a residual network G_f with an augmenting path p colored in red.

Figure 3: From Figure 2, we can extract the following residual network. The edges' labels represent the new capacity c_f of every edge.

The red path p accepts a flow of 4. If we do push a flow of 4 along this path, then we obtain the following graph:

Where

f(u, v) = f(u, v) – flow along the edge

and

$$f(v, u) = f(v, u) +$$
flow along the edge

Then, the vertex t is not reachable anymore from vertex s, as there is no flow that can pass via the middle edge of the augmenting path p, which would make the new value be:

$$Val(f) = 19 + 4 = 23$$

with 19 being the old value Val(f) and 4, the residual flow.

Finding Augmenting Path p

Let $G_f = (V, E_f)$, with $E_f = \{(u, v) : c_f(u, v) > 0\}$ and $|E_f| \le 2|E|$. Then, we can perform DFS⁷ until *t* is reached. If *t* is not reached, then no augmenting path can be found. Otherwise, define *p* as the path in the DFs tree from *s* to *t*. This operation take time O(|E|).

Let $c_f(p) = \min_{(u,v) \in p} c(u,v)$ and define a function $f^* : V^2 \to \mathbb{R}$ such that:

$$f^*(u,v) = \begin{cases} c_f(p) & (u,v) \in p, \\ 0 & \text{otherwise.} \end{cases}$$

If *f* is a flow on *G* and f^* is a flow on G_f , then $f + f^*$ is a flow with a value

$$Val(f + f^*) = Val(f) + Val(f^*)$$

for G.

Figure 4: If the edge with a capacity of 1 is the only edge leading to vertex t, and α can't be reached, then there is no more path from t to s.

⁷ We can also perform Edmonds-Karp's BFS, Edmonds and Karp [1972], or any other traversal in here.

Theorem 12. The following are equivalent:

$$G_f \text{ has no augmenting path} \Leftrightarrow f \text{ is a maximal flow on } G \Leftrightarrow Val(f) = c(S,T) \text{ for some cut } (S,T) \text{ of } G, \text{ where } s \in S \text{ and } t \in T.$$

Definition 13. A **cut**⁸ (S, T) is a partition of the set of vertices *V* in *G* in two disjoint sets *S* and *T*, where the source vertex *s* lies in *S* and the target vertex *t* lies in *T*.

Definition 14.

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Complexity

If capacities are integers, then $c_f(p) \ge 1$. Therefore, the overall time complexity for finding augmenting paths is $O(|E| \cdot Val(f))$, where Val(f) is the overall value.

Remark 15. Updating *G* to G_f takes O(|E|). Also, DFS or BFS takes a similar time O(|E|). As for the number of iterations, it does not exceed the overall value Val(f).

Validity of Some Claims

1. Updating *G* to G_f yields a flow $f + f^*$.

Proof:

Capacity rule:

$$f(u,v) + f^{*}(u,v) \le f(u,v) - \underbrace{(c(u,v) - f(u,v))}_{c_{f}(u,v)} = c(u,v)$$

Skew symmetry:

$$f(u,v) + f^*(u,v) = -f(v,u) - f^*(v,u) = -(f(v,u) + f^*(v,u))$$

Conservation (Kirchhoff's law): If $v \notin \{s, t\}$, then:

$$\sum_{v \in V} \left(f(u, v) + f^*(u, v) \right) = 0 + 0 = 0$$

2. $Val(f + f^*) = Val(f) + Val(f^*)$

Proof:

$$\begin{split} Val(f + f^*) &= \sum_{v \in V} \left(f(s, v) + f^*(s, v) \right) \\ &= \sum_{v \in V} f(s, v) + \sum_{v \in V} f^*(s, v) = Val(f) + Val(f^*) \end{split}$$

Example 16. Let *p* be an augmenting path, and assume that

$$f^*(u,v) = \begin{cases} c_f(p) & (u,v) \in p, \\ -c_f(p) & (v,u) \in p, \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$Val(f^*) = c_f(p)$$

and

$$Val(f + f^*) = Val(f) + c_f(p).$$

The Max Flow Min Cut Theorem

Definition 17. A **minimum cut** of a network is a cut that yields the minimum capacity in the set of all cuts (S, T).

Theorem 18. Let f(S, T) be defined according to DEFINITION 5 above.

Then,

$$Val(f) = f(S, V) = f(S, V) - f(S, S) = f(S, T)$$

and

$$Val(f) = \sum_{u \in S} \sum_{v \in T} f(u, v) \le \sum_{u \in S} \sum_{v \in T} c(u, v) \stackrel{\text{def}}{=} c(S, T).$$

Thus, we get that⁹

$$\max_{\text{flows } f} Val(f) \le \min_{\text{cuts } (S,T)} c(S,T).$$

Proof:

f is a maximal flow $\Rightarrow G_f$ has no augmenting path. \Rightarrow We get the following image: ⁹ The theorem states that the inequality in the result is actuall an equality.

Figure 6: The set *S* contains all nodes v that can be reached from *s* in G_f . The set *T* contains the remaining nodes.

So $\forall u \in S, v \in T : f(u, v) = c(u, v)$, or there would have been an edge between the sets *S* and *T*. This implies that:

$$Val(f) = f(S,T)$$
$$= \sum_{u \in S} \sum_{v \in T} c(u,v)$$
$$= c(S,T).$$

Thus,

$$\max_{\text{flows } f} Val(f) \ge c(S,T) \ge \min_{\text{cuts } (S^*,T^*)} c(S^*,T^*).$$

Edmonds-Karp Version

Edmonds and Karp propose a version in which BFS is used to find augmenting paths. They were able to show that there are at most $|E| \cdot |V|$ augmenting path steps¹⁰. Thus the total complexity of the Edmonds-Karp version is $O(|E|^2 \cdot |V|)$.

¹⁰ No proofs will be given here. Check the references for more information.

References

- M. Arshad. *Network Analysis and Circuits*. Jones and Bartlett Publishers, 2010. ISBN 9780763773786. URL https://archive.org/embed/networkanalysisc0000arsh.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms*. The MIT Press, 3rd edition, 2009. ISBN 9780262033848.

Jack Edmonds and Richard M. Karp. Theoretical improvements in the algorithmic efficiency for network flow problems. *Journal of the ACM*, 19:248–264, 1972. ISSN 0004-5411. DOI: 10.1145/321694.321699. URL https://doi.org/10.1145/321694.321699.

Lester R. Ford and D. R. Fulkerson. Maximal flow through a network. *Canadian Journal of Mathematics*, 8:399–404, 1956. DOI: 10.4153/CJM-1956-045-5. URL https://doi.org/10.4153/CJM-1956-045-5.