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This is the augmented transcript of a lecture given by Luc Devroye on
the 12th of April 2022 for the Honours Data Structures and Algorithms
class (COMP 252). The subject was flow networks.

Flow Network

Definition 1. A flow network G = (V, E) is a directed graph whose
edges (u, v) ∈ E have a non negative capacity c(u, v) ≥ 0. It is also
distinguished by the presence of the vertices s (source) and t (target
or sink).
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v

Figure 1: Every arbitrary node v ∈ V
between s and t is reachable.

In fact, for all v ∈ V, a flow network contains a path s ⇝ v ⇝ t,
i.e., there exists a path from s to t which goes by v.

Definition 2. A flow1 is a function f : V ×V → R that satisfies: 1 One can compare a flow f with the
current in an electrical network.

1. Capacity rule: ∀u, v ∈ V, 0 ≤ f (u, v) ≤ c(u, v)

2. Skew symmetry: ∀u, v ∈ V, f (u, v) = − f (v, u)

3. Conservation (Kirchhoff’s law2): ∀u ∈ V/{s, t}, we have: 2 Arshad [2010]

∑
v∈V

f (u, v) = ∑
v∈V

f (v, u).

Definition 3. The value3 Val( f ) of a flow network f is defined by the 3 Our objective is to maximize the value
of the flow.following formula:

Val( f ) = ∑
v∈V

f (s, v) (leaving s)

= ∑
v∈V

f (v, t) (arriving at t).

Example 4. A flow network with a value Val( f ) = 19.

s t

8
13

11
16

0
10

1
4

4
9

11
14

12
12

7
7

15
20

4
4

Figure 2: Example of a flow network.
Only positive flows are shown. For
each edge, the numerator represents the
flow, and the denominator represents
the capacity.
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Some Properties

Definition 5. If we define f (A, B) as follows:

f (A, B) = ∑
x∈A

∑
y∈B

f (x, y)

then, the following properties hold:

1. ∀u ̸∈ {s, t} : f (u, V − {u}) = f (u, V) = 0
f (V, u) = f (V − {u}, u) = 0

2. f (s, v) = f (s, V − {s})

3. f (A, A) = 0

4. f (A, B) = − f (B, A)

5. A ∩ B = ∅⇒ f (A ∪ B, C) = f (A, C) + f (B, C)

The Ford-Fulkerson Method

The Ford-Fulkerson4 method’s goal is to increase the flow’s value 4 Ford and Fulkerson [1956]

iteratively. We set f (u, v) = 0 ∀u, v ∈ V at the start of the method.
Each loop iteration increases the flow value in G by finding an “aug-
menting path” in what we call a “residual network” G f .5 5 Residual networks are explained

below
Remark 6. Note that although the value of the flow f increases, the
flow of a specific edge (u, v) could increase or decrease.

Ford-Fulkerson Method

1 flow f ≡ 0
2 while ∃ an augmenting path p
3 // On which we can send more flow
4 augment flow along p
5 return f

To be able to efficiently analyze the Ford-Fulkerson method, the
notion of residual network needs to be introduced.

The Residual Network

Definition 7. The residual network defined on a flow network G,
denoted by G f , is a group of edges whose capacities c f (u, v)6 are 6 c f (u, v) is called residual capacity

altered depending on a flow f of G.

Definition 8.
c f (u, v) = c(u, v)− f (u, v)
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Example 9. Example of a residual capacity computation with two
edges between two nodes

u v
f (u, v) = 5

c(u, v) = 10

c(v, u) = 1

c f (u, v) = 10− 5 = 5

c f (v, u) = 1− (−5) = 6

Example 10. Example of a residual capacity computation with one
edge between two nodes

u v
f (u, v) = 7c(u, v) = 10

c(v, u) = 0

c f (u, v) = 10− 7 = 3

c f (v, u) = 0− (−7) = 7

Example 11. An example of a residual network G f with an augment-
ing path p colored in red.
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Figure 3: From Figure 2, we can extract
the following residual network. The
edges’ labels represent the new capacity
c f of every edge.

The red path p accepts a flow of 4. If we do push a flow of 4 along
this path, then we obtain the following graph:
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Where
f (u, v) = f (u, v)− flow along the edge

and
f (v, u) = f (v, u) + flow along the edge

Then, the vertex t is not reachable anymore from vertex s, as there
is no flow that can pass via the middle edge of the augmenting path
p, which would make the new value be:
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Figure 4: If the edge with a capacity of
1 is the only edge leading to vertex t,
and α can’t be reached, then there is no
more path from t to s.

Val( f ) = 19 + 4 = 23

with 19 being the old value Val( f ) and 4, the residual flow.

Finding Augmenting Path p

Let G f = (V, E f ), with E f = {(u, v) : c f (u, v) > 0} and |E f | ≤ 2|E|.
Then, we can perform dfs

7 until t is reached. If t is not reached, then 7 We can also perform Edmonds-Karp’s
bfs, Edmonds and Karp [1972], or any
other traversal in here.

no augmenting path can be found. Otherwise, define p as the path in
the dfs tree from s to t. This operation take time O (|E|).
Let c f (p) = min(u,v)∈p c(u, v) and define a function f ∗ : V2 → R such
that:

f ∗(u, v) =

c f (p) (u, v) ∈ p,

0 otherwise.

If f is a flow on G and f ∗ is a flow on G f , then f + f ∗ is a flow with a
value

Val( f + f ∗) = Val( f ) + Val( f ∗)

for G.



flow networks 5

Theorem 12. The following are equivalent:

G f has no augmenting path
⇔

f is a maximal flow on G
⇔

Val( f ) = c(S, T) for some cut (S, T) of G, where s ∈ S and t ∈ T.

Definition 13. A cut8 (S, T) is a partition of the set of vertices V in G 8 Cormen et al. [2009]

in two disjoint sets S and T, where the source vertex s lies in S and
the target vertex t lies in T.

Definition 14.
c(S, T) = ∑

u∈S
∑
v∈T

c(u, v)
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← S T →
Figure 5: Example of a cut (S, T).

If capacities are integers, then c f (p) ≥ 1. Therefore, the overall time
complexity for finding augmenting paths is O (|E| ·Val( f )), where
Val( f ) is the overall value.

Remark 15. Updating G to G f takes O(|E|). Also, DFS or BFS takes a
similar time O(|E|). As for the number of iterations, it does not
exceed the overall value Val( f ).

Validity of Some Claims

1. Updating G to G f yields a flow f + f ∗.

Proof:

Capacity rule:

f (u, v) + f ∗(u, v) ≤ f (u, v)− (c(u, v)− f (u, v))︸ ︷︷ ︸
c f (u,v)

= c(u, v)

Skew symmetry:

f (u, v) + f ∗(u, v) = − f (v, u)− f ∗(v, u) = − ( f (v, u) + f ∗(v, u))

Conservation (Kirchhoff’s law):
If v ̸∈ {s, t}, then:

∑
v∈V

( f (u, v) + f ∗(u, v)) = 0 + 0 = 0
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2. Val( f + f ∗) = Val( f ) + Val( f ∗)

Proof:

Val( f + f ∗) = ∑
v∈V

( f (s, v) + f ∗(s, v))

= ∑
v∈V

f (s, v) + ∑
v∈V

f ∗(s, v) = Val( f ) + Val( f ∗)

Example 16. Let p be an augmenting path, and assume that

f ∗(u, v) =


c f (p) (u, v) ∈ p,

−c f (p) (v, u) ∈ p,

0 otherwise.

Then
Val( f ∗) = c f (p)

and
Val( f + f ∗) = Val( f ) + c f (p).

The Max Flow Min Cut Theorem

Definition 17. A minimum cut of a network is a cut that yields the
minimum capacity in the set of all cuts (S, T).

Theorem 18. Let f (S, T) be defined according to Definition 5

above.
Then,

Val( f ) = f (S, V) = f (S, V)− f (S, S) = f (S, T)

and
Val( f ) = ∑

u∈S
∑
v∈T

f (u, v) ≤ ∑
u∈S

∑
v∈T

c(u, v) def
= c(S, T).

Thus, we get that9 9 The theorem states that the inequality
in the result is actuall an equality.

max
flows f

Val( f ) ≤ min
cuts (S,T)

c(S, T).

Proof:

f is a maximal flow ⇒ G f has no augmenting path.

⇒We get the following image:



flow networks 7
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Figure 6: The set S contains all nodes v
that can be reached from s in G f . The
set T contains the remaining nodes.

So ∀u ∈ S, v ∈ T : f (u, v) = c(u, v), or there would have been an edge
between the sets S and T. This implies that:

Val( f ) = f (S, T)

= ∑
u∈S

∑
v∈T

c(u, v)

= c(S, T).

Thus,
max

flows f
Val( f ) ≥ c(S, T) ≥ min

cuts (S∗ ,T∗)
c(S∗, T∗).

Edmonds-Karp Version

Edmonds and Karp propose a version in which bfs is used to find
augmenting paths. They were able to show that there are at most
|E| · |V| augmenting path steps10. Thus the total complexity of the 10 No proofs will be given here. Check

the references for more information.Edmonds-Karp version is O
(
|E|2 · |V|

)
.
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